Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Camphorsulfonic Acid-Catalyzed Synthesis of a Series of 2-Aryl/heteroaryl/alkyl-1H-anthra[ 1,2-d]imidazole-6,11-dione Derivatives

Author(s): Bubun Banerjee*, Anu Priya, Arvind Singh, Aditi Sharma, Manmeet Kaur and Kinkar Biswas

Volume 28, Issue 12, 2024

Published on: 10 May, 2024

Page: [967 - 975] Pages: 9

DOI: 10.2174/0113852728301570240405033544

Price: $65

conference banner
Abstract

Anthraquinone moiety is very common among naturally occurring bioactive compounds. Many commercially available drug molecules also possess anthraquinone moiety. In recent times, among many other anthraquinone derivatives, specifically, 2- substituted-1H-anthra[1,2-d]imidazole-6,11-diones are gaining extra attention due to their significant anti-cancer, anti-HIV, anti-inflammatory activities, etc. This study aimed to report a simple, straightforward, organocatalyzed method for the efficient synthesis of a series of 2-aryl/heteroaryl/alkyl-1H-anthra[1,2-d]imidazole-6,11-diones from the reactions of 1,2-diaminoanthraquinone and various aldehydes using a catalytic amount of camphorsulfonic acid as an efficient organocatalyst in aqueous ethanol under refluxed conditions. Under the same optimized reaction conditions, along with aryl or heteroaryl aldehydes, aliphatic aldehydes also underwent a smooth reaction and afforded the desired products in excellent yields. All the synthesized compounds were obtained pure in excellent yields by simple filtration and washing subsequently with ethanol. The use of less toxic solvent, low-cost, commercially available metal-free organocatalyst, no column chromatographic separation, good yields, and easy isolation procedure are some of the major advantages of this newly developed protocol.

« Previous
Graphical Abstract

[1]
Fouillaud, M.; Caro, Y.; Venkatachalam, M.; Grondina, I.; Dufossé, L. Anthraquinones phenolic compounds in food characterization and analysis; CRC Press, 2018, pp. 130-170.
[2]
Malik, E.M.; Müller, C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 2016, 36(4), 705-748.
[http://dx.doi.org/10.1002/med.21391] [PMID: 27111664]
[3]
Lin, K.W.; Lin, W.H.; Su, C.L.; Hsu, H.Y.; Lin, C.N. Design, synthesis and antitumour evaluation of novel anthraquinone derivatives. Bioorg. Chem., 2021, 107, 104395.
[http://dx.doi.org/10.1016/j.bioorg.2020.104395] [PMID: 33384144]
[4]
Yeap, S.; Akhtar, M.N.; Lim, K.L.; Abu, N.; Ho, W.Y.; Zareen, S.; Roohani, K.; Ky, H.; Tan, S.W.; Lajis, N.; Alitheen, N.B. Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line. Drug Des. Devel. Ther., 2015, 9, 983-992.
[PMID: 25733816]
[5]
Chen, C.L.; Liu, F.L.; Lee, C.C.; Chen, T.C.; Chang, W.W.; Guh, J.H.; Ahmed Ali, A.A.; Chang, D.M.; Huang, H.S. Ring fusion strategy for the synthesis of anthra[2,3-d]oxazole-2-thione-5,10-dione homologues as DNA topoisomerase inhibitors and as antitumor agents. Eur. J. Med. Chem., 2014, 87, 30-38.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.016] [PMID: 25240093]
[6]
Tikhomirov, A.S.; Litvinova, V.A.; Andreeva, D.V.; Tsvetkov, V.B.; Dezhenkova, L.G.; Volodina, Y.L.; Kaluzhny, D.N.; Treshalin, I.D.; Schols, D.; Ramonova, A.A.; Moisenovich, M.M.; Shtil, A.A.; Shchekotikhin, A.E. Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. Eur. J. Med. Chem., 2020, 199, 112294.
[http://dx.doi.org/10.1016/j.ejmech.2020.112294] [PMID: 32428792]
[7]
Shupeniuk, V.; Taras, T.; Sabadakh, O.; Luchkevich, E.; Matkivskyi, M. Synthesis and antimicrobial activity of nitrogen-containing anthraquinone derivatives. Iraqi J. Pharm Sci., 2022, 31(2), 193-201.
[http://dx.doi.org/10.31351/vol31iss2pp193-201]
[8]
Niedziałkowski, P.; Czaczyk, E.; Jarosz, J.; Wcisło, A.; Białobrzeska, W.; Wietrzyk, J.; Ossowski, T. Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents. J. Mol. Struct., 2019, 1175, 488-495.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.070]
[9]
Oliveira, L.A.; Nicolella, H.D.; Furtado, R.A.; Lima, N.M.; Tavares, D.C.; Corrêa, T.A.; Almeida, M.V. Design, synthesis, and antitumor evaluation of novel anthraquinone derivatives. Med. Chem. Res., 2020, 29(9), 1611-1620.
[http://dx.doi.org/10.1007/s00044-020-02587-4]
[10]
Haciosmanoglu, E.; Ozkok, F.; Onsu, A.K.; Bektas, M.; Varol, B.; Pehlivan, S. International conference on technology. Eng. Sci., 2018, 4, 271-276.
[11]
Gouda, M.A.; Berghot, M.A.; Shoeib, A.I.; Khalil, A.M. Synthesis and antimicrobial of new anthraquinone derivatives incorporating pyrazole moiety. Eur. J. Med. Chem., 2010, 45(5), 1843-1848.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.021] [PMID: 20144494]
[12]
Diaz-Muñoz, G.; Miranda, I.L.; Sartori, S.K.; de Rezende, D.C.; Diaz, M.A.N. Anthraquinones: An overview. Stud. Nat. Prod. Chem., 2018, 58, 313-338.
[http://dx.doi.org/10.1016/B978-0-444-64056-7.00011-8]
[13]
Wang, Q.; Ma, C.; Li, X.; Wang, X.; Rong, R.; Wei, C.; Zhang, P.; Li, X. Synthesis of novel sugar or azasugar modified anthra[1,2-d]imidazole-6,11-dione derivatives and biological evaluation. Carbohydr. Res., 2018, 460, 29-33.
[http://dx.doi.org/10.1016/j.carres.2018.02.012] [PMID: 29501861]
[14]
Batista, R.M.F.; Oliveira, E.; Costa, S.P.G.; Lodeiro, C.; Raposo, M.M.M. Cyanide and fluoride colorimetric sensing by novel imidazo-anthraquinones functionalised with indole and carbazole. Supramol. Chem., 2014, 26(2), 71-80.
[http://dx.doi.org/10.1080/10610278.2013.824082]
[15]
Shahab, S.; Sheikhi, M.; Alnajjar, R.; Filippovich, L.; Dikusar, E. Antitumor and antioxidant activities of the new anthraquinone derivatives: Synthesis, DPPH, ABTS, biological and DFT investigations. Chinese J. Struct. Chem., 2019, 38, 1673-1690.
[16]
Lee, Y.R.; Chen, T.C.; Lee, C.C.; Chen, C.L.; Ahmed Ali, A.A.; Tikhomirov, A.; Guh, J.H.; Yu, D.S.; Huang, H.S. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadia-zole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur. J. Med. Chem., 2015, 102, 661-676.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.052] [PMID: 26344783]
[17]
Ferreira, R.C.M.; Costa, S.P.G.; Raposo, M.M.M. Heterocyclic imidazo-anthraquinone as an optical sensor: Synthesis, characterization and evaluation of the chemosensory ability. Int. Electron. Conf. Synth. Org. Chem., 2017, 21, 1-30.
[18]
Batista, R.M.F.; Costa, S.P.G.; Raposo, M.M.M. Naphthyl-imidazo-anthraquinones as novel colorimetric and fluorimetric chemosensors for ion sensing. J. Photochem. Photobiol. Chem., 2013, 259, 33-40.
[http://dx.doi.org/10.1016/j.jphotochem.2013.03.001]
[19]
Batista, R.M.F.; Costa, S.P.G.; Belsley, M.; Raposo, M.M.M. Synthesis and characterization of new push-pull anthraquinones bearing an arylthienyl-imidazo conjugation pathway as efficient nonlinear optical chromophores. Mater. Sci. Forum, 2010, 636-637, 387-391.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.387]
[20]
Ooyama, Y.; Nakamura, T.; Yoshida, K. Heterocyclic quinol-type fluorophores. Synthesis of novel imidazoanthraquinol derivatives and their photophysical properties in benzene and in the crystalline state. New J. Chem., 2005, 29(3), 447-456.
[http://dx.doi.org/10.1039/b410311d]
[21]
Kumar, G.; Gupta, N.; Paul, K.; Luxami, V. Acrylonitrile embedded benzimidazole-anthraquinone based chromofluorescent sensor for ratiometric detection of CN− ions in bovine serum albumin. Sens. Actuators B Chem., 2018, 267, 549-558.
[http://dx.doi.org/10.1016/j.snb.2018.04.071]
[22]
Bhaskar, R.; Vijayakumar, V.; Srinivasadesikan, V.; Lee, S.L.; Sarveswari, S. Rationally designed imidazole derivative as colorimetric and fluorometric sensor for selective, qualitative and quantitative cyanide ion detection in real time samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118212.
[http://dx.doi.org/10.1016/j.saa.2020.118212] [PMID: 32224435]
[23]
Guimara˜es, T.T.; Da Silva Ju’nior, E.N.; Carvalho, C.E.M.; De Simone, C.A.; Pinto, A.V. 2-(4-Methylphenyl)-1H-anthraceno-[1,2-d]imidazole-6,11-dione: A fluorescent chemosensor. Acta Crystallogr., 2009, E65, o1063.
[24]
El-Maghrabey, M.H.; Kishikawa, N.; Ohyama, K.; Imazato, T.; Ueki, Y.; Kuroda, N. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone. Anal. Chim. Acta, 2015, 881, 139-147.
[http://dx.doi.org/10.1016/j.aca.2015.04.006] [PMID: 26041530]
[25]
da Silva Júnior, E.N.; Guimarães, T.T.; Menna-Barreto, R.F.S.; do Carmo, F.R. The evaluation of quinonoid compounds against Trypanosomacruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1,2,3-triazoles. Bioorg. Med. Chem., 2010, 18, 3224-3230.
[26]
Luxami, V.; Kumar, S. A differential ICT based molecular probe for multi-ions and multifunction logic circuits. Dalton Trans., 2012, 41(15), 4588-4593.
[http://dx.doi.org/10.1039/c2dt11926a] [PMID: 22358313]
[27]
Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S.K.; Suresh, E.; Das, S.; Das, A. Specific recognition and sensing of CN- in sodium cyanide solution. Org. Lett., 2010, 12(15), 3406-3409.
[http://dx.doi.org/10.1021/ol101281x] [PMID: 20617811]
[28]
Sondhi, S.M.; Singh, J.; Roy, P.; Agrawal, S.K.; Saxena, A.K. Conventional and microwave-assisted synthesis of imidazole and guanidine derivatives and their biological evaluation. Med. Chem. Res., 2011, 20(7), 887-897.
[http://dx.doi.org/10.1007/s00044-010-9410-6]
[29]
Huang, H.S.; Chen, T.C.; Chen, R.H.; Huang, K.F.; Huang, F.C.; Jhan, J.R.; Chen, C.L.; Lee, C.C.; Lo, Y.; Lin, J.J. Synthesis, cytotoxicity and human telomerase inhibition activities of a series of 1,2-heteroannelated anthraquinones and anthra[1,2-d]imidazole-6,11-dione homologues. Bioorg. Med. Chem., 2009, 17(21), 7418-7428.
[http://dx.doi.org/10.1016/j.bmc.2009.09.033] [PMID: 19804981]
[30]
Chen, T.C.; Yu, D.S.; Huang, K.F.; Fu, Y.C.; Lee, C.C.; Chen, C.L.; Huang, F.C.; Hsieh, H.H.; Lin, J.J.; Huang, H.S. Structure-based design, synthesis and biological evaluation of novel anthra[1,2-d]imidazole-6,11-dione homologues as potential antitumor agents. Eur. J. Med. Chem., 2013, 69, 278-293.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.058] [PMID: 24051300]
[31]
Chen, C.L.; Chang, D.M.; Chen, T.C.; Lee, C.C.; Hsieh, H.H.; Huang, F.C.; Huang, K.F.; Guh, J.H.; Lin, J.J.; Huang, H.S. Structure-based design, synthesis and evaluation of novel anthra[1,2-d]imidazole-6,11-dione derivatives as telomerase inhibitors and potential for cancer polypharmacology. Eur. J. Med. Chem., 2013, 60, 29-41.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.032] [PMID: 23279865]
[32]
Sharma, B.K.; Dixit, S.; Chacko, S.; Kamble, R.M.; Agarwal, N. Synthesis and studies of imidazoanthraquinone derivatives for applications in organic electronics. Eur. J. Org. Chem., 2017, 2017(30), 4389-4400.
[http://dx.doi.org/10.1002/ejoc.201700769]
[33]
Bhattacharyya, B.; Kundu, A.; Das, A.; Dhara, K.; Guchhait, N. One-pot protocol for J-aggregated anthraimidazolediones catalyzed by phosphotungstic acid in PEG-400 under aerobic condition. RSC Adv., 2016, 6(26), 21907-21916.
[http://dx.doi.org/10.1039/C5RA19190D]
[34]
Banerjee, B.; Priya, A.; Sharma, A.; Kaur, G.; Kaur, M. Sulfonated β-cyclodextrins: Efficient supramolecular organocatalysts for diverse organic transformations. Phys. Sci. Rev., 2022, 7(4-5), 539-565.
[http://dx.doi.org/10.1515/psr-2021-0080]
[35]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23(16), 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[36]
Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V.K.; Banerjee, B. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal., 2021, 8(1), 147-159.
[http://dx.doi.org/10.2174/22133380MTA4jMTIf1]
[37]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3(45), 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[38]
Banerjee, B.; Priya, A.; Kaur, M.; Sharma, A.; Singh, A.; Gupta, V.K.; Jaitak, V. Sodium dodecyl sulphate catalyzed one-pot threecomponent synthesis of structurally diverse 2-amino-3cyano substituted tetrahydrobenzo[b]pyrans and spiropyrans in water at room temperature. Catal. Lett., 2023, 153(12), 3547-3560.
[http://dx.doi.org/10.1007/s10562-022-04256-0]
[39]
Sharma, A.; Singh, A.; Priya, A.; Kaur, M.; Gupta, V.K.; Jaitak, V.; Banerjee, B. Trisodium citrate dihydrate catalyzed one-pot pseudo four-component synthesis of fully functionalized pyridine derivatives. Synth. Commun., 2022, 52(15), 1614-1627.
[http://dx.doi.org/10.1080/00397911.2022.2101378]
[40]
Banerjee, B.; Sharma, A.; Kaur, G.; Singh, D.; Gupta, V.K. A general method for the synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones and 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives using mandelic acid as an efficient organo-catalyst at room temperature. Curr. Organocatal., 2022, 9(1), 53-61.
[http://dx.doi.org/10.2174/2213337208666210825112301]
[41]
Banerjee, B.; Kaur, M.; Sharma, A.; Singh, A.; Priya, A.; Gupta, V.K.; Jaitak, V. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions. Curr. Green Chem., 2022, 9(3), 162-173.
[http://dx.doi.org/10.2174/2213346110666221212152202]
[42]
Banerjee, B.; Singh, A.; Sharma, A.; Priya, A.; Kaur, M.; Kaur, G.; Gupta, V.K.; Jaitak, V. Mandelic acid catalyzed one-pot pseudo three-component synthesis of various trisubstituted methane derivatives at room temperature. ARKIVOC, 2022, 2022(9), 100-118.
[http://dx.doi.org/10.24820/ark.5550190.p011.895]
[43]
Banik, B.K.; Banerjee, B. Organocatalysis: A green tool for sustainable developments; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9783110732542]
[44]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: An overview. Curr. Organocatal., 2016, 3(2), 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[45]
Brahmachari, G.; Banerjee, B. Functionalized 2-amino-3-cyano-4H-pyrans and pyranannulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[46]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2020, 23(28), 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[47]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50(10), 1545-1560.
[http://dx.doi.org/10.1080/00397911.2020.1745844]
[48]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7(1), 128-140.
[http://dx.doi.org/10.2174/2213346107666200228125715]
[49]
Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. Synth. Commun., 2022, 52(16), 1635-1656.
[http://dx.doi.org/10.1080/00397911.2022.2090262]
[50]
Banerjee, B.; Kaur, G.; Kaur, N. p-Sulfonic acid calyx[n]arene catalyzed synthesis of bioactive heterocycles: A review. Curr. Org. Chem., 2021, 25(1), 209-222.
[http://dx.doi.org/10.2174/1385272824999201019162655]
[51]
Banerjee, B.; Priya, A.; Kaur, J.; Kaur, M.; Singh, A.; Sharma, A. Cyanuric chloride promoted various organic transformations. Synth. Commun., 2023, 53(12), 855-882.
[http://dx.doi.org/10.1080/00397911.2023.2201889]
[52]
Du, Y.; Banerjee, B. Non-metal catalyzed synthesis: Bioactive heterocycles; De Gruyter: Berlin, Boston, 2024.
[http://dx.doi.org/10.1515/9783110985474]
[53]
Estevão, M. Camphorsulfonic acid: A versatile and useful reagent in organic synthesis. Synlett, 2009, 2009(4), 683-684.
[http://dx.doi.org/10.1055/s-0028-1087717]
[54]
Gorityala, B.K.; Cai, S.; Ma, J.; Liu, X.W. (S)-Camphorsulfonic acid catalyzed highly stereoselective synthesis of pseudoglycosides. Bioorg. Med. Chem. Lett., 2009, 19(11), 3093-3095.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.003] [PMID: 19398332]
[55]
Bartlett, P.D.; Knox, L.H.; Roberts, J.D.; Patel, D.D. L-10-Camphorsulfonic acid (Reychler’s acid). Org. Synth., 1965, 45, 12.
[http://dx.doi.org/10.15227/orgsyn.045.0012]
[56]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5(3), 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[57]
Banerjee, B.; Kaur, M.; Sharma, V.; Gupta, V.K.; Kaur, J.; Sharma, A.; Priya, A.; Singh, A. Camphor sulfonic acid catalyzed one-pot pseudo three-component synthesis of a series of 1,8-dioxo-octahydroxanthenes and comparative crystal structures investigations and Hirshfeld surface analysis of five such derivatives. Res. Chem. Intermed., 2023, 49(11), 4639-4670.
[http://dx.doi.org/10.1007/s11164-023-05064-w]
[58]
Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth. Commun., 2021, 51(7), 1121-1131.
[http://dx.doi.org/10.1080/00397911.2021.1873383]
[59]
Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Camphor sulfonic acid catalyzed facile and general method for the synthesis of 3,3′-(arylmethylene) bis (4-hydroxy-2H-chromen-2-ones), 3,3′-(arylmethylene) bis (2-hydroxyna-phthalene-1,4-diones) and 3,3′-(2-oxoindoline-3,3-diyl) bis (2-hydroxy-naphthalene-1,4-dione) derivatives at room temperature. Synth. Commun., 2021, 51(7), 1045-1057.
[http://dx.doi.org/10.1080/00397911.2020.1856877]
[60]
Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V.K.; Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thia-zole-2,3′-indolin]-2′-ones at room temperature. Synth. Commun., 2021, 51(7), 1100-1120.
[http://dx.doi.org/10.1080/00397911.2020.1870043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy