Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

A Decade of Advancement in Ruthenium (II)-Catalyzed Direct C-H Activa-tion and Consequent C-C/C-N Bond Formation Using Microwave Heating

In Press, (this is not the final "Version of Record"). Available online 20 May, 2024
Author(s): Nazia Kausar*
Published on: 20 May, 2024

DOI: 10.2174/0122133356303594240502052813

Price: $95

Abstract

Transition-metal catalysed activation of unreactive C-H bonds and subsequent C-C bond formation has emerged as a principal and essential tool in the field of synthetic organic chemistry. On the other hand, the microwave heating technique has been intensively used to carry out organic transformation of almost all kinds and has become a promising non-conventional technique for performing synthetic reactions. Direct C-H activation for C-C bond-forming reactions using ruthe-nium as a catalyst is currently a hot topic and represents a cost-effective synthetic pathway in or-ganic chemistry which is accompanied by the advantages of MW irradiation resulting in shorter reaction time and greener 3 as well as sustainable accomplishments.

[1]
Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups. Org. Chem. Front., 2014, 1(7), 843-895.
[http://dx.doi.org/10.1039/C4QO00068D]
[2]
Zhang, Q.; Shi, B.F. From reactivity and regioselectivity to stereoselectivity: An odyssey of designing PIP amine and related directing groups for C—H activation. Chin. J. Chem., 2019, 37(7), 647-656.
[http://dx.doi.org/10.1002/cjoc.201900090]
[3]
Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d transition metals for C–H activation. Chem. Rev., 2019, 119(4), 2192-2452.
[http://dx.doi.org/10.1021/acs.chemrev.8b00507] [PMID: 30480438]
[4]
Rej, S.; Ano, Y.; Chatani, N. Bidentate directing groups: An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev., 2020, 120(3), 1788-1887.
[http://dx.doi.org/10.1021/acs.chemrev.9b00495] [PMID: 31904219]
[5]
Sun, H.; Guimond, N.; Huang, Y. Advances in the development of catalytic tethering directing groups for C–H functionalization reactions. Org. Biomol. Chem., 2016, 14(36), 8389-8397.
[http://dx.doi.org/10.1039/C6OB01258B] [PMID: 27506568]
[6]
Frost, C.G.; Marce, P.; Liu, P.M. Light guided chemoselective olefin metathesis reactions. Organomet. Chem., 2016, 40, 54-87.
[7]
Stephens, D.E.; Larionov, O.V. Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron, 2015, 71(46), 8683-8716.
[http://dx.doi.org/10.1016/j.tet.2015.08.034] [PMID: 26640303]
[8]
Wang, N-X.; Xing, Y.; Zhang, W. Advances in transition-metal-catalyzed direct sp3-carbon–hydrogen bond functionalization. Synlett, 2015, 26(15), 2088-2098.
[http://dx.doi.org/10.1055/s-0034-1381031]
[9]
Yang, J. Transition metal catalyzed meta-C–H functionalization of aromatic compounds. Org. Biomol. Chem., 2015, 13(7), 1930-1941.
[http://dx.doi.org/10.1039/C4OB02171A] [PMID: 25522930]
[10]
Liu, Y.; Kim, J.; Chae, J. Heterocycle construction via transition metal-catalyzed C-H functionalization and C-heteroatom bond formation. Curr. Org. Chem., 2014, 18(16), 2049-2071.
[http://dx.doi.org/10.2174/1385272819666140728174621]
[11]
Schranck, J.; Tlili, A.; Beller, M. Functionalization of remote C-H bonds: Expanding the frontier. Angew. Chem. Int. Ed., 2014, 53(36), 9426-9428.
[http://dx.doi.org/10.1002/anie.201405714] [PMID: 25066575]
[12]
Farmer, M.E.; Laforteza, B.N.; Yu, J.Q. Unlocking nature’s CH bonds. Bioorg. Med. Chem., 2014, 22(16), 4445-4452.
[http://dx.doi.org/10.1016/j.bmc.2014.05.031] [PMID: 24909676]
[13]
Kapdi, A.R. Organometallic aspects of transition-metal catalysed regioselective C–H bond functionalisation of arenes and heteroarenes. Dalton Trans., 2014, 43(8), 3021-3034.
[http://dx.doi.org/10.1039/c3dt52737a] [PMID: 24419051]
[14]
Okamoto, K.; Zhang, J.; Housekeeper, J.B.; Marder, S.R.; Luscombe, C.K. C–H arylation reaction: Atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials. Macromolecules, 2013, 46(20), 8059-8078.
[http://dx.doi.org/10.1021/ma401190r]
[15]
Rousseaux, S.; Liégault, B.; Fagnou, K. Modern Tools in the Synthesis of Complex Bioactive Molecules; Cossy, J; Arseniyadis, S., Ed.; John Wiley & Sons, 2012, pp. 1-32.
[16]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[17]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998, pp. 1-6.
[18]
Sehnal, P.; Taylor, R.J.K.; Fairlamb, I.J.S. Emergence of palladium(IV) chemistry in synthesis and catalysis. Chem. Rev., 2010, 110(2), 824-889.
[http://dx.doi.org/10.1021/cr9003242] [PMID: 20143876]
[19]
Sun, C.L.; Li, B.J.; Shi, Z.J. Pd-catalyzed oxidative coupling with organometallic reagents via C–H activation. Chem. Commun., 2010, 46(5), 677-685.
[http://dx.doi.org/10.1039/b908581e] [PMID: 20087486]
[20]
Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
[21]
Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110(2), 624-655.
[http://dx.doi.org/10.1021/cr900005n] [PMID: 19438203]
[22]
He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev., 2017, 117(13), 8754-8786.
[http://dx.doi.org/10.1021/acs.chemrev.6b00622] [PMID: 28697604]
[23]
Dong, Z.; Ren, Z.; Thompson, S.J.; Xu, Y.; Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev., 2017, 117(13), 9333-9403.
[http://dx.doi.org/10.1021/acs.chemrev.6b00574] [PMID: 28125210]
[24]
Kozhushkov, S.I.; Ackermann, L. Ruthenium-catalyzed direct oxidative alkenylation of arenes through two fold C–H bond functionalization. Chem. Sci., 2013, 4(3), 886-896.
[http://dx.doi.org/10.1039/C2SC21524A]
[25]
Thirunavukkarasu, V.S.; Kozhushkov, S.I.; Ackermann, L. C–H nitrogenation and oxygenation by ruthenium catalysis. Chem. Commun., 2014, 50(1), 29-39.
[http://dx.doi.org/10.1039/C3CC47028H] [PMID: 24212194]
[26]
Begum, T.; Mondal, M.; Borpuzari, M.P.; Kar, R.; Kalita, G.; Gogoi, P.K.; Bora, U. An immobilized symmetrical bis-(NHC) palladium complex as a highly efficient and recyclable Suzuki–Miyaura catalyst in aerobic aqueous media. Dalton Trans., 2017, 46(2), 539-546.
[http://dx.doi.org/10.1039/C6DT03097A] [PMID: 27966692]
[27]
Manikandan, R.; Jeganmohan, M. Recent advances in the ruthenium (II)-catalyzed chelation-assisted C–H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. Chem. Commun., 2017, 53(64), 8931-8947.
[http://dx.doi.org/10.1039/C7CC03213G] [PMID: 28726865]
[28]
Molnar, A.; Papp, A. Ruthenium-catalyzed C–H activation and coupling reactions in organic synthesis. Curr. Org. Chem., 2015, 20(4), 381-458.
[http://dx.doi.org/10.2174/1385272819666150205144653]
[29]
Ruiz, S.; Villuendas, P.; Urriolabeitia, E.P. Ru-catalysed C–H functionalisations as a tool for selective organic synthesis. Tetrahedron Lett., 2016, 57(31), 3413-3432.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.117]
[30]
Zha, G.F.; Qin, H.L.; Kantchev, E.A.B. Ruthenium-catalyzed direct arylations with aryl chlorides. RSC Advances, 2016, 6(37), 30875-30885.
[http://dx.doi.org/10.1039/C6RA02742C]
[31]
Bruneau, C.; Dixneuf, P.H. Ruthenium (II)-Catalysed Functionalisation of C–H Bonds with Alkenes: Alkenylation versus Alkylation. In: Top. Organomet. Chem; Dixneuf, P. H.; Doucet, H., Eds.; Springer: Cham, 2016; 55, pp. 137-188.
[32]
Manikandan, R.; Jeganmohan, M. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: Synthesis of trisubstituted alkenes. Org. Biomol. Chem., 2015, 13(42), 10420-10436.
[http://dx.doi.org/10.1039/C5OB01472G] [PMID: 26383714]
[33]
Li, B.; Dixneuf, P.H. Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation. In: Top. Organomet. Chem; Dixneuf, P. H.; Bruneau, C., Eds.; Springer: Cham, 2014; 48, pp. 119-193.
[34]
De Sarkar, S.; Liu, W.; Kozhushkov, S.I.; Ackermann, L. Weakly coordinating directing groups for ruthenium(II)‐ catalyzed C-H activation. Adv. Synth. Catal., 2014, 356(7), 1461-1479.
[http://dx.doi.org/10.1002/adsc.201400110]
[35]
Juliá-Hernández, F.; Simonetti, M.; Larrosa, I. Metalation dictates remote regioselectivity: Ruthenium-catalyzed functionalization of meta C(Ar)-H Bonds. Angew. Chem. Int. Ed., 2013, 52(44), 11458-11460.
[http://dx.doi.org/10.1002/anie.201306425] [PMID: 24030678]
[36]
Li, B.; Dixneuf, P.H. sp2 C–H bond activation in water and catalytic cross-coupling reactions. Chem. Soc. Rev., 2013, 42(13), 5744-5767.
[http://dx.doi.org/10.1039/c3cs60020c] [PMID: 23525331]
[37]
Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature, 1993, 366(6455), 529-531.
[http://dx.doi.org/10.1038/366529a0]
[38]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[39]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[40]
Li, C.J.; Anastas, P.T. Green Chemistry: present and future. Chem. Soc. Rev., 2012, 41(4), 1413-1414.
[http://dx.doi.org/10.1039/c1cs90064a] [PMID: 22268063]
[41]
Varma, R.S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem., 2014, 16(4), 2027-2041.
[http://dx.doi.org/10.1039/c3gc42640h]
[42]
Luque, R.; Lam, F.L-Y. Sustainable Catalysis Energy-Efficient Reactions and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Germany, 2018; pp. 1-9.
[43]
Zhang, W.; Cue, B.W. Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd ed; John Wiley & Sons, Ltd: New York, 2018, pp. 1-8.
[http://dx.doi.org/10.1002/9781119288152]
[44]
Beillard, A.; Bantreil, X.; Métro, T.X.; Martinez, J.; Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev., 2019, 119(12), 7529-7609.
[http://dx.doi.org/10.1021/acs.chemrev.8b00479] [PMID: 31059243]
[45]
Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches †. Green Chem., 2012, 14(1), 17-37.
[http://dx.doi.org/10.1039/C1GC15837F]
[46]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[47]
Rathi, A.K.; Gawande, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis Catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.
[http://dx.doi.org/10.1016/j.ccr.2015.01.011]
[48]
Tsuji, M. Microwave‐assisted synthesis of metallic nanomaterials in liquid phase. Chem. Sel., 2017, 2(2), 805-819.
[http://dx.doi.org/10.1002/slct.201700011]
[49]
De la Hoz, A.; Loupy, A. Microwaves in Organic Synthesis, 3rd; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1-9.
[50]
Schabel, T.; Plietker, B. Microwave-accelerated Ru-catalyzed hydrovinylation of alkynes and enynes: a straightforward approach toward 1,3-dienes and 1,3,5-trienes. Chemistry, 2013, 19(22), 6938-6941.
[http://dx.doi.org/10.1002/chem.201300790] [PMID: 23606342]
[51]
Neisius, N.M.; Plietker, B. Die Ruthenium‐katalysierte Hydrovinylierung interner Alkine mit Acrylsäurederivaten ein atomökonomischer Zugang zu hochsubstituierten 1,3‐Dienen. Angew. Chem., 2009, 121(31), 5863-5866.
[http://dx.doi.org/10.1002/ange.200901928]
[52]
Nishimura, T.; Washitake, Y.; Uemura, S. Ruthenium/halide catalytic system for C-C bond forming reaction between alkynes and unsaturated carbonyl compounds. Adv. Synth. Catal., 2007, 349(17-18), 2563-2571.
[http://dx.doi.org/10.1002/adsc.200700371]
[53]
Miura, H.; Shimura, S.; Hosokawa, S.; Yamazoe, S.; Wada, K.; Inoue, M. Intermolecular coupling of alkynes with acrylates by recyclable oxide‐supported ruthenium catalysts: formation of distorted ruthenium(IV)‐oxo species on ceria as a key precursor of active species. Adv. Synth. Catal., 2011, 353(14-15), 2837-2843.
[http://dx.doi.org/10.1002/adsc.201100415]
[54]
Hijazi, A.; Parkhomenko, K.; Djukic, J.P.; Chemmi, A.; Pfeffer, M. Head‐to‐head homo‐coupling of arylethynes catalysed by (dicarbonyl)ruthenium chloride metallacycles: selective synthesis of (E) ‐1,4‐Diarylbut‐1‐en‐3‐ynes. Adv. Synth. Catal., 2008, 350(10), 1493-1496.
[http://dx.doi.org/10.1002/adsc.200800075]
[55]
Gehrmann, T.; Scholl, S.A.; Fillol, J.L.; Wadepohl, H.; Gade, L.H. Alternative reaction pathways in domino reactions of hydrazinediidozirconium complexes with alkynes. Chemistry, 2012, 18(13), 3925-3941.
[http://dx.doi.org/10.1002/chem.201103497] [PMID: 22345083]
[56]
Rubina, M.; Gevorgyan, V. Can agostic interaction affect regiochemistry of carbopalladation? Reverse regioselectivity in the palladium-catalyzed dimerization of aryl acetylenes. J. Am. Chem. Soc., 2001, 123(44), 11107-11108.
[http://dx.doi.org/10.1021/ja016934k] [PMID: 11686734]
[57]
Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Regio and stereoselective dimerization of phenylacetylene to (Z)-1,4-diphenylbut-3-en-1-yne by ruthenium(II) catalysis. reaction mechanism involving intermolecular protonation of sigma-alkynyl by 1-alkyne. Organometallics, 1994, 13(11), 4616-4632.
[http://dx.doi.org/10.1021/om00023a074]
[58]
Schäyer, M.; Mahr, N.; Wolf, J.; Werner, H. Metal-induced linkage of C2 units to enynes and butatrienes: two routes to the dimerization of 1-alkynes. Angew. Chem., 1993, 105(9), 1377-1379.
[http://dx.doi.org/10.1002/ange.19931050919]
[59]
Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes. Chem. Commun., 2005, (34), 4336-4338.
[http://dx.doi.org/10.1039/b504436g] [PMID: 16113740]
[60]
Werner, H.; Meyer, M.; Esteruelas, M.A.; Sola, E.; Oro, L.A. Bis-alkynyl- and hydrido-alkynyl-osmium(II) and ruthenium(II) complexes containing triisopropylphosphine as ligand. J. Organomet. Chem., 1989, 366(1-2), 187-196.
[http://dx.doi.org/10.1016/0022-328X(89)87326-7]
[61]
Kappe, C.O. Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese. Angew. Chem., 2004, 116(46), 6408-6443.
[http://dx.doi.org/10.1002/ange.200400655]
[62]
Hayes, B.L. Recent advances in microwave-assisted synthesis. Aldrichim Acta, 2004, 37, 66-76.
[63]
Villuendas, P.; Urriolabeitia, E.P. Primary amines as directing groups in the Ru-catalyzed synthesis of isoquinolines, benzoisoquinolines, and thienopyridines. J. Org. Chem., 2013, 78(11), 5254-5263.
[http://dx.doi.org/10.1021/jo400344m] [PMID: 23650873]
[64]
Ruiz, S.; Villuendas, P.; Ortuño, M.A.; Lledós, A.; Urriolabeitia, E.P. Ruthenium‐catalyzed oxidative coupling of primary amines with internal alkynes through C-H bond activation: Scope and mechanistic studies. Chemistry, 2015, 21(23), 8626-8636.
[http://dx.doi.org/10.1002/chem.201500338] [PMID: 25916684]
[65]
Swamy, T.; Maheshwar Rao, B.; Yadav, J.S.; Ravinder, V.; Sridhar, B.; Subba Reddy, B.V. Microwave-assisted, ruthenium-catalyzed intramolecular amide-alkyne annulation for the rapid synthesis of fused tricyclic isoquinolinones. RSC Advances, 2015, 5(84), 68510-68514.
[http://dx.doi.org/10.1039/C5RA11133A]
[66]
Drev, M.; Grošelj, U.; Ledinek, B.; Perdih, F.; Svete, J.; Štefane, B.; Požgan, F. Microwave-assisted, ruthenium-catalyzed intramolecular amide-alkyne annulation for the rapid synthesis of fused tricyclic isoquinolinones. Org. Lett., 2018, 20(17), 5268-5273.
[http://dx.doi.org/10.1021/acs.orglett.8b02169] [PMID: 30130120]
[67]
Sharma, N.; Bahadur, V.; Sharma, U.K.; Saha, D.; Li, Z.; Kumar, Y.; Colaers, J.; Singh, B.K.; Van der Eycken, E.V. Microwave‐assisted ruthenium‐catalysed ortho ‐C−H Functionalization of N ‐Benzoyl α ‐amino ester derivatives. Adv. Synth. Catal., 2018, 360(16), 3083-3089.
[http://dx.doi.org/10.1002/adsc.201800458]
[68]
Drev, M.; Grošelj, U.; Ledinek, B.; Perdih, F.; Svete, J.; Štefane, B.; Požgan, F. Microwave‐promoted ortho ‐C−H bond (hetero)arylation of arylpyrimidines in water catalyzed by ruthenium(II)−carboxylate. ChemCatChem, 2018, 10(17), 3824-3832.
[http://dx.doi.org/10.1002/cctc.201800250]
[69]
Sandor, A.G.; Diaba, F. Microwave-assisted benzylic c-h activation using ruthenium catalysts. symthesis of β-lactams. Int. J. Curr. Res., 2019, 11(09), 6930-6936.
[70]
Sarathkumar, S.; Kavala, V.; Yao, C.F. Microwave‐assisted ruthenium(II)‐catalyzed C−H/N−O activation of N ‐methoxybenzamides with alkynylsulfane. Asian J. Org. Chem., 2019, 8(10), 1830-1833.
[http://dx.doi.org/10.1002/ajoc.201900383]
[71]
Deshmukh, D.S.; Gangwar, N.; Bhanage, B.M. Rapid and atom economic synthesis of isoquinolines and isoquinolinones by C–H/N–N activation using a homogeneous recyclable ruthenium catalyst in PEG Media. Eur. J. Org. Chem., 2019, 2019(18), 2919-2927.
[http://dx.doi.org/10.1002/ejoc.201900366]
[72]
Deshmukh, D.S.; Bhanage, B.M. Ruthenium-catalyzed annulation of N-Cbz hydrazones via C–H/N–N bond activation for the rapid synthesis of isoquinolines. Synthesis, 2019, 51(12), 2506-2514.
[http://dx.doi.org/10.1055/s-0037-1611795]
[73]
Wang, Q.; Shi, L.; Liu, S.; Zhi, C.; Fu, L.R.; Zhu, X.; Hao, X.Q.; Song, M.P. Solvent-free and room temperature microwave-assisted direct C7 allylation of indolines via sequential C–H and C–C activation. RSC Advances, 2020, 10(18), 10883-10887.
[http://dx.doi.org/10.1039/D0RA02016H] [PMID: 35492909]
[74]
Li, X.H.; Gong, J.F.; Song, M.P. Microwave‐assisted ruthenium‐ and rhodium‐catalyzed couplings of α ‐amino acid ester‐derived phosphinamides with alkynes. Chem. Asian J., 2022, 17(2), e202101158.
[http://dx.doi.org/10.1002/asia.202101158] [PMID: 34846096]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy