Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Functionalized Adenine-based Receptors for Monocarboxylic Acids’ Recognition

Author(s): Tanushree Sen*, Suman Adhikari, Nabajyoti Baildya and Kumaresh Ghosh*

Volume 28, Issue 16, 2024

Published on: 10 May, 2024

Page: [1288 - 1299] Pages: 12

DOI: 10.2174/0113852728303168240424052507

Price: $65

Abstract

Three receptors 1-3, built on adenine, have been synthesized, structurally characterized, and successfully employed for the recognition of monocarboxylic acids. The adenine- based receptors 1-3 have been found to bind monocarboxylic acids via the Hoogsteen (HG) binding site or the Watson-Crick (WC) binding site and form 1:1 complexes in CHCl3. Detailed binding of the receptors 1-3, in the presence of the monocarboxylic acids, corroborates that there is a distinct propensity of the HG site for aromatic carboxylic acids, for example, (S)-mandelic acid and benzoic acid. Aliphatic acids, for example, propanoic acid and rac-lactic acid, on the other hand, prefer to bind at the WC site. The monocarboxylic acid bindings to 1-3 were examined by UV–Vis, fluorescence, and 1H NMR spectroscopic methods, and DFT study.

Graphical Abstract

[1]
Lehn, J.M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, 1995.
[http://dx.doi.org/10.1002/3527607439]
[2]
Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed; John Wiley & Sons Ltd, 2009.
[http://dx.doi.org/10.1002/9780470740880]
[3]
Olivio, G.; Capocasa, G.; Giudice, D.D.; Lanzalunga, O.; Stefano, S.D. New horizons for catalysis disclosed by supramolecular chemistry. Chem. Soc. Rev., 2021, 50, 7681.
[http://dx.doi.org/10.1039/D1CS00175B] [PMID: 34008654]
[4]
Adhikari, S.; Bhattacharjee, T.; Das, A.; Roy, S.; Daniliuc, C.G.; Zaręba, J.K.; Bauzá, A.; Frontera, A. On the supramolecular properties of neutral, anionic and cationic cadmium complexes harvested from dithiolate–polyamine binary ligand systems. CrystEngComm, 2020, 22(46), 8023-8035.
[http://dx.doi.org/10.1039/D0CE01233E]
[5]
Adhikari, S.; Bhattacharjee, T.; Bhattacharjee, S.; Daniliuc, C.G.; Frontera, A.; Lopato, E.M.; Bernhard, S. Nickel(II) complexes based on dithiolate–polyamine binary ligand systems: Crystal structures, hirshfeld surface analysis, theoretical study, and catalytic activity study on photocatalytic hydrogen generation. Dalton Trans., 2021, 50(16), 5632-5643.
[http://dx.doi.org/10.1039/D1DT00352F] [PMID: 33908954]
[6]
Park, I.W.; Yoo, J.; Kim, B.; Adhikari, S.; Kim, S.K.; Yeon, Y.; Haynes, C.J.E.; Sutton, J.L.; Tong, C.C.; Lynch, V.M.; Sessler, J.L.; Gale, P.A.; Lee, C.H. Oligoether-strapped calix[4]pyrrole: An ion-pair receptor displaying cation-dependent chloride anion transport. Chemistry, 2012, 18(9), 2514-2523.
[http://dx.doi.org/10.1002/chem.201103239] [PMID: 22298258]
[7]
Park, I.W.; Yoo, J.; Adhikari, S.; Park, J.S.; Sessler, J.L.; Lee, C.H. Calix[4]pyrrole-based heteroditopic ion-pair receptor that displays anion-modulated, cation-binding behavior. Chemistry, 2012, 18(47), 15073-15078.
[http://dx.doi.org/10.1002/chem.201202777] [PMID: 23032997]
[8]
McLain, S.E.; Soper, A.K.; Watts, A. Structural studies on the hydration of L-glutamic acid in solution. J. Phys. Chem. B, 2006, 110(42), 21251-21258.
[http://dx.doi.org/10.1021/jp062383e] [PMID: 17048953]
[9]
Huang, X.; Wang, X.; Quan, M.; Yao, H.; Ke, H.; Jiang, W. Biomimetic recognition and optical sensing of carboxylic acids in water by using a buried salt bridge and the hydrophobic effect. Angew. Chem., 2021, 133(4), 1957-1963.
[http://dx.doi.org/10.1002/ange.202012467]
[10]
Kusukawa, T.; Mura, R.; Ohtagaki, Y.; Ooe, M. Synthesis of an anthracene-based diguanidine and its recognition of carboxylic acids and phosphonic acids. Tetrahedron, 2020, 76(14), 131065.
[http://dx.doi.org/10.1016/j.tet.2020.131065]
[11]
Dugas, H. Bioorganic Chemistry; Springer: New York, 1996.
[http://dx.doi.org/10.1007/978-1-4612-2426-6]
[12]
Stryer, L. Biochemistry; W. H. Freeman, Company: New York, 1998.
[13]
Fung, M.H.; DeVault, M.; Kuwata, K.T.; Suryanarayanan, R. Drug-excipient interactions: Effect on molecular mobility and physical stability of ketoconazole–organic acid coamorphous systems. Mol. Pharm., 2018, 15(3), 1052-1061.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00932] [PMID: 29309158]
[14]
Hou, M.L.; Lu, C.M.; Lin, C.H.; Lin, L.C.; Tsai, T.H. Pharmacokinetics of maleic acid as a food adulterant determined by microdialysis in rat blood and kidney cortex. Molecules, 2016, 21(3), 367.
[http://dx.doi.org/10.3390/molecules21030367] [PMID: 26999094]
[15]
Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev., 2021, 427, 213560.
[http://dx.doi.org/10.1016/j.ccr.2020.213560] [PMID: 34108734]
[16]
Hein, R.; Beer, P.D.; Davis, J.J. Electrochemical anion sensing: Supramolecular approaches. Chem. Rev., 2020, 120(3), 1888-1935.
[http://dx.doi.org/10.1021/acs.chemrev.9b00624] [PMID: 31916758]
[17]
Adhikari, S.; Kar, D.; Fröhlich, R.; Ghosh, K. Pyridine‐based macrocyclic and open receptors for urea. ChemistrySelect, 2019, 4(44), 12825-12831.
[http://dx.doi.org/10.1002/slct.201902451]
[18]
Ghosh, K.; Adhikari, S. Fluorescence sensing of tartaric acid: A case of excimer emission caused by hydrogen bond-mediated complexation. Tetrahedron Lett., 2006, 47(21), 3577-3581.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.044]
[19]
Kusukawa, T.; Mura, R.; Ooe, M.; Sumida, R.; Nakagawa, A. Recognition of carboxylic acids and phosphonic acids using 1,8-diphenylnaphthalene-based diguanidine. Tetrahedron, 2021, 77, 131770.
[http://dx.doi.org/10.1016/j.tet.2020.131770]
[20]
Shome, M.; Mishra, N. Molecular recognition of carboxylic acids and carboxylates. A. Indian J. Adv. Chem. Sci, 2016, 4, 56.
[21]
Butler, S.M.; Jolliffe, K.A. Molecular recognition and sensing of dicarboxylates and dicarboxylic acids. Org. Biomol. Chem., 2020, 18(41), 8236-8254.
[http://dx.doi.org/10.1039/D0OB01761B] [PMID: 33001119]
[22]
Chen, W.; Guo, C.; He, Q.; Chi, X.; Lynch, V.M.; Zhang, Z.; Su, J.; Tian, H.; Sessler, J.L. Molecular cursor caliper: A fluorescent sensor for dicarboxylate dianions. J. Am. Chem. Soc., 2019, 141(37), 14798-14806.
[http://dx.doi.org/10.1021/jacs.9b07170] [PMID: 31437397]
[23]
Ghosh, K.; Adhikari, S.; Chattopadhyay, A.P.; Chowdhury, P.R. Quinoline based receptor in fluorometric discrimination of carboxylic acids. Beilstein J. Org. Chem., 2008, 4, 52.
[http://dx.doi.org/10.3762/bjoc.4.52] [PMID: 19190738]
[24]
Ghosh, K.; Adhikari, S. A quinoline-based tripodal fluororeceptor for citric acid. Tetrahedron Lett., 2008, 49(4), 658-663.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.139]
[25]
Curiel, D.; Montoya, M.M.; Sánchez, G. Complexation and sensing of dicarboxylate anions and dicarboxylic acids. Coord. Chem. Rev., 2015, 284, 19-66.
[http://dx.doi.org/10.1016/j.ccr.2014.09.010]
[26]
Kusukawa, T.; Aramoto, H.; Umeda, T.; Kojima, Y. Carboxylic acid recognition of diamidine having a fluorescent 1,8-diphenylanthracene unit and its detection of amidinium-carboxylate and amidinium formation. Tetrahedron, 2019, 75(9), 1293-1305.
[http://dx.doi.org/10.1016/j.tet.2019.01.040]
[27]
Kusukawa, T.; Matoba, K.; Hoshihara, Y.; Tanaka, S.; Nakajima, A. Carboxylic acid recognition of an N-ethyl-substituted diamidine having a diphenylnaphthalene unit in competing protic solvents. Tetrahedron, 2021, 96, 132373.
[http://dx.doi.org/10.1016/j.tet.2021.132373]
[28]
Lee, M.; Zali-Boeini, H.; Li, F.; Lindoy, L.F.; Jolliffe, K.A. Synthesis of tris-(azacrown) ethers for carboxylic acid recognition. Tetrahedron, 2013, 69(1), 38-42.
[http://dx.doi.org/10.1016/j.tet.2012.10.067]
[29]
Shattock, T.R.; Arora, K.K.; Vishweshwar, P.; Zaworotko, M.J. Hierarchy of supramolecular synthons: Persistent carboxylic acid···pyridine hydrogen bonds in cocrystals that also contain a hydroxyl moiety. Cryst. Growth Des., 2008, 8(12), 4533-4545.
[http://dx.doi.org/10.1021/cg800565a]
[30]
Hernández, J.V.; Oliva, A.I.; Simón, L.; Muñiz, F.M.; Mateos, A.A.; Morán, J.R. Enantioselective chromenone benzoxazole receptor for glutamic acid and its derivatives. J. Org. Chem., 2003, 68(19), 7513-7516.
[http://dx.doi.org/10.1021/jo0347157] [PMID: 12968909]
[31]
Oliva, A.I.; Simón, L.; Muñiz, F.M.; Sanz, F.; Morán, J.R. Aminopyridine-benzoxanthene enantioselective receptor for sulfonylamino acids. Org. Lett., 2004, 6(7), 1155-1157.
[http://dx.doi.org/10.1021/ol049933g] [PMID: 15040746]
[32]
Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Synthesis and study of a heterocyclic receptor designed for carboxylic acids. Tetrahedron, 2004, 60(19), 4197-4204.
[http://dx.doi.org/10.1016/j.tet.2004.03.045]
[33]
Ghosh, K.; Sen, T.; Fröhlich, R. Adenine-based receptor for dicarboxylic acids. Tetrahedron Lett., 2007, 48(39), 7022-7026.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.110]
[34]
Rao, P.; Ghosh, S.; Maitra, U. Binding of 9-N-butyladenine by carboxylic acids: Evidence that hoogsteen binding can dominate in solution. J. Phys. Chem. B, 1999, 103(21), 4528-4533.
[http://dx.doi.org/10.1021/jp984235x]
[35]
Byres, M.; Cox, P.J.; Kay, G.; Nixon, E. Supramolecular structures of six adenine-carboxylic acid complexes. CrystEngComm, 2009, 11(1), 135-142.
[http://dx.doi.org/10.1039/B811243F]
[36]
Chen, H.; Ogo, S.; Fish, R.H. Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with supramolecular (η5-Pentamethylcyclopentadienyl)rhodium-nucleobase, nucleoside, and nucleotide cyclic trimer hosts via non-covalent π-π and hydrophobic interactions in water: Steric, electronic, and conformational parameters. J. Am. Chem. Soc., 1996, 118(21), 4993-5001.
[http://dx.doi.org/10.1021/ja954040s]
[37]
Ghosh, K.; Sen, T. Adenine-based urea receptors in fluorescent recognition of iodide. Tetrahedron Lett., 2008, 49(50), 7204-7208.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.009]
[38]
Ghosh, K.; Sen, T. Anthracene coupled adenine for the selective sensing of copper ions. Beilstein J. Org. Chem., 2010, 6, 44.
[http://dx.doi.org/10.3762/bjoc.6.44] [PMID: 20563271]
[39]
Sen, T.; Baildya, N.; Ghosh, K. Adenyl nitrourea in molecular recognition of fluoride and pyruvate. Can. J. Chem., 2022, 100(12), 873-879.
[http://dx.doi.org/10.1139/cjc-2022-0060]
[40]
Ghosh, K.; Masanta, G. Triphenylamine-based novel PET sensors in selective recognition of dicarboxylic acids. Tetrahedron Lett., 2006, 47(14), 2365-2369.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.008]
[41]
Ghosh, K.; Adhikari, S. Design, synthesis and molecular recognition properties of pyridine-based hetero bis amide receptors. J. Indian Chem. Soc., 2017, 94, 205.
[42]
Chou, P.T.; Wu, G.R.; Wei, C.Y.; Cheng, C.C.; Chang, C.P.; Hung, F.T. Excited-state amine-imine double proton transfer in 7-azaindoline. J. Phys. Chem. B, 2000, 104(32), 7818-7829.
[http://dx.doi.org/10.1021/jp001001g]
[43]
Kanmazalp, S.D.; Dege, N.; Baildya, N.; Adhikari, S. Exploring the supramolecular features, computational studies, and molecular docking studies of a carbamate schiff base. Lett. Org. Chem., 2024, 21(7), 568-574.
[http://dx.doi.org/10.2174/0115701786283444231128061732]
[44]
Adhikari, S.; Sheikh, A.H.; Kansız, S.; Dege, N.; Baildya, N.; Mahmoudi, G.; Choudhury, N.A.; Butcher, R.J.; Kaminsky, W.; Talledo, S.; Lopato, E.M.; Bernhard, S.; Kłak, J. Supramolecular Co(II) complexes based on dithiolate and dicarboxylate ligands: Crystal structures, theoretical studies, magnetic properties, and catalytic activity studies in photocatalytic hydrogen evolution. J. Mol. Struct., 2023, 1285, 135481.
[http://dx.doi.org/10.1016/j.molstruc.2023.135481]
[45]
Adhikari, S.; Bhattacharjee, T.; Bhattacharjee, S.; Debnath, S.; Das, A.; Daniliuc, C-G.; Thirumoorthy, K.; Malayaperumal, S.; Banerjee, A.; Pathak, S.; Frontera, A. Exploring dithiolate-amine binary ligand systems for the supramolecular assemblies of Ni(II) coordination compounds: Crystal structures, theoretical studies, cytotoxicity studies, and molecular docking studies. Inorg. Chim. Acta, 2022, 543, 121157.
[http://dx.doi.org/10.1016/j.ica.2022.121157]
[46]
Adhikari, S.; Sheikh, H.A.; Baildya, N.; Mahmoudi, G.; Choudhury, A.N.; Okpareke, O.; Sen, T.; Verma, K.A.; Singh, K.R.; Pathak, S.; Kaminsky, W. Antiproliferative evaluation and supramolecular properties of a Pd(II) complex harvested from benzil bis(pyridyl hydrazone) ligand: Combined experimental and theoretical studies. Inorg. Chem. Commun., 2023, 152, 110646.
[http://dx.doi.org/10.1016/j.inoche.2023.110646]
[47]
Bhattacharjee, T.; Adhikari, S.; Sheikh, A.H.; Mahmoudi, G.; Mlowe, S.; Akerman, M.P.; Choudhury, N.A.; Chakraborty, S.; Butcher, R.J.; Kennedy, A.R.; Demir, B.S.; Örs, A.; Saygideger, Y. Syntheses, crystal structures, theoretical studies, and anticancer properties of an unsymmetrical schiff base ligand N-2-(6-methylpyridyl)-2-hydroxy-1-naphthaldimine and its Ni(II) complex. J. Mol. Struct., 2022, 1269, 133717.
[http://dx.doi.org/10.1016/j.molstruc.2022.133717]
[48]
Ghosh, K.; Adhikari, S.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules. J. Mol. Struct., 2011, 1004(1-3), 193-203.
[http://dx.doi.org/10.1016/j.molstruc.2011.08.004]
[49]
Singh, M.K.; Sutradhar, S.; Paul, B.; Adhikari, S.; Laskar, F.; Acharya, S.; Chakraborty, D.; Biswas, S.; Das, A.; Roy, S.; Frontera, A. Mixed-ligand complexes of zinc(II) with 1,1-dicyanoethylene-2,2-dithiolate and N-donor ligands: A combined experimental and theoretical study. J. Mol. Struct., 2018, 1164, 334-343.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.073]
[50]
Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, revision A. 1. Gaussian Inc: Wallingford CT, 2009, 27, 34.
[51]
Qian, X.; Zhu, Y.Z.; Song, J.; Gao, X.P.; Zheng, J.Y. New donor-π-acceptor type triazatruxene derivatives for highly efficient dye-sensitized solar cells. Org. Lett., 2013, 15(23), 6034-6037.
[http://dx.doi.org/10.1021/ol402931u] [PMID: 24224807]
[52]
Hartnett, P.E.; Mauck, C.M.; Harris, M.A.; Young, R.M.; Wu, Y.L.; Marks, T.J.; Wasielewski, M.R. Influence of anion delocalization on electron transfer in a covalent porphyrin donor–perylenediimide dimer acceptor system. J. Am. Chem. Soc., 2017, 139(2), 749-756.
[http://dx.doi.org/10.1021/jacs.6b10140] [PMID: 28026177]
[53]
Miertuš, S.; Scrocco, E. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J. Chem. Phys., 1981, 55, 117.
[54]
Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys., 1997, 107(8), 3210-3221.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy