Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Enhanced Oral Bioavailability and Stability Studies of Loratadine Tablets Based on Solid Dispersion of Modified Ziziphus spina-christi Gum

Author(s): Ameen M. Alwossabi*, Eltayeb S. Elamin, Elhadi M.M. Ahmed, Eman A. Ismail, Ahmed Ashour, Wadah Osman, Asmaa E. Sherif, Amira Mira*, Rawan Bafail, Yusra Saleh Andijani, Sabrin R.M. Ibrahim*, Gamal A. Mohamed and Mohammed Abdelrahman

Volume 18, Issue 3, 2024

Published on: 06 June, 2024

Page: [208 - 224] Pages: 17

DOI: 10.2174/0126673878288535240530113418

Price: $65

Abstract

Background: Solid dispersion is a common technique used for solubility enhancement of poorly soluble drugs.

Objective: In this study, loratadine (LOR), a class II biopharmaceutical classification system (BCS), was formulated as solid dispersion tablets using modified Ziziphus spina-christi gum (MZG) as a carrier.

Methods: The solvent evaporation method was used for LOR-MZG solid dispersion (SD) preparation. A variety of tests were conducted to characterize and optimize the formulation. Solubility, Fourier transform infrared (FTIR) analysis, Differential Scanning Calorimetry (DSC), X-Ray Diffraction (X-RD), and Scanning Electron Micrograph (SEM) of solid dispersions were carried out. Accelerated stability testing and pharmacokinetic studies of formulated tablets were also performed using albino Wistar rats.

Results: Solid dispersion improved the solubility of LOR by 51 folds. FTIR spectra excluded drugpolymer interactions, and results obtained by DSC, X-RD, and SEM proved the transition from the crystalline to the amorphous state. The stability of LOR-MZG solid dispersion tablets was found to be better when the Alu-Alu package was used. The pharmacokinetics of LOR-MZG compared to MZG-free loratadine tablets (LOR pure) and commercial loratadine tablets (LOR-TM) following oral administration revealed that about 6 folds and 10 folds bioavailability were achieved with LOR-MZG compared to LOR pure and LOR-TM, respectively.

Conclusion: Such promising results encourage more studies on MZG to be used for improving the aqueous solubility and bioavailability of a wide range of poorly soluble drugs.

[1]
Banerji A, Long AA, Camargo CA. Diphenhydramine versus nonsedating antihistamines for acute allergic reactions: A literature review. Proceedings of the Allergy and Asthma Proceedings. OceanSide. 2007; pp. 28: 418-6.
[http://dx.doi.org/10.2500/aap.2007.28.3015]
[2]
Chemicalbook Loratadine.
[3]
Khan MZI, Raušl D, Zanoški R, et al. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro-in vivo correlation. Biol Pharm Bull 2004; 27(10): 1630-5.
[http://dx.doi.org/10.1248/bpb.27.1630] [PMID: 15467209]
[4]
Sora DI, Udrescu S, David V, Medvedovici A. Validated ion pair liquid chromatography/fluorescence detection method for assessing the variability of the loratadine metabolism occurring in bioequivalence studies. Biomed Chromatogr 2007; 21(10): 1023-9.
[http://dx.doi.org/10.1002/bmc.845] [PMID: 17497754]
[5]
Popović G, Čakar M, Agbaba D. Acid–base equilibria and solubility of loratadine and desloratadine in water and micellar media. J Pharm Biomed Anal 2009; 49(1): 42-7.
[http://dx.doi.org/10.1016/j.jpba.2008.09.043] [PMID: 19013045]
[6]
Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 2012; 64(5): 396-421.
[http://dx.doi.org/10.1016/j.addr.2011.07.009] [PMID: 21843564]
[7]
Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS PharmSciTech 2006; 7(3): E87-92.
[http://dx.doi.org/10.1208/pt070368] [PMID: 17025249]
[8]
Nacsa Á, Berkesi O, Szabó-Révész P, Aigner Z. Achievement of pH-independence of poorly-soluble, ionizable loratadine by inclusion complex formation with dimethyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 2009; 64(3-4): 249-54.
[http://dx.doi.org/10.1007/s10847-009-9558-1]
[9]
Szabados-Nacsa Á, Sipos P, Martinek T, et al. Physico-chemical characterization and in vitro/in vivo evaluation of loratadine: Dimethyl- β-cyclodextrin inclusion complexes. J Pharm Biomed Anal 2011; 55(2): 294-300.
[http://dx.doi.org/10.1016/j.jpba.2011.01.024] [PMID: 21316895]
[10]
Omari SH. Formulation development of loratadine immediaterelease tablets using hot-melt extrusion coupled with 3d-printing technology. 2020.
[11]
Canada Health Product Monograph: Claritin (Loratadine).
[12]
Cuvillo Bernal A, del , Mullol i Miret J, et al. Comparative pharmacology of the H1 antihistamines. J Investig Allergol Clin Immunol 2006; 16 (Suppl. 1): 3-12.
[13]
Heo MY, Piao ZZ, Kim TW, Cao QR, Kim A, Lee BJ. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch Pharm Res 2005; 28(5): 604-11.
[http://dx.doi.org/10.1007/BF02977766] [PMID: 15974450]
[14]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[15]
Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharm Sci 2005; 8(1): 18-25.
[PMID: 15946594]
[16]
Van Nijlen T, Brennan K, Van den Mooter G, Blaton N, Kinget R, Augustijns P. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions. Int J Pharm 2003; 254(2): 173-81.
[http://dx.doi.org/10.1016/S0378-5173(03)00009-7] [PMID: 12623193]
[17]
Nayak AK, Panigrahi PP. Solubility enhancement of etoricoxib by cosolvency approach. ISRN Phys Chem 2012; 2012: 1-5.
[http://dx.doi.org/10.5402/2012/820653]
[18]
Zheng W, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R, Garad S. Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev Ind Pharm 2012; 38(2): 235-47.
[http://dx.doi.org/10.3109/03639045.2011.602406] [PMID: 21851310]
[19]
Dengale SJ, Ranjan OP, Hussen SS, et al. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci 2014; 62: 57-64.
[http://dx.doi.org/10.1016/j.ejps.2014.05.015] [PMID: 24878386]
[20]
Qian F, Huang J, Zhu Q, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 2010; 395(1-2): 232-5.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.033] [PMID: 20562003]
[21]
Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm 2013; 453(1): 65-79.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.066] [PMID: 22569230]
[22]
Michel CG, Nesseem DI, Ismail MF. Anti-diabetic activity and stability study of the formulated leaf extract of Zizyphus spina-christi (L.) Willd with the influence of seasonal variation. J Ethnopharmacol 2011; 133(1): 53-62.
[http://dx.doi.org/10.1016/j.jep.2010.09.001] [PMID: 20833236]
[23]
Mubaraki MA, Hafiz TA, Al-Quraishy S, Dkhil MA. Oxidative stress and genes regulation of cerebral malaria upon Zizyphus spina-christi treatment in a murine model. Microb Pathog 2017; 107: 69-74.
[http://dx.doi.org/10.1016/j.micpath.2017.03.017] [PMID: 28336326]
[24]
Safian-Boldaji M, Pordel Shahri M, Zargartalebi M, Arabloo M. New surfactant extracted from zizyphus spina-christi for enhanced oil recovery: Experimental determination of static adsorption isotherm. J Jpn Petrol Inst 2013; 56(3): 142-9.
[http://dx.doi.org/10.1627/jpi.56.142]
[25]
Alwossabi AM, Elamin ES, Ahmed EMM, Abdelrahman M. Solubility enhancement of some poorly soluble drugs by solid dispersion using Ziziphus spina-christi gum polymer. Saudi Pharm J 2022; 30(6): 711-25.
[http://dx.doi.org/10.1016/j.jsps.2022.04.002] [PMID: 35812143]
[26]
Murali Mohan Babu GV, Kumar NR, Sankar KH, Ram BJ, Kumar NK, Murthy KVR. In vivo evaluation of modified gum karaya as a carrier for improving the oral bioavailability of a poorly water-soluble drug, nimodipine. AAPS PharmSciTech 2002; 3(2): 55-63.
[http://dx.doi.org/10.1208/pt030212] [PMID: 12916949]
[27]
Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: In vitro, ex vivo, and in vivo studies. Biomed Res Int 2014; 2014: 463895.
[http://dx.doi.org/10.1155/2014/463895]
[28]
Samridhi M, Singh SK. Validation of isocratic RP-HPLC method and uv spectrophotometric method for the estimation of loratadine in pharmaceutical formulations. RJPT 2015; 8(4): 452-61.
[http://dx.doi.org/10.5958/0974-360X.2015.00076.1]
[29]
Rane SS, Padmaja P. Spectrophotometric and HPLC method for quantification of Loratadine on swabs for cleaning validation. Toxicol Environ Chem 2013; 95(2): 232-6.
[http://dx.doi.org/10.1080/02772248.2013.767907]
[30]
Jahan S, Khan MR, Moniruzzaman M, Rahman MR, Sadat M, Jalil RU. Enhancement of dissolution profile for oral delivery of Fexofenadine Hydrochloride by solid dispersion (solvent evaporation) technique. AJSIR 2011; 2(1): 112-5.
[http://dx.doi.org/10.5251/ajsir.2011.2.1.112.115]
[31]
Biswal S, Sahoo J, Murthy PN, Giradkar RP, Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech 2008; 9(2): 563-70.
[http://dx.doi.org/10.1208/s12249-008-9079-z] [PMID: 18459056]
[32]
Kumar O, Rani AP, Kumar DV. Formulation and evaluation of solid dispersions of flurbiprofen for dissolution rate enhancement. J Chem Pharm Res 2011; 3: 277-87.
[33]
Guan J, Liu Q, Zhang X, et al. Alginate as a potential diphase solid dispersion carrier with enhanced drug dissolution and improved storage stability. Eur J Pharm Sci 2018; 114: 346-55.
[http://dx.doi.org/10.1016/j.ejps.2017.12.028] [PMID: 29305070]
[34]
Dong W, Su X, Xu M, Hu M, Sun Y, Zhang P. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. AJPS 2018; 13(6): 546-54.
[http://dx.doi.org/10.1016/j.ajps.2018.08.010] [PMID: 32211078]
[35]
Jahangiri A, Barzegar-Jalali M, Garjani A, et al. Pharmacological and histological examination of atorvastatin-PVP K30 solid dispersions. Powder Technol 2015; 286: 538-45.
[http://dx.doi.org/10.1016/j.powtec.2015.08.047]
[36]
Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atorvastatin calcium. J Pharm Pharmacol 2010; 62(11): 1599-606.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01187.x] [PMID: 21039544]
[37]
Rédai EM, Sipos E, Vlad RA, Antonoaea P, Todoran N, Ciurba A. Development of co-amorphous loratadine–citric acid orodispersible drug formulations. Processes 2022; 10(12): 2722.
[http://dx.doi.org/10.3390/pr10122722]
[38]
Affandi MMRMM, Tripathy M, Majeed ABA. Arginine complexes with simvastatin: Apparent solubility, in vitro dissolution and solid state characterization. Curr Drug Deliv 2018; 15(1): 77-86.
[PMID: 28322162]
[39]
Bandari S, Jadav S, Eedara BB, Jukanti R, Veerareddy PR. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique. Korean J Chem Eng 2013; 30(1): 238-44.
[http://dx.doi.org/10.1007/s11814-012-0133-x]
[40]
Kou W, Cai C, Xu S, et al. In vitro and in vivo evaluation of novel immediate release carbamazepine tablets: Complexation with hydroxypropyl-β-cyclodextrin in the presence of HPMC. Int J Pharm 2011; 409(1-2): 75-80.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.042] [PMID: 21371541]
[41]
Comoglu T, Dilek Ozyilmaz E. Orally disintegrating tablets and orally disintegrating mini tablets – novel dosage forms for pediatric use. Pharm Dev Technol 2019; 24(7): 902-14.
[http://dx.doi.org/10.1080/10837450.2019.1615090] [PMID: 31215850]
[42]
USP41-NF36 Tablets; The United States Pharmacopoeial Convention, INC. Rockville, MD 2018; p. 4.
[43]
Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016; 7(2): 27-31.
[http://dx.doi.org/10.4103/0976-0105.177703] [PMID: 27057123]
[44]
Wojcikowski K, Gobe G. Animal studies on medicinal herbs: Predictability, dose conversion and potential value. Phytother Res 2014; 28(1): 22-7.
[http://dx.doi.org/10.1002/ptr.4966] [PMID: 23553964]
[45]
Wang J, Chang R, Zhao Y, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech 2017; 18(7): 2541-50.
[http://dx.doi.org/10.1208/s12249-017-0734-0] [PMID: 28224393]
[46]
Sher N, Siddiqui FA, Hasan N, Shafi N, Zubair A, Mirza AZ. Simultaneous determination of antihistamine anti-allergic drugs, cetirizine, domperidone, chlorphenamine maleate, loratadine, meclizine and buclizine in pharmaceutical formulations, human serum and pharmacokinetics application. Anal Methods 2014; 6(8): 2704-14.
[http://dx.doi.org/10.1039/c3ay41698d]
[47]
Swarnalatha N, Maravajhala V. Development and validation of a HPLC method for estimation of loratadine and its application to a pharmacokinetic study. Curr Sci 2019; 116(2): 243-8.
[http://dx.doi.org/10.18520/cs/v116/i2/243-248]
[48]
Kunicki PK. Determination of loratadine in human plasma by high-performance liquid chromatographic method with ultraviolet detection. J Chromatogr, Biomed Appl 2001; 755(1-2): 331-5.
[http://dx.doi.org/10.1016/S0378-4347(01)00053-6] [PMID: 11393721]
[49]
USP41-NF36 Uniformty of Dosage Units, Friability, Breaking Force, Disintegration and Dissolution. Rockville, MD: The United States Pharmacopoeial Convention 2018.
[50]
Heinz A, Gordon K, McGoverin C, Rades T, Strachan C. Understanding the solid-state forms of fenofibrate – A spectroscopic and computational study. Eur J Pharm Biopharm 2009; 71(1): 100-8.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.030] [PMID: 18590814]
[51]
Heinz A, Strachan CJ, Gordon KC, Rades T. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol 2010; 61(8): 971-88.
[http://dx.doi.org/10.1211/jpp.61.08.0001] [PMID: 19703341]
[52]
Qian S, Heng W, Wei Y, Zhang J, Gao Y. Coamorphous lurasidone hydrochloride–saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with ph-independent solubility behavior. Cryst Growth Des 2015; 15(6): 2920-8.
[http://dx.doi.org/10.1021/acs.cgd.5b00349]
[53]
Xiang TX, Anderson BD. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions. J Pharm Sci 2013; 102(3): 876-91.
[http://dx.doi.org/10.1002/jps.23353] [PMID: 23280486]
[54]
Makar RR, Latif R, Hosni EA, El Gazayerly ON. Optimization for glimepiride dissolution enhancement utilizing different carriers and techniques. J Pharm Investig 2013; 43(2): 115-31.
[http://dx.doi.org/10.1007/s40005-013-0061-8]
[55]
Haleem RM, Salem MY, Fatahallah FA, Abdelfattah LE. Quality in the pharmaceutical industry – A literature review. Saudi Pharm J 2015; 23(5): 463-9.
[http://dx.doi.org/10.1016/j.jsps.2013.11.004] [PMID: 26594110]
[56]
Yassin S, Goodwin DJ, Anderson A, et al. The disintegration process in microcrystalline cellulose based tablets, part 1: Influence of temperature, porosity and superdisintegrants. J Pharm Sci 2015; 104(10): 3440-50.
[http://dx.doi.org/10.1002/jps.24544]
[57]
Nagarwal RC, Ridhurkar DN, Pandit JK. In vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet. AAPS PharmSciTech 2010; 11(1): 294-303.
[http://dx.doi.org/10.1208/s12249-010-9380-5] [PMID: 20182827]
[58]
Sapkal SB, Adhao VS, Thenge RR, Darakhe RA, Shinde SA, Shrikhande VN. Formulation and characterization of solid dispersions of etoricoxib using natural polymers. Turk J Pharm Sci 2020; 17(1): 7-19.
[http://dx.doi.org/10.4274/tjps.galenos.2018.04880] [PMID: 32454755]
[59]
Maulvi FA, Dalwadi SJ, Thakkar VT, Soni TG, Gohel MC, Gandhi TR. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol 2011; 207(1-3): 47-54.
[http://dx.doi.org/10.1016/j.powtec.2010.10.009]
[60]
Hersen-Delesalle C, Leclerc B, Couarraze G, Busignies V, Tchoreloff P. The effects of relative humidity and super-disintegrant concentrations on the mechanical properties of pharmaceutical compacts. Drug Dev Ind Pharm 2007; 33(12): 1297-307.
[http://dx.doi.org/10.1080/03639040701384918] [PMID: 18097803]
[61]
Katsura S, Yamada N, Nakashima A, et al. Investigation of discoloration of furosemide tablets in a light-shielded environment. Chem Pharm Bull 2017; 65(4): 373-80.
[http://dx.doi.org/10.1248/cpb.c16-00835] [PMID: 28381678]
[62]
Waterman KC, Macdonald BC. Package selection for moisture protection for solid, oral drug products. J Pharm Sci 2010; 99(11): 4437-52.
[http://dx.doi.org/10.1002/jps.22161] [PMID: 20845442]
[63]
Late S, Yu Y, Banga A. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets. Int J Pharm 2009; 365(1-2): 4-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.010] [PMID: 18778759]
[64]
Rojas J, Guisao S, Ruge V. Functional assessment of four types of disintegrants and their effect on the spironolactone release properties. AAPS PharmSciTech 2012; 13(4): 1054-62.
[http://dx.doi.org/10.1208/s12249-012-9835-y] [PMID: 22899380]
[65]
Alsante KM, Huynh-Ba K, Baertschi SW, et al. Recent trends in product development and regulatory issues on impurities in active pharmaceutical ingredient (API) and drug products. Part 1: Predicting degradation related impurities and impurity considerations for pharmaceutical dosage forms. AAPS PharmSciTech 2014; 15(1): 198-212.
[http://dx.doi.org/10.1208/s12249-013-0047-x] [PMID: 24281749]
[66]
Onyechi KK, Igwegbe CA. Shelf life assessment of picralima nitida and glibenclamide using bio-based dose-response relationship method. Asian J Res Med Pharm Sci 2019; 1-10.
[http://dx.doi.org/10.9734/ajrimps/2019/v6i130094]
[67]
Waterman KC, Adami RC. Accelerated aging: Prediction of chemical stability of pharmaceuticals. Int J Pharm 2005; 293(1-2): 101-25.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.013] [PMID: 15778049]
[68]
Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release 2017; 254: 10-22.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.039] [PMID: 28344015]
[69]
Sun S, Wang R, Fan J, Zhang G, Zhang H. Effects of Danshen tablets on pharmacokinetics of atorvastatin calcium in rats and its potential mechanism. Pharm Biol 2018; 56(1): 104-8.
[http://dx.doi.org/10.1080/13880209.2018.1424209] [PMID: 29322864]
[70]
Biswal S, Sahoo J, Murthy PN. Physicochemical properties of solid dispersions of gliclazide in polyvinylpyrrolidone K90. AAPS PharmSciTech 2009; 10(2): 329-34.
[http://dx.doi.org/10.1208/s12249-009-9212-7] [PMID: 19319688]
[71]
Hu L, Gu D, Hu Q, Shi Y, Gao N. Investigation of solid dispersion of atorvastatin calcium in polyethylene glycol 6000 and polyvinylpyrrolidone. Trop J Pharm Res 2014; 13(6): 835-42.
[http://dx.doi.org/10.4314/tjpr.v13i6.2]
[72]
Kim E, Chun M, Jang J, Lee I, Lee K, Choi H. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm 2006; 64(2): 200-5.
[http://dx.doi.org/10.1016/j.ejpb.2006.04.001] [PMID: 16750355]
[73]
Vijaya Kumar SG, Mishra DN. Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000. Yakugaku Zasshi 2006; 126(8): 657-64.
[http://dx.doi.org/10.1248/yakushi.126.657] [PMID: 16880724]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy