Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

From Conventional to Cutting-Edge: A Comprehensive Review on Drug Delivery Systems

Author(s): Akash Vikal, Rashmi Maurya, Shuvadip Bhowmik, Preeti Patel, Ghanshyam Das Gupta and Balak Das Kurmi*

Volume 14, Issue 3, 2024

Published on: 09 May, 2024

Page: [226 - 243] Pages: 18

DOI: 10.2174/0122103031304556240430161553

Price: $65

Abstract

The essential need for efficacious conveyance of therapeutics to specific tissues or cells, refinement of drug formulations, and the scalability of industrial production drives the pre-sent-day demand for enhanced drug delivery systems (DDS). Newly devised drugs often exhibit suboptimal biopharmaceutical properties, resulting in diminished patient adherence and adverse side effects. The paramount importance of site-specific drug delivery lies in its capacity to facili-tate the targeted administration of diverse therapeutic agents, catering to both localized ailments and systemic treatments. Alongside targeted drug delivery strategies encompassing ligand-based targeting and stimuli-responsive systems, the advent of cutting-edge nanotechnologies such as nanoparticles, liposomes, and micelles has marked a paradigm shift. Additionally, personalized medicines have emerged as a consequential facet of drug delivery, emphasizing the customization of treatment approaches. Researchers have explored an excess of methodologies in the advance-ment of these formulation technologies, including stimuli-responsive drug delivery, 3D printing, gene delivery, and various other innovative approaches. This comprehensive review aims to pro-vide a holistic understanding of the past, present, and future of drug delivery systems, offering in-sights into the transformative potential of emerging technologies.

[1]
Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng., 2021, 5(9), 951-967.
[http://dx.doi.org/10.1038/s41551-021-00698-w] [PMID: 33795852]
[2]
Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, A.E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc., 2021, 14, 1711-1724.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[3]
Park, H.; Otte, A.; Park, K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release, 2022, 342, 53-65.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.030] [PMID: 34971694]
[4]
Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; Nwadike, U.G.; Ogbodo, J.O.; Umeh, B.U.; Ossai, E.C.; Nwanguma, B.C. Advances in drug delivery systems, challenges and future directions. Heliyon, 2023, 9(6), e17488.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17488] [PMID: 37416680]
[5]
Gao, J.; Karp, J.M.; Langer, R.; Joshi, N. The Future of Drug Delivery. Chem. Mater., 2023, 35(2), 359-363.
[http://dx.doi.org/10.1021/acs.chemmater.2c03003 ] [PMID: 37799624]
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Torres, R.M.P.; Torres, A.L.S.; Torres, D.L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021, 26(19), 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[8]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[9]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[10]
Herman, T.F.; Santos, C. First-Pass Effect. In: StatPearls; StatPearls Publishing, 2023.
[11]
Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics, 2023, 15(2), 484.
[http://dx.doi.org/10.3390/pharmaceutics15020484 ] [PMID: 36839807]
[12]
Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics, 2020, 12(11), 1031.
[http://dx.doi.org/10.3390/pharmaceutics12111031 ] [PMID: 33137942]
[13]
Ng, L.H.; Ling, J.K.U.; Hadinoto, K. Formulation strategies to improve the stability and handling of oral solid dosage forms of highly hygroscopic pharmaceuticals and nutraceuticals. Pharmaceutics, 2022, 14(10), 2015.
[http://dx.doi.org/10.3390/pharmaceutics14102015 ] [PMID: 36297450]
[14]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moussa, M.N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[15]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[16]
Aungst, B.J. Absorption enhancers: Applications and advances. AAPS J., 2012, 14(1), 10-18.
[http://dx.doi.org/10.1208/s12248-011-9307-4] [PMID: 22105442]
[17]
Bhattacharjee, H.; Loveless, V.; Thoma, L.A. Parenteral drug administration: Routes of administration and devices.Parenteral Medications, 4th ed; CRC Press, 2019, pp. 11-26.
[http://dx.doi.org/10.1201/9780429201400-3]
[18]
Jain, K.K. Drug delivery systems - An overview. Methods Mol. Biol., 2008, 437, 1-50.
[http://dx.doi.org/10.1007/978-1-59745-210-6_1] [PMID: 18369961]
[19]
Jin, J.F.; Zhu, L.L.; Chen, M.; Xu, H.M.; Wang, H.F.; Feng, X.Q.; Zhu, X.P.; Zhou, Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence, 2015, 9, 923-942.
[PMID: 26170642]
[20]
Verma, P.; Thakur, A.S.; Deshmukh, K.; Jha, A.K.; Verma, S. Routes of drug administration. International J. Pharmaceutical Studies Res., 2010, 1(1), 54-59.
[21]
Hopkins, U.; Arias, C.Y. Large-volume IM injections: A review of best practices. Oncol. Nurse Advis., 2013, 4(1), 32-37.
[22]
Usach, I.; Martinez, R.; Festini, T.; Peris, J.E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Ther., 2019, 36(11), 2986-2996.
[http://dx.doi.org/10.1007/s12325-019-01101-6] [PMID: 31587143]
[23]
Peltonen, S.E.; Hakoinen, S.; Celikkayalar, E.; Laaksonen, R.; Airaksinen, M. Incorrect aseptic techniques in medicine preparation and recommendations for safer practices: A systematic review. Eur. J. Hosp. Pharm. Sci. Pract., 2017, 24(3), 175-181.
[http://dx.doi.org/10.1136/ejhpharm-2016-001015] [PMID: 31156932]
[24]
Jones, S.C.A.; Prignano, F.; Goncalves, J.; Paul, M.; Sewerin, P. Understanding and minimising injection-site pain following subcutaneous administration of biologics: A narrative review. Rheumatol. Ther., 2020, 7(4), 741-757.
[http://dx.doi.org/10.1007/s40744-020-00245-0] [PMID: 33206343]
[25]
Ganesh, A.N.; Heusser, C.; Garad, S.; Félix, S.M.V. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. Medicine in Drug Discovery, 2021, 9, 100079.
[http://dx.doi.org/10.1016/j.medidd.2020.100079]
[26]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[27]
Yuan, H.Y.; Cao, Y.; Kamra, A.; Duine, R.A.; Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep., 2022, 965, 1-74.
[http://dx.doi.org/10.1016/j.physrep.2022.03.002]
[28]
Capek, I. Nanotechnology and nanomaterials; Studies in interface science, 2006, 23, pp. 1-69.
[29]
de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[30]
Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines, 2021, 9(4), 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[31]
Mallakpour, S.; Azadi, E.; Hussain, C.M. The latest strategies in the fight against the COVID-19 pandemic: The role of metal and metal oxide nanoparticles. New J. Chem., 2021, 45(14), 6167-6179.
[http://dx.doi.org/10.1039/D1NJ00047K]
[32]
Komarova, Y.A.; Kruse, K.; Mehta, D.; Malik, A.B. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ. Res., 2017, 120(1), 179-206.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306534 ] [PMID: 28057793]
[33]
Fricke, I.B.; Schelhaas, S.; Zinnhardt, B.; Viel, T.; Hermann, S.; Després, C.S.; Jacobs, A.H. In vivo bioluminescence imaging of neurogenesis – the role of the blood brain barrier in an experimental model of Parkinson’s disease. Eur. J. Neurosci., 2017, 45(7), 975-986.
[http://dx.doi.org/10.1111/ejn.13540] [PMID: 28194885]
[34]
Stefano, D.A. Nanotechnology in Targeted Drug Delivery. Int. J. Mol. Sci., 2023, 24(9), 8194.
[http://dx.doi.org/10.3390/ijms24098194] [PMID: 37175903]
[35]
Dmour, I.; Taha, M.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. In: Organic materials as smart nanocarriers for drug delivery; Applied Science Publishers, 2018; pp. 35-100.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00002-6]
[36]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[37]
Wang, F.; Tang, R.; Kao, J.L.F.; Dingman, S.D.; Buhro, W.E. Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. J. Am. Chem. Soc., 2009, 131(13), 4983-4994.
[http://dx.doi.org/10.1021/ja900191n] [PMID: 19296595]
[38]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[39]
Huh, Y.M.; Jun, Y.; Song, H.T.; Kim, S.; Choi, J.; Lee, J.H.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc., 2005, 127(35), 12387-12391.
[http://dx.doi.org/10.1021/ja052337c] [PMID: 16131220]
[40]
Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules, 2020, 25(22), 5294.
[http://dx.doi.org/10.3390/molecules25225294] [PMID: 33202839]
[41]
Chen, Y.; Wei, C.; Lyu, Y.; Chen, H.; Jiang, G.; Gao, X. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci., 2020, 8(4), 1073-1088.
[http://dx.doi.org/10.1039/C9BM01395D] [PMID: 31728485]
[42]
Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev., 2001, 47(1), 65-81.
[http://dx.doi.org/10.1016/S0169-409X(00)00122-8 ] [PMID: 11251246]
[43]
Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release, 2004, 95(3), 627-638.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[44]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Bawab, A.A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[45]
Akbarzadeh, A.; Sadabady, R.R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Koshki, N.K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[46]
Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 2022, 27(4), 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[47]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[48]
Huang, X.; Caddell, R.; Yu, B.; Xu, S.; Theobald, B.; Lee, L.J.; Lee, R.J. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res., 2010, 30(2), 463-466.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2501 ] [PMID: 20332455]
[49]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[50]
Daza, P.M.; Campia, I.; Kopecka, J.; Garzón, R.; Ghigo, D.; Rigant, C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Curr. Drug Metab., 2013, 14(6), 625-640.
[http://dx.doi.org/10.2174/1389200211314060001] [PMID: 23869808]
[51]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 6847971.
[http://dx.doi.org/10.1155/2018/6847971]
[52]
Bhattamisra, S.K.; Shak, A.T.; Xi, L.W.; Safian, N.H.; Choudhury, H.; Lim, W.M.; Shahzad, N.; Alhakamy, N.A.; Anwer, M.K.; Radhakrishnan, A.K.; Md, S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm., 2020, 579, 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[53]
Fan, Y; Chen, M; Zhang, J; Maincent, P; Xia, X; Wu, W Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases., Critical Reviews™ in Therapeutic Drug Carrier Systems., 2018, 35(5), 433-467.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[54]
Negut, I.; Bita, B. Polymeric Micellar Systems-A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics, 2023, 15(3), 976.
[http://dx.doi.org/10.3390/pharmaceutics15030976 ] [PMID: 36986837]
[55]
Rana, V.; Sharma, R. Recent advances in development of nano drug delivery. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier, 2019; pp. 93-131.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00005-3]
[56]
Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res., 2018, 11(10), 4985-4998.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[57]
Kazunori, K.; Glenn, S.K.; Masayuki, Y.; Teruo, O.; Yasuhisa, S. Block copolymer micelles as vehicles for drug delivery. J. Control. Release, 1993, 24(1-3), 119-132.
[http://dx.doi.org/10.1016/0168-3659(93)90172-2]
[58]
bayindir, S.Z.; Ergin, A.D.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Yuksel, N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. J. Drug Deliv. Sci. Technol., 2016, 36, 120-129.
[http://dx.doi.org/10.1016/j.jddst.2016.10.003]
[59]
Sydow, K.; Nikolenko, H.; Lorenz, D.; Müller, R.H.; Dathe, M. Lipopeptide-based micellar and liposomal carriers: Influence of surface charge and particle size on cellular uptake into blood brain barrier cells. Eur. J. Pharm. Biopharm., 2016, 109, 130-139.
[http://dx.doi.org/10.1016/j.ejpb.2016.09.019] [PMID: 27702684]
[60]
Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, J.; Ping, Q.; Xiao, Y. Tween 80-modified hyaluronic acid-ss-curcumin micelles for targeting glioma: Synthesis, characterization and their in vitro evaluation. Int. J. Biol. Macromol., 2018, 120(Pt B), 2579-2588.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.034] [PMID: 30195608]
[61]
Desai, P.P.; Patravale, V.B. Curcumin cocrystal micelles—Multifunctional nanocomposites for management of neurodegenerative ailments. J. Pharm. Sci., 2018, 107(4), 1143-1156.
[http://dx.doi.org/10.1016/j.xphs.2017.11.014] [PMID: 29183742]
[62]
Garello, F.; Pagoto, A.; Arena, F.; Buffo, A.; Blasi, F.; Alberti, D.; Terreno, E. MRI visualization of neuroinflammation using VCAM-1 targeted paramagnetic micelles. Nanomedicine, 2018, 14(7), 2341-2350.
[http://dx.doi.org/10.1016/j.nano.2017.10.002] [PMID: 29079529]
[63]
Shiraishi, K.; Wang, Z.; Kokuryo, D.; Aoki, I.; Yokoyama, M. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood–brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury. J. Control. Release, 2017, 253, 165-171.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.020] [PMID: 28322975]
[64]
Ferreiro, P.M.; Abelairas, M.A.; Criado, A.; Gómez, I.J.; Mosquera, J. Dendrimers: Exploring their wide structural variety and applications. Polymers, 2023, 15(22), 4369.
[http://dx.doi.org/10.3390/polym15224369] [PMID: 38006093]
[65]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[66]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers. J. Control. Release, 2000, 65(1-2), 133-148.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1 ] [PMID: 10699277]
[67]
Vannucci, L.; Lai, M.; Chiuppesi, F.; Nelli, C.L.; Pistello, M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol., 2013, 36(1), 1-22.
[PMID: 23435812]
[68]
Perumal, O.P.; Inapagolla, R.; Kannan, S.; Kannan, R.M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials, 2008, 29(24-25), 3469-3476.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.038 ] [PMID: 18501424]
[69]
Sonawane, N.D.; Szoka, F.C., Jr; Verkman, A.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem., 2003, 278(45), 44826-44831.
[http://dx.doi.org/10.1074/jbc.M308643200] [PMID: 12944394]
[70]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Tincu, V.A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and Limitations of Dendrimers in Biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[71]
Igartúa, D.E.; Martinez, C.S.; Temprana, C.F.; Alonso, S.V.; Prieto, M.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int. J. Pharm., 2018, 544(1), 191-202.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.032] [PMID: 29678547]
[72]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[73]
Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater., 2021, 6(4), 351-370.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[74]
Pawar, V.; Maske, P.; Khan, A.; Ghosh, A.; Keshari, R.; Bhatt, M.; Srivastava, R. Responsive Nanostructure for Targeted Drug Delivery. J. Nanotheranostics, 2023, 4(1), 55-85.
[75]
Bandyopadhyay, A.; Das, T.; Nandy, S.; Sahib, S.; Preetam, S.; Gopalakrishnan, A.V.; Dey, A. Ligand-based active targeting strategies for cancer theranostics. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(12), 3417-3441.
[http://dx.doi.org/10.1007/s00210-023-02612-4] [PMID: 37466702]
[76]
Bajracharya, R.; Song, J.G.; Patil, B.R.; Lee, S.H.; Noh, H.M.; Kim, D.H.; Kim, G.L.; Seo, S.H.; Park, J.W.; Jeong, S.H.; Lee, C.H.; Han, H.K. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems. Drug Deliv., 2022, 29(1), 1959-1970.
[http://dx.doi.org/10.1080/10717544.2022.2089296 ] [PMID: 35762636]
[77]
Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[78]
Liu, M.; Fang, X.; Yang, Y.; Wang, C. Peptide-enabled targeted delivery systems for therapeutic applications. Front. Bioeng. Biotechnol., 2021, 9, 701504.
[http://dx.doi.org/10.3389/fbioe.2021.701504] [PMID: 34277592]
[79]
Xie, S.; Sun, W.; Fu, T.; Liu, X.; Chen, P.; Qiu, L.; Qu, F.; Tan, W. Aptamer-Based Targeted Delivery of Functional Nucleic Acids. J. Am. Chem. Soc., 2023, 145(14), 7677-7691.
[http://dx.doi.org/10.1021/jacs.3c00841] [PMID: 36987838]
[80]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci., 2018, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[81]
Smith, B.A.H.; Bertozzi, C.R. The clinical impact of glycobiology: Targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov., 2021, 20(3), 217-243.
[http://dx.doi.org/10.1038/s41573-020-00093-1] [PMID: 33462432]
[82]
Zhang, M.; Hu, W.; Cai, C.; Wu, Y.; Li, J.; Dong, S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater. Today Bio, 2022, 14, 100223.
[http://dx.doi.org/10.1016/j.mtbio.2022.100223] [PMID: 35243298]
[83]
Abdella, S.; Abid, F.; Youssef, S.H.; Kim, S.; Afinjuomo, F.; Malinga, C.; Song, Y.; Garg, S. pH and its applications in targeted drug delivery. Drug Discov. Today, 2023, 28(1), 103414.
[http://dx.doi.org/10.1016/j.drudis.2022.103414] [PMID: 36273779]
[84]
Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules, 2018, 24(1), 4.
[http://dx.doi.org/10.3390/molecules24010004] [PMID: 30577475]
[85]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[86]
Zhu, Y.J.; Chen, F. pH-responsive drug-delivery systems. Chem. Asian J., 2015, 10(2), 284-305.
[http://dx.doi.org/10.1002/asia.201402715] [PMID: 25303435]
[87]
Aghdam, H.S.J.; Nia, F.B.; Akbari, Z.Z.; Jabali, M.S.; motasadizadeh, H.; Farhadnejad, H. Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid Int. J. Biol. Macromol., 2018, 107(Pt B), 2436-2449.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.128] [PMID: 29101044]
[88]
Bolla, P.K.; Rodriguez, V.A.; Kalhapure, R.S.; Kolli, C.S.; Andrews, S.; Renukuntla, J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J. Drug Deliv. Sci. Technol., 2018, 46, 416-435.
[http://dx.doi.org/10.1016/j.jddst.2018.05.037]
[89]
Abuwatfa, W.H.; Awad, N.S.; Pitt, W.G.; Husseini, G.A. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers, 2022, 14(5), 925.
[http://dx.doi.org/10.3390/polym14050925] [PMID: 35267747]
[90]
Jha, S.; Sharma, P.K.; Malviya, R. Hyperthermia: Role and Risk Factor for Cancer Treatment. Achievements in the Life Sciences, 2016, 10(2), 161-167.
[http://dx.doi.org/10.1016/j.als.2016.11.004]
[91]
Lee, J.S.; Zhou, W.; Meng, F.; Zhang, D.; Otto, C.; Feijen, J. Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J. Control. Release, 2010, 146(3), 400-408.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.002] [PMID: 20561894]
[92]
Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl. Mater. Interfaces, 2014, 6(11), 8549-8559.
[http://dx.doi.org/10.1021/am501422r] [PMID: 24804870]
[93]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[94]
Cao, Z.; Li, W.; Liu, R.; Li, X.; Li, H.; Liu, L.; Chen, Y.; Lv, C.; Liu, Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother., 2019, 118, 109340.
[http://dx.doi.org/10.1016/j.biopha.2019.109340] [PMID: 31545284]
[95]
Law, B.; Weissleder, R.; Tung, C.H. Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules, 2006, 7(4), 1261-1265.
[http://dx.doi.org/10.1021/bm050920f] [PMID: 16602747]
[96]
Andresen, T.L.; Davidsen, J.; Begtrup, M.; Mouritsen, O.G.; Jørgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem., 2004, 47(7), 1694-1703.
[http://dx.doi.org/10.1021/jm031029r] [PMID: 15027860]
[97]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[98]
Rwei, A.Y.; Wang, W.; Kohane, D.S. Photoresponsive nanoparticles for drug delivery. Nano Today, 2015, 10(4), 451-467.
[http://dx.doi.org/10.1016/j.nantod.2015.06.004] [PMID: 26644797]
[99]
Tao, Y.; Chan, H.F.; Shi, B.; Li, M.; Leong, K.W. Light: A magical tool for controlled drug delivery. Adv. Funct. Mater., 2020, 30(49), 2005029.
[http://dx.doi.org/10.1002/adfm.202005029] [PMID: 34483808]
[100]
Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc., 2012, 134(21), 8848-8855.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[101]
Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1571.
[http://dx.doi.org/10.1002/wnan.1571] [PMID: 31241251]
[102]
Price, P.M.; Mahmoud, W.E.; Ghamdi, A.A.A.; Bronstein, L.M. Magnetic drug delivery: Where the field is going. Front Chem., 2018, 6, 619.
[http://dx.doi.org/10.3389/fchem.2018.00619] [PMID: 30619827]
[103]
Huang, C.; Tang, Z.; Zhou, Y.; Zhou, X.; Jin, Y.; Li, D.; Yang, Y.; Zhou, S. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm., 2012, 429(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.001] [PMID: 22406331]
[104]
Ballance, W.C.; Qin, E.C.; Chung, H.J.; Gillette, M.U.; Kong, H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials, 2019, 217, 119292.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119292 ] [PMID: 31279098]
[105]
Li, R.; Peng, F.; Cai, J.; Yang, D.; Zhang, P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J. Pharmaceutical Sciences, 2020, 15(3), 311-325.
[http://dx.doi.org/10.1016/j.ajps.2019.06.003] [PMID: 32636949]
[106]
Tao, W.; He, Z. ROS-responsive drug delivery systems for biomedical applications. Asian J. Pharmaceutical Sciences, 2018, 13(2), 101-112.
[http://dx.doi.org/10.1016/j.ajps.2017.11.002] [PMID: 32104383]
[107]
Cheng, G.; He, Y.; Xie, L.; Nie, Y.; He, B.; Zhang, Z.; Gu, Z. Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. Int. J. Nanomedicine, 2012, 7, 3991-4006.
[PMID: 22904624]
[108]
Wang, J.; Wang, Z.; Yu, J.; Kahkoska, A.R.; Buse, J.B.; Gu, Z. Glucose‐responsive insulin and delivery systems: Innovation and translation. Adv. Mater., 2020, 32(13), 1902004.
[http://dx.doi.org/10.1002/adma.201902004] [PMID: 31423670]
[109]
Webber, M.J.; Anderson, D.G. Smart approaches to glucose-responsive drug delivery. J. Drug Target., 2015, 23(7-8), 651-655.
[http://dx.doi.org/10.3109/1061186X.2015.1055749 ] [PMID: 26453161]
[110]
Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano, 2020, 14(1), 488-497.
[http://dx.doi.org/10.1021/acsnano.9b06395] [PMID: 31765558]
[111]
Rahim, M.A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z.; Aziz, H.C.; Sohail, M.; Khan, M.; Thu, H.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers, 2021, 13(4), 670.
[http://dx.doi.org/10.3390/cancers13040670] [PMID: 33562376]
[112]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[113]
Cros, R.M. Glucose-responsive insulin delivery systems. Endocrinol. Nutr., 2016, 63(4), 143-144.
[http://dx.doi.org/10.1016/j.endonu.2015.11.002] [PMID: 26724975]
[114]
Wang, R.C.; Wang, Z. Precision medicine: Disease subtyping and tailored treatment. Cancers, 2023, 15(15), 3837.
[http://dx.doi.org/10.3390/cancers15153837] [PMID: 37568653]
[115]
Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res., 2009, 154(6), 277-287.
[http://dx.doi.org/10.1016/j.trsl.2009.09.005] [PMID: 19931193]
[116]
Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Giudice, D.C.; Tesorio, P.; Rusciano, M.R. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes, 2020, 11(7), 747.
[http://dx.doi.org/10.3390/genes11070747 ] [PMID: 32640513]
[117]
T P, A.; M, S.S.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res., 2009, 1(4), 191-194.
[http://dx.doi.org/10.4021/jocmr2009.08.1255] [PMID: 22461867]
[118]
Oates, J.T.; Lopez, D. Pharmacogenetics: An important part of drug development with a focus on its application. Int. J. Biomed. Investig., 2018, 1(2), 111.
[PMID: 32467882]
[119]
Salih, S.; Elliyanti, A.; Alkatheeri, A.; AlYafei, F.; Almarri, B.; Khan, H. The role of molecular imaging in personalized medicine. J. Pers. Med., 2023, 13(2), 369.
[http://dx.doi.org/10.3390/jpm13020369] [PMID: 36836603]
[120]
Goetz, L.H.; Schork, N. J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril., 2018, 109(6), 952-963.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.006] [PMID: 29935653]
[121]
Husn, A.N.S.; Kenny, E.E. Personalized Medicine and the Power of Electronic Health Records. Cell, 2019, 177(1), 58-69.
[http://dx.doi.org/10.1016/j.cell.2019.02.039] [PMID: 30901549]
[122]
Ozomaro, U.; Wahlestedt, C.; Nemeroff, C.B. Personalized medicine in psychiatry: Problems and promises. BMC Med., 2013, 11(1), 132.
[http://dx.doi.org/10.1186/1741-7015-11-132] [PMID: 23680237]
[123]
Brittain, H.K.; Scott, R.; Thomas, E. The rise of the genome and personalised medicine. Clin. Med., 2017, 17(6), 545-551.
[http://dx.doi.org/10.7861/clinmedicine.17-6-545 ] [PMID: 29196356]
[124]
Raijada, D.; Wac, K.; Greisen, E.; Rantanen, J.; Genina, N. Integration of personalized drug delivery systems into digital health. Adv. Drug Deliv. Rev., 2021, 176, 113857.
[http://dx.doi.org/10.1016/j.addr.2021.113857] [PMID: 34389172]
[125]
Alghamdi, M.A.; Fallica, A.N.; Virzì, N.; Kesharwani, P.; Pittalà, V.; Greish, K. The promise of nanotechnology in personalized medicine. J. Pers. Med., 2022, 12(5), 673.
[http://dx.doi.org/10.3390/jpm12050673] [PMID: 35629095]
[126]
Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules, 2019, 24(6), 1117.
[http://dx.doi.org/10.3390/molecules24061117] [PMID: 30901827]
[127]
Cecchin, E.; Stocco, G. Pharmacogenomics and Personalized Medicine. Genes, 2020, 11(6), 679.
[http://dx.doi.org/10.3390/genes11060679] [PMID: 32580376]
[128]
Carrillo, W.M.; Klein, T.E.; Altman, R.B. Pharmacogenomics. In: Brenner's Encyclopedia of Genetics, Second Edition; Maloy, S.; Hughes, K., Eds.; Academic Press: San Diego, 2013; pp. 283-285.
[129]
Najjari, Z.; Sadri, F.; Varshosaz, J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J. Pharmaceutical Sciences, 2023, 18(6), 100873.
[http://dx.doi.org/10.1016/j.ajps.2023.100873] [PMID: 38173712]
[130]
Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, U.M.I. 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 2022, 3, 33-42.
[http://dx.doi.org/10.1016/j.susoc.2021.09.004]
[131]
Aimar, A.; Palermo, A.; Innocenti, B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5340616] [PMID: 31019667]
[132]
Mohapatra, Snehamayee; Kar, Rajat; Biswal, Prasanta; Bindhani, Sabitri Approaches of 3D printing in current drug delivery. Sensors International, 2022, 3, 100146.
[133]
Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res., 2009, 88(7), 585-596.
[http://dx.doi.org/10.1177/0022034509337480] [PMID: 19641145]
[134]
Nayerossadat, N.; Maedeh, T.; Ali, P. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[135]
Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharmaceutical Sciences, 2021, 16(6), 687-703.
[http://dx.doi.org/10.1016/j.ajps.2021.05.003] [PMID: 35027949]
[136]
Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121639 ] [PMID: 35779481]
[137]
Do, A.V.; Khorsand, B.; Geary, S.M.; Salem, A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater., 2015, 4(12), 1742-1762.
[http://dx.doi.org/10.1002/adhm.201500168] [PMID: 26097108]
[138]
Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19(6), 485-502.
[http://dx.doi.org/10.1089/ten.teb.2012.0437] [PMID: 23672709]
[139]
Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D bioprinting of human tissues: Biofabrication, bioinks, and bioreactors. Int. J. Mol. Sci., 2021, 22(8), 3971.
[http://dx.doi.org/10.3390/ijms22083971] [PMID: 33921417]
[140]
Kasoju, N.; Remya, N.S.; Sasi, R.; Sujesh, S.; Soman, B.; Kesavadas, C.; Muraleedharan, C.V.; Varma, P.R.H.; Behari, S. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI Transactions on ICT, 2023, 11(1), 11-30.
[http://dx.doi.org/10.1007/s40012-023-00380-3]
[141]
Raikar, A.S.; Kumar, P.; Raikar, G.V.S.; Somnache, S.N. Advances and Challenges in IoT-Based Smart Drug Delivery Systems: A Comprehensive Review. Applied System Innovation, 2023, 6(4), 62.
[http://dx.doi.org/10.3390/asi6040062]
[142]
Blakey, J.D.; Bender, B.G.; Dima, A.L.; Weinman, J.; Safioti, G.; Costello, R.W. Digital technologies and adherence in respiratory diseases: The road ahead. Eur. Respir. J., 2018, 52(5), 1801147.
[http://dx.doi.org/10.1183/13993003.01147-2018] [PMID: 30409819]
[143]
Mahara, G.; Tian, C.; Xu, X.; Wang, W. Revolutionising health care: Exploring the latest advances in medical sciences. J. Glob. Health, 2023, 13, 03042.
[http://dx.doi.org/10.7189/jogh.13.03042] [PMID: 37539846]
[144]
Pal, P.; Sambhakar, S.; Dave, V.; Paliwal, S.K.; Paliwal, S.; Sharma, M.; Kumar, A.; Dhama, N. A review on emerging smart technological innovations in healthcare sector for increasing patient’s medication adherence. Global Health J., 2021, 5(4), 183-189.
[http://dx.doi.org/10.1016/j.glohj.2021.11.006]
[145]
Dayer, L.; Heldenbrand, S.; Anderson, P.; Gubbins, P.O.; Martin, B.C. Smartphone medication adherence apps: Potential benefits to patients and providers. J. Am. Pharm. Assoc., 2013, 53(2), 172-181.
[http://dx.doi.org/10.1331/JAPhA.2013.12202] [PMID: 23571625]
[146]
Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 2023, 15(7), 1916.
[http://dx.doi.org/10.3390/pharmaceutics15071916 ] [PMID: 37514102]
[147]
Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci., 2021, 14(1), 86-93.
[http://dx.doi.org/10.1111/cts.12884] [PMID: 32961010]
[148]
Wilson, K.; Sullivan, M. Preventing medication errors with smart infusion technology. Am. J. Health Syst. Pharm., 2004, 61(2), 177-183.
[http://dx.doi.org/10.1093/ajhp/61.2.177] [PMID: 14750402]
[149]
Aspden, P.; Aspden, P. Preventing medication errors; National Academies Press: Washington, DC, 2007.
[150]
Hassan, E.; Badawi, O.; Weber, R.J.; Cohen, H. Using technology to prevent adverse drug events in the intensive care unit. Crit. Care Med., 2010, 38(S6), S97-S105.
[http://dx.doi.org/10.1097/CCM.0b013e3181dde1b4 ] [PMID: 20502181]
[151]
Conti, R.; Veenstra, D.L.; Armstrong, K.; Lesko, L.J.; Grosse, S.D. Personalized medicine and genomics: Challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med. Decis. Making, 2010, 30(3), 328-340.
[http://dx.doi.org/10.1177/0272989X09347014] [PMID: 20086232]
[152]
Overby, C.L.; Hornoch, T.P. Personalized medicine: Challenges and opportunities for translational bioinformatics. Per. Med., 2013, 10(5), 453-462.
[http://dx.doi.org/10.2217/pme.13.30] [PMID: 24039624]
[153]
Singh, D.B. The impact of pharmacogenomics in personalized medicine; Current Applications of Pharmaceutical Biotechnology, 2020, pp. 369-394.
[154]
Thind, M.; Kowey, P. The role of the food and drug administration in drug development: On the subject of proarrhythmia risk. J. Innov. Card. Rhythm Manag., 2020, 11(1), 3958-3967.
[http://dx.doi.org/10.19102/icrm.2020.110103] [PMID: 32368365]
[155]
Kepplinger, E.E. FDA’s expedited approval mechanisms for new drug products. Biotechnol. Law Rep., 2015, 34(1), 15-37.
[http://dx.doi.org/10.1089/blr.2015.9999] [PMID: 25713472]
[156]
Đorđević, S.; Gonzalez, M.M.; Sánchez, C.I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Fainaro, S.R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res., 2022, 12(3), 500-525.
[http://dx.doi.org/10.1007/s13346-021-01024-2] [PMID: 34302274]
[157]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy