Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Research Article

Green Synthesis of Zinc Oxide NPs as a New Catalyst for the Synthesis of Imidazo[2,1-b]quinazoline Derivatives with Docking Validation as Aurora Kinase (AKI-001) Inhibitors

Author(s): Yasmen Osama, Ehab Abdel-Latif, Heba M. Metwally, Ali El-Rayyes and Tamer K. Khatab*

Volume 28, Issue 15, 2024

Published on: 21 May, 2024

Page: [1215 - 1223] Pages: 9

DOI: 10.2174/0113852728309261240507065414

Price: $65

Abstract

As natural capping reagents, flaxseed gel, caprylic/capric triglyceride, aloe vera, and propylene glycol were utilized in the synthesis of ZnO-NPs in the current study. The synthesized ZnO NPs structure was characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR), and X-ray Diffraction (XRD). The prepared ZnO-NPs were used as an efficient catalyst for the production of a new series of fused polynuclear heterocyclic system-based imidazoquinazoline by multicomponent reaction. The reaction was initiated by mixing 2-aminobenzimidazole, aryl/hetaryl aldehydes, and betanaphthol under solvent-free conditions at 60-70°C in the presence of a catalytic amount of the synthesized ZnO-NPs. As demonstrated by molecular docking, the prepared ligands (4, 7, 8, 9, and 11) exhibited outstanding validation as aurora kinase inhibitors in comparison to AKI-001, the prototype pentacyclic inhibitor.

« Previous
Graphical Abstract

[1]
Dejene, F.; Ali, A.; Swart, H.; Botha, R.; Roro, K.; Coetsee, L.; Biggs, M. Optical properties of ZnO nanoparticles synthesized by varying the sodium hydroxide to zinc acetate molar ratios using a Sol-gel process. Open Phys., 2011, 9(5), 1321-1326.
[http://dx.doi.org/10.2478/s11534-011-0050-3]
[2]
Sarkar, D.; Tikku, S.; Thapar, V.; Srinivasa, R.S.; Khilar, K.C. Formation of zinc oxide nanoparticles of different shapes in water-in-oil microemulsion. Colloids Surf. A Physicochem. Eng. Asp., 2011, 381(1-3), 123-129.
[http://dx.doi.org/10.1016/j.colsurfa.2011.03.041]
[3]
Mukherjee, A.; Pokhrel, S.; Bandyopadhyay, S.; Mädler, L.; Videa, P.J.R.; Torresdey, G.J.L. A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). Chem. Eng. J., 2014, 258, 394-401.
[http://dx.doi.org/10.1016/j.cej.2014.06.112]
[4]
Chopra, M.; Bernela, M.; Kaur, P.; Manuja, A.; Kumar, B.; Thakur, R. Alginate/gum acacia bipolymeric nanohydrogels-promising carrier for zinc oxide nanoparticles. Int. J. Biol. Macromol., 2015, 72, 827-833.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.037] [PMID: 25304751]
[5]
Burshtein, A.I.; Tamir, S.; Lifshitz, Y. Growth modes of ZnO nanostructures from laser ablation. Appl. Phys. Lett., 2010, 96(10), 103104-103106.
[http://dx.doi.org/10.1063/1.3340948]
[6]
Trenque, I.; Mornet, S.; Duguet, E.; Gaudon, M. New insights into crystallite size and cell parameters correlation for ZnO nanoparticles obtained from polyol-mediated synthesis. Inorg. Chem., 2013, 52(21), 12811-12817.
[http://dx.doi.org/10.1021/ic402152f] [PMID: 24156475]
[7]
Chieng, B.W.; Loo, Y.Y. Synthesis of ZnO nanoparticles by modified polyol method. Mater. Lett., 2012, 73, 78-82.
[http://dx.doi.org/10.1016/j.matlet.2012.01.004]
[8]
Mezni, A.; Kouki, F.; Romdhane, S.; Fonrose, W.B.; Joulié, S.; Mlayah, A.; Smiri, S.L. Facile synthesis of ZnO nanocrystals in polyol. Mater. Lett., 2012, 86, 153-156.
[http://dx.doi.org/10.1016/j.matlet.2012.07.054]
[9]
Radzimska, K.A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials, 2014, 7(4), 2833-2881.
[http://dx.doi.org/10.3390/ma7042833] [PMID: 28788596]
[10]
Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter, 2004, 16(25), R829-R858.
[http://dx.doi.org/10.1088/0953-8984/16/25/R01]
[11]
Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2008, 2(10), 2121-2134.
[http://dx.doi.org/10.1021/nn800511k] [PMID: 19206459]
[12]
de Romaña, D.L.; Brown, K.H.; Guinard, J-X. Sensory trial to assess the acceptability of zinc fortificants added to iron‐fortified wheat products. J. Food Sci., 2002, 67(1), 461-465.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11429.x]
[13]
David, M.C.; Ebrahim, M.; Ada, V.C. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J. Physics. Materials, 2020, 3(3), 034005.
[http://dx.doi.org/10.1088/2515-7639/ab8186]
[14]
Kalpana, V.N.; Rajeswari, D.V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3569758] [PMID: 30154832]
[15]
Bilal, H.A.; Muzamil, S.; Syed, S.H. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). Nanomaterials, 2019, 9(8), 1171.
[http://dx.doi.org/10.3390/nano9081171]
[16]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids (1998 to 1999). Nat. Prod. Rep., 2000, 17(5), 435-446.
[http://dx.doi.org/10.1039/a707613d] [PMID: 11072891]
[17]
Xie, G.; Hahn, S.; Rominger, F.; Freudenberg, J.; Bunz, U.H.F. Synthesis and characterization of two different azarubrenes. Chem. Commun., 2018, 54(55), 7593-7596.
[http://dx.doi.org/10.1039/C8CC01662C] [PMID: 29876556]
[18]
Chan, K.P.; Yang, H.; Hay, A.S. Thermal chemistry of poly(aryl ether phthalazine)s and the synthesis of poly(aryl ether quinazoline)s. J. Polym. Sci. A Polym. Chem., 1996, 34(10), 1923-1931.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19960730)34:10<1923:AID-POLA9>3.0.CO;2-P]
[19]
Zhang, Y.; Chen, Z.; Lou, Y.; Yu, Y. 2,3-Disubstituted 8-arylamino-3H-imidazo[4,5-g]quinazolines: A novel class of antitumor agents. Eur. J. Med. Chem., 2009, 44(1), 448-452.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.009] [PMID: 18313807]
[20]
Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.; Adachi, T.; Hashimoto, H. Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: Identification of 2-[(4-diarylmethoxy)phenyl]-benzimidazole. Bioorg. Med. Chem. Lett., 2006, 16(7), 1859-1863.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.032] [PMID: 16455252]
[21]
Kumar, D.; Mariappan, G.; Husain, A.; Monga, J.; Kumar, S. Design, synthesis and cytotoxic evaluation of novel imidazolone fused quinazolinone derivatives. Arab. J. Chem., 2017, 10(3), 344-350.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.001]
[22]
Testard, A.; Picot, L.; Lozach, O.; Blairvacq, M.; Meijer, L.; Murillo, L.; Piot, J.M.; Thiéry, V.; Besson, T. Synthesis and evaluation of the antiproliferative activity of novel thiazoloquinazolinone kinases inhibitors. J. Enzyme Inhib. Med. Chem., 2005, 20(6), 557-568.
[http://dx.doi.org/10.1080/14756360500212399] [PMID: 16408791]
[23]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects, 2017, 11, 25-31.
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[24]
Bannwarth, W.; Felder, E. Combinatorial Chemistry; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527614141]
[25]
Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[26]
Said, G.E.; Tarek, M.; Zen, A.A.; Almehizia, A.A.; Naglah, A.M.; Khatab, T.K. Novel Cobalt/vitamin B3 metal-organic framework as nano-catalyst in synthesis of some new bis-indole derivatives with staking validation towards Salmonella DNA. J. Organomet. Chem., 2024, 123074.
[http://dx.doi.org/10.1016/j.jorganchem.2024.123074]
[27]
Delfani, A.M.; Kiyani, H.; Zamani, M. Synthesis of Tetrahydrobenzo[b]pyrans catalyzed by 1,3-dibenzyl-1H-benzo[d]imidazole-3-ium chloride. Curr. Org. Chem., 2023, 27(17), 1542-1552.
[http://dx.doi.org/10.2174/0113852728269951231009060535]
[28]
Delfani, A.M.; Kiyani, H.; Zamani, M. An expeditious synthesis of ethyl-2-(4-(arylmethylene)-5oxo-4,5-dihydroisoxazol-3-yl) acetate derivatives. Curr. Org. Chem., 2022, 26(16), 1575-1584.
[http://dx.doi.org/10.2174/1385272827666221124105402]
[29]
Reihani, N.; Kiyani, H. Three-component synthesis of 4-arylidene-3-alkylisoxazol-5 (4H)-ones in the presence of potassium 2,5-dioxoimi-dazolidin-1-ide. Curr. Org. Chem., 2021, 25(8), 950-962.
[http://dx.doi.org/10.2174/1385272825666210212120517]
[30]
Kamalifar, S.; Kiyani, H. An expeditious one-pot three-component synthesis of 4-aryl-3,4-dihydrobenzo[g]quinoline-2,5,10(1H)-triones under green conditions. Curr. Org. Chem., 2019, 23(23), 2626-2634.
[http://dx.doi.org/10.2174/1385272823666191108123330]
[31]
Ostadzadeh, H.; Kiyani, H. Multicomponent synthesis of tetrahydrobenzo[b]pyrans, pyrano[2,3-d]pyrimidines, and dihydropyrano[3,2-c]chromenes catalyzed by sodium benzoate. Polycycl. Aromat. Compd., 2023, 43(10), 9318-9337.
[http://dx.doi.org/10.1080/10406638.2022.2162091]
[32]
Kamalifar, S.; Kiyani, H. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones. Res. Chem. Intermed., 2019, 45(12), 5975-5987.
[http://dx.doi.org/10.1007/s11164-019-04014-9]
[33]
Aslanpour, S.; Kiyani, H. Rapid synthesis of fully substituted arylideneisoxazol- 5(4H)-one using zinc oxide nanoparticles. Res. Chem. Intermed., 2023, 49(10), 4603-4619.
[http://dx.doi.org/10.1007/s11164-023-05059-7]
[34]
Rawson, T.E.; Rüth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Georges, G.J.; Goller, B.; Halladay, J.; Hunsaker, T.; Kleinheinz, T.; Krell, H.W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.; Phillips, G.; Ran, Y.; Safina, B.; Ultsch, M.; Walker, L.; Wiesmann, C.; Zhang, B.; Zhou, A.; Zhu, B.Y.; Rüger, P.; Cochran, A.G. A pentacyclic aurora kinase inhibitor (AKI-001) with high in vivo potency and oral bioavailability. J. Med. Chem., 2008, 51(15), 4465-4475.
[http://dx.doi.org/10.1021/jm800052b] [PMID: 18630890]
[35]
Soliman, H.A.; Khatab, T.K.; Megeid, A.F.M.E. Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile. Chin. Chem. Lett., 2016, 27(9), 1515-1518.
[http://dx.doi.org/10.1016/j.cclet.2016.03.026]
[36]
Khatab, T.K.; Kandil, E.M.; Elsefy, D.E.; Mekabaty, E.A. A one-pot multicomponent catalytic synthesis of new 1H-pyrazole-1-carbothioamide derivatives with molecular docking studies as COX-2 inhibitors. Biointerface Res. Appl. Chem., 2021, 11(6), 13779-13789.
[http://dx.doi.org/10.33263/BRIAC116.1377913789]
[37]
Khatab, T.K.; Abdelghanyb, A.M.; Soliman, H.A. V2O5 based quadruple nano‐perovskite as a new catalyst for the synthesis of bis and tetrakis heterocyclic compounds. Appl. Organomet. Chem., 2019, 33(5), e4783.
[http://dx.doi.org/10.1002/aoc.4783]
[38]
Khatab, T.K.; Abdelghany, A.M.; Soliman, H.A. V2O5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl)methanes under solvent free condition. Silicon, 2018, 10(3), 703-708.
[http://dx.doi.org/10.1007/s12633-016-9515-8]
[39]
Abdelghany, A.M.; Soliman, H.A.; Khatab, T.K. Biosynthesized selenium nanoparticles as a new catalyst in the synthesis of quinazoline derivatives in pentacyclic system with docking validation as (TRPV1) inhibitor. J. Organomet. Chem., 2021, 944, 121847.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121847]
[40]
Latif, A.E.; Khatab, T.K.; Fekri, A.; Khalifa, M.E. Synthesis of new binary thiazole-based heterocycles and their molecular docking study as COVID-19 main protease (Mpro) inhibitors. Russ. J. Gen. Chem., 2021, 91(9), 1767-1773.
[http://dx.doi.org/10.1134/S1070363221090231] [PMID: 34720568]
[41]
Naglah, A.M.; Askar, A.A.; Hassan, A.S.; Khatab, T.K.; Omar, A.M.A.; Bhat, M.A. Biological evaluation and molecular docking with in silico physicochemical, pharmacokinetic and toxicity prediction of pyrazolo[1,5-a]pyrimidines. Molecules, 2020, 25(6), 1431.
[http://dx.doi.org/10.3390/molecules25061431] [PMID: 32245177]
[42]
Khatab, T.K.; Mubarak, A.Y.; Soliman, H.A. Design and synthesis pairing between xanthene and tetrazole in pentacyclic system using tetrachlorosilane with aurora kinase inhibitor validation. J. Heterocycl. Chem., 2017, 54(4), 2463-2470.
[http://dx.doi.org/10.1002/jhet.2846]
[43]
Khatab, T.K.; Hassan, A.S.; Hafez, T.S. V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino-pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop., 2019, 33, 135-142.
[http://dx.doi.org/10.4314/bcse.v33i1.13]
[44]
Abdelghany, A.M.; Menazea, A.A.; Maksoud, A.E.M.A.; Khatab, T.K. Pulsed laser ablated zeolite nanoparticles: A novel nano‐catalyst for the synthesis of 1,8‐dioxo‐octahydroxanthene and N‐aryl‐1,8‐dioxodecahydro-acridine with molecular docking validation. Appl. Organomet. Chem., 2020, 34(2), e5250.
[http://dx.doi.org/10.1002/aoc.5250]
[45]
Shaker, N.; Kandil, E.M.; Osama, Y.; Khatab, T.K.; Khalifa, M.E. ZnCl2/SiO2 as a new catalyst for the eco-friendly synthesis of n-thiocarbamoyl pyrazoles and thiosemicarbazones with antioxidant and molecular docking evaluation as (UppS) inhibitor. Curr. Org. Chem., 2021, 25(17), 2037-2044.
[http://dx.doi.org/10.2174/1385272825666210809142341]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy