Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Galectin-3 and Severity of Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease

Author(s): Mohammadjavad Sotoudeheian*

Volume 31, Issue 4, 2024

Published on: 07 May, 2024

Page: [290 - 304] Pages: 15

DOI: 10.2174/0109298665301698240404061300

Price: $65

Abstract

Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver and hepatic steatosis, which can progress to critical conditions, including Metabolic dysfunction-associated Steatohepatitis (MASH), liver fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Galectin-3, a member of the galectin family of proteins, has been involved in cascades that are responsible for the pathogenesis and progression of liver fibrosis in MAFLD. This review summarizes the present understanding of the role of galectin-3 in the severity of MAFLD and its associated liver fibrosis. The article assesses the underlying role of galectin-3-mediated fibrogenesis, including the triggering of hepatic stellate cells, the regulation of extracellular degradation, and the modulation of immune reactions and responses. It also highlights the assessments of the potential diagnostic and therapeutic implications of galectin-3 in liver fibrosis during MAFLD. Overall, this review provides insights into the multifaceted interaction between galectin-3 and liver fibrosis in MAFLD, which could lead to the development of novel strategies for diagnosis and treatment of this prevalent liver disease.

Graphical Abstract

[1]
Clayton, M.; Fabrellas, N.; Luo, J.; Alghamdi, M.G.; Hafez, A.; Qadiri, T.A.; Owise, N.; Attia, D. From NAFLD to MAFLD: Nurse and allied health perspective. Liver Int., 2021, 41(4), 683-691.
[http://dx.doi.org/10.1111/liv.14788] [PMID: 33453067]
[2]
Fouad, Y.; Waked, I.; Bollipo, S.; Gomaa, A.; Ajlouni, Y.; Attia, D. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int., 2020, 40(6), 1254-1261.
[http://dx.doi.org/10.1111/liv.14478] [PMID: 32301554]
[3]
Mokhtare, M.; Abdi, A.; Sadeghian, A.M.; Sotoudeheian, M.; Namazi, A.; Sikaroudi, K.M. Investigation about the correlation between the severity of metabolic-associated fatty liver disease and adherence to the Mediterranean diet. Clin. Nutr. ESPEN, 2023, 58, 221-227.
[http://dx.doi.org/10.1016/j.clnesp.2023.10.001] [PMID: 38057010]
[4]
Zhou, X.D.; Cai, J.; Targher, G.; Byrne, C.D.; Shapiro, M.D.; Sung, K.C.; Somers, V.K.; Chahal, C.A.A.; George, J.; Chen, L.L.; Zhou, Y.; Zheng, M.H. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc. Diabetol., 2022, 21(1), 270.
[http://dx.doi.org/10.1186/s12933-022-01697-0] [PMID: 36463192]
[5]
Lim, GEH; Tang, A; Ng, CH; Chin, YH; Lim, WH; Tan, DJH An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin. Gastroenterol. Hepatol., 2023, 21, 619-629. e7.
[http://dx.doi.org/10.1016/j.cgh.2021.11.038]
[6]
Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol., 2023, 29(Suppl.), S17-S31.
[http://dx.doi.org/10.3350/cmh.2022.0367] [PMID: 36443926]
[7]
Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int., 2020, 40(9), 2082-2089.
[http://dx.doi.org/10.1111/liv.14548] [PMID: 32478487]
[8]
Tilg, H.; Effenberger, M. From NAFLD to MAFLD: When pathophysiology succeeds. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(7), 387-388.
[http://dx.doi.org/10.1038/s41575-020-0316-6] [PMID: 32461575]
[9]
Fouad, Y.; Elwakil, R.; Elsahhar, M.; Said, E.; Bazeed, S.; Ali Gomaa, A.; Hashim, A.; Kamal, E.; Mehrez, M.; Attia, D. The NAFLD-MAFLD debate: Eminence vs evidence. Liver Int., 2021, 41(2), 255-260.
[http://dx.doi.org/10.1111/liv.14739] [PMID: 33220154]
[10]
Kurylowicz, A. The role of diet in the management of MAFLD—Why does a new disease require a novel, individualized approach? Hepatobiliary Surg. Nutr., 2022, 11(3), 419-421.
[http://dx.doi.org/10.21037/hbsn-21-562] [PMID: 35693417]
[11]
Kuchay, M.S.; Choudhary, N.S.; Mishra, S.K. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab. Syndr., 2020, 14(6), 1875-1887.
[http://dx.doi.org/10.1016/j.dsx.2020.09.026] [PMID: 32998095]
[12]
Sarabhai, T.; Kahl, S.; Gancheva, S.; Mastrototaro, L.; Dewidar, B.; Pesta, D.; Rieck, R.J.M.; Bobrov, P.; Jeruschke, K.; Esposito, I.; Schlensak, M.; Roden, M. Loss of mitochondrial adaptation associates with deterioration of mitochondrial turnover and structure in metabolic dysfunction-associated steatotic liver disease. Metabolism, 2024, 151, 155762.
[http://dx.doi.org/10.1016/j.metabol.2023.155762] [PMID: 38122893]
[13]
Filipovic, B.; Marjanovic-Haljilji, M.; Mijac, D.; Lukic, S.; Kapor, S.; Kapor, S.; Starcevic, A.; Popovic, D.; Djokovic, A. Molecular aspects of MAFLD—New insights on pathogenesis and treatment. Curr. Issues Mol. Biol., 2023, 45(11), 9132-9148.
[http://dx.doi.org/10.3390/cimb45110573] [PMID: 37998750]
[14]
Sotoudeheian, M.; Hoseini, S.; Mirahmadi, S-M-S.; Farahmandian, N.; Toroudi, P.H. Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C. Rev. Bras. Farmacogn., 2023, 33(4), 1-8.
[15]
Lim, S.; Kim, J.W.; Targher, G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol. Metab., 2021, 32(7), 500-514.
[http://dx.doi.org/10.1016/j.tem.2021.04.008] [PMID: 33975804]
[16]
Mokhtare, M; Sadeghian, AM; Sotoudeheian, M S1390 The accuracy and reliability of AST to platelet ratio index, FIB-4, FIB-5, and NAFLD fibrosis scores in detecting advanced fibrosis in patients with metabolic-associated fatty liver disease. Official. J. Amer. Coll. Gastroenterol., 2023, 118, S1064-S1065.
[17]
Kanwal, F; Kramer, JR; Mapakshi, S; Natarajan, Y; Chayanupatkul, M; Richardson, PA Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology, 2018, 155, 1828-1837. e2.
[http://dx.doi.org/10.1053/j.gastro.2018.08.024]
[18]
White, DL; Kanwal, F; El–Serag, HB Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol., 2012, 10, 1342-1359. e2.
[http://dx.doi.org/10.1016/j.cgh.2012.10.001]
[19]
Chan, K.E.; Koh, T.J.L.; Tang, A.S.P.; Quek, J.; Yong, J.N.; Tay, P.; Tan, D.J.H.; Lim, W.H.; Lin, S.Y.; Huang, D.; Chan, M.; Khoo, C.M.; Chew, N.W.S.; Kaewdech, A.; Chamroonkul, N.; Dan, Y.Y.; Noureddin, M.; Muthiah, M.; Eslam, M.; Ng, C.H. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: A meta-analysis and systematic review of 10 739 607 individuals. J. Clin. Endocrinol. Metab., 2022, 107(9), 2691-2700.
[http://dx.doi.org/10.1210/clinem/dgac321] [PMID: 35587339]
[20]
Liu, J.; Ayada, I.; Zhang, X.; Wang, L.; Li, Y.; Wen, T.; Ma, Z.; Bruno, M.J.; De Knegt, R.J.; Cao, W.; Peppelenbosch, M.P.; Ghanbari, M.; Li, Z.; Pan, Q. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin. Gastroenterol. Hepatol., 2022, 20(3), e573-e582.
[http://dx.doi.org/10.1016/j.cgh.2021.02.030] [PMID: 33618024]
[21]
Binet, Q.; Loumaye, A.; Preumont, V.; Thissen, J-P.; Hermans, M.P.; Lanthier, N. Non-invasive screening, staging and management of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus patients : What do we know so far? Acta Gastroenterol. Belg., 2022, 85(2), 346-357.
[http://dx.doi.org/10.51821/85.2.9775] [PMID: 35709779]
[22]
An, Y.; Xu, S.; Liu, Y.; Xu, X.; Philips, C.A.; Chen, J.; Méndez-Sánchez, N.; Guo, X.; Qi, X. Role of galectins in the liver diseases: A systematic review and meta-analysis. Front. Med., 2021, 8, 744518.
[http://dx.doi.org/10.3389/fmed.2021.744518] [PMID: 34778306]
[23]
Jiang, J.X.; Chen, X.; Hsu, D.K.; Baghy, K.; Serizawa, N.; Scott, F.; Takada, Y.; Takada, Y.; Fukada, H.; Chen, J.; Devaraj, S.; Adamson, R.; Liu, F.T.; Török, N.J. Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(4), G439-G446.
[http://dx.doi.org/10.1152/ajpgi.00257.2011] [PMID: 22159281]
[24]
Li, L.; Li, J.; Gao, J. Functions of galectin-3 and its role in fibrotic diseases. J. Pharmacol. Exp. Ther., 2014, 351(2), 336-343.
[http://dx.doi.org/10.1124/jpet.114.218370] [PMID: 25194021]
[25]
Jeftic, I.; Jovicic, N.; Pantic, J.; Arsenijevic, N.; Lukic, M.L.; Pejnovic, N. Galectin-3 ablation enhances liver steatosis, but attenuates inflammation and IL-33-dependent fibrosis in obesogenic mouse model of nonalcoholic steatohepatitis. Mol. Med., 2015, 21(1), 453-465.
[http://dx.doi.org/10.2119/molmed.2014.00178] [PMID: 26018806]
[26]
Sun, M.J.; Cao, Z.Q.; Leng, P. The roles of galectins in hepatic diseases. J. Mol. Histol., 2020, 51(5), 473-484.
[http://dx.doi.org/10.1007/s10735-020-09898-1] [PMID: 32734557]
[27]
Song, M.; Pan, Q.; Yang, J.; He, J.; Zeng, J.; Cheng, S.; Huang, Y.; Zhou, Z.Q.; Zhu, Q.; Yang, C.; Han, Y.; Tang, Y.; Chen, H.; Weng, D.S.; Xia, J.C. Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br. J. Cancer, 2020, 123(10), 1521-1534.
[http://dx.doi.org/10.1038/s41416-020-1022-4] [PMID: 32801345]
[28]
Mackinnon, A.C.; Tonev, D.; Jacoby, B.; Pinzani, M.; Slack, R.J. Galectin-3: Therapeutic targeting in liver disease. Expert Opin. Ther. Targets, 2023, 27(9), 779-791.
[http://dx.doi.org/10.1080/14728222.2023.2258280] [PMID: 37705214]
[29]
Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta, Gen. Subj., 2006, 1760(4), 616-635.
[http://dx.doi.org/10.1016/j.bbagen.2005.12.020]
[30]
Sciacchitano, S.; Lavra, L.; Morgante, A.; Ulivieri, A.; Magi, F.; De Francesco, G.; Bellotti, C.; Salehi, L.; Ricci, A. Galectin-3: One molecule for an alphabet of diseases, from A to Z. Int. J. Mol. Sci., 2018, 19(2), 379.
[http://dx.doi.org/10.3390/ijms19020379] [PMID: 29373564]
[31]
Sotoudeheian, M. LBPS 02-05 atrial fibrillation immunological determinants. J. Hypertens., 2016, 34(S1), e507.
[http://dx.doi.org/10.1097/01.hjh.0000501377.64703.67]
[32]
Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med., 2018, 41(2), 599-614.
[PMID: 29207027]
[33]
Sotoudeheian, M.J.; Mirahmadi, S.M.S.; Pirhayati, M.; Azarbad, R.; Nematollahi, S.; Taghizadeh, M.; Toroudi, P.H. Understanding the role of galectin-1 in heart failure: A comprehensive narrative review. Curr. Cardiol. Rev., 2024, 20(1), e080124225321.
[http://dx.doi.org/10.2174/011573403X274886231227111902] [PMID: 38192129]
[34]
Nangia-Makker, P.; Balan, V.; Raz, A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron., 2008, 1(1), 43-51.
[http://dx.doi.org/10.1007/s12307-008-0003-6] [PMID: 19308684]
[35]
Hsu, D.K.; Chen, H.Y.; Liu, F.T. Galectin-3 regulates T-cell functions. Immunol. Rev., 2009, 230(1), 114-127.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00798.x] [PMID: 19594632]
[36]
Ochieng, J.; Furtak, V.; Lukyanov, P. Extracellular functions of galectin-3. Glycoconj. J., 2002, 19(7-9), 527-535.
[http://dx.doi.org/10.1023/B:GLYC.0000014082.99675.2f] [PMID: 14758076]
[37]
Mohamed, A.; Fadeil, A.M.; Ali, M.; Ahmed, R.; Iraqy, H. Galectin-3, a potential predictor and contributor of placenta accreta spectrum pathogenesis by inducing local vascular cell adhesion molecule-1 expression: A longitudinal study. Bull. Egypt. Soc. Physiol. Sci., 2023, 43(4), 266-277.
[http://dx.doi.org/10.21608/besps.2023.224206.1148]
[38]
Lima, T.; Perpétuo, L.; Henrique, R.; Fardilha, M.; Moreira, L.A.; Bastos, J.; Vitorino, R. Galectin-3 in prostate cancer and heart diseases: A biomarker for these two frightening pathologies? Mol. Biol. Rep., 2023, 50(3), 2763-2778.
[http://dx.doi.org/10.1007/s11033-022-08207-1] [PMID: 36583779]
[39]
Zaborska, B.; Frąc, S.M.; Smarż, K.; Paszkiet, P.E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The role of galectin-3 in heart failure—the diagnostic, prognostic and therapeutic potential—Where do we stand? Int. J. Mol. Sci., 2023, 24(17), 13111.
[http://dx.doi.org/10.3390/ijms241713111] [PMID: 37685918]
[40]
Bouffette, S.; Botez, I.; De Ceuninck, F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol. Sci., 2023, 44(8), 519-531.
[http://dx.doi.org/10.1016/j.tips.2023.06.001] [PMID: 37391294]
[41]
Jeethy, R.T.; Lekshmi, A.; Darvin, P.; Rajappan, P.; Krishna, J.K.M.; Anoop, T.M.; Augustine, P.; Mathew, A.P.; Cherian, K.; Bhargavan, R.V.; Somanathan, T.; Pillai, R.M.; Kumar, S.T.R.; Sujathan, K. Co-expression of galectin-3 and vimentin in triple negative breast cancer cells promotes tumor progression, metastasis and survival. Tumour Biol., 2023, 45(1), 31-54.
[http://dx.doi.org/10.3233/TUB-230002] [PMID: 37574746]
[42]
Li, S.; Pritchard, D.M.; Yu, L.G. Galectin-3 promotes secretion of proteases that decrease epithelium integrity in human colon cancer cells. Cell Death Dis., 2023, 14(4), 268.
[http://dx.doi.org/10.1038/s41419-023-05789-x] [PMID: 37055381]
[43]
Fortuna-Costa, A.; Gomes, A.M.; Kozlowski, E.O.; Stelling, M.P.; Pavão, M.S. Extracellular galectin-3 in tumor progression and metastasis. Front. Oncol., 2014, 4, 138.
[http://dx.doi.org/10.3389/fonc.2014.00138] [PMID: 24982845]
[44]
Henderson, N.C.; Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev., 2009, 230(1), 160-171.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00794.x] [PMID: 19594635]
[45]
Wang, X.; Gaur, M.; Mounzih, K.; Rodriguez, H.J.; Qiu, H.; Chen, M.; Yan, L.; Cooper, B.A.; Narayan, S.; Derakhshandeh, R.; Rao, P.; Han, D.D.; Nabavizadeh, P.; Springer, M.L.; John, C.M. Inhibition of galectin-3 post-infarction impedes progressive fibrosis by regulating inflammatory profibrotic cascades. Cardiovasc. Res., 2023, 119(15), 2536-2549.
[http://dx.doi.org/10.1093/cvr/cvad116] [PMID: 37602717]
[46]
de Boer, R.A.; Voors, A.A.; Muntendam, P.; van Gilst, W.H.; van Veldhuisen, D.J. Galectin-3: A novel mediator of heart failure development and progression. Eur. J. Heart Fail., 2009, 11(9), 811-817.
[http://dx.doi.org/10.1093/eurjhf/hfp097] [PMID: 19648160]
[47]
Zhong, X.; Qian, X.; Chen, G.; Song, X. The role of galectin-3 in heart failure and cardiovascular disease. Clin. Exp. Pharmacol. Physiol., 2019, 46(3), 197-203.
[http://dx.doi.org/10.1111/1440-1681.13048] [PMID: 30372548]
[48]
Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in cardiovascular diseases. Int. J. Mol. Sci., 2020, 21(23), 9232.
[http://dx.doi.org/10.3390/ijms21239232] [PMID: 33287402]
[49]
Radosavljevic, G.; Volarevic, V.; Jovanovic, I.; Milovanovic, M.; Pejnovic, N.; Arsenijevic, N.; Hsu, D.K.; Lukic, M.L. The roles of galectin-3 in autoimmunity and tumor progression. Immunol. Res., 2012, 52(1-2), 100-110.
[http://dx.doi.org/10.1007/s12026-012-8286-6] [PMID: 22418727]
[50]
Alvarez, D.L; Ortega, E The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm., 2017, 2017, 9247574.
[http://dx.doi.org/10.1155/2017/9247574]
[51]
Schroeder, J.T.; Adeosun, A.A.; Bieneman, A.P. Epithelial cell-associated galectin-3 activates human dendritic cell subtypes for pro-inflammatory cytokines. Front. Immunol., 2020, 11, 524826.
[http://dx.doi.org/10.3389/fimmu.2020.524826] [PMID: 33154744]
[52]
Fulton, D.J.R.; Li, X.; Bordan, Z.; Wang, Y.; Mahboubi, K.; Rudic, R.D.; Haigh, S.; Chen, F.; Barman, S.A. Galectin-3: A harbinger of reactive oxygen species, fibrosis, and inflammation in pulmonary arterial hypertension. Antioxid. Redox Signal., 2019, 31(14), 1053-1069.
[http://dx.doi.org/10.1089/ars.2019.7753] [PMID: 30767565]
[53]
Barman, S.A.; Bordan, Z.; Batori, R.; Haigh, S.; Fulton, D.J.R. Galectin-3 promotes ROS, inflammation, and vascular fibrosis in pulmonary arterial hypertension. Adv. Exp. Med. Biol., 2021, 1303, 13-32.
[http://dx.doi.org/10.1007/978-3-030-63046-1_2] [PMID: 33788185]
[54]
Gao, P.; Simpson, J.L.; Zhang, J.; Gibson, P.G. Galectin-3: Its role in asthma and potential as an anti-inflammatory target. Respir. Res., 2013, 14(1), 136.
[http://dx.doi.org/10.1186/1465-9921-14-136] [PMID: 24313993]
[55]
Breuilh, L.; Vanhoutte, F.; Fontaine, J.; Van Stijn, C.M.W.; Leblond, T.I.; Capron, M.; Faveeuw, C.; Jouault, T.; van Die, I.; Gosset, P.; Trottein, F. Galectin-3 modulates immune and inflammatory responses during helminthic infection: Impact of galectin-3 deficiency on the functions of dendritic cells. Infect. Immun., 2007, 75(11), 5148-5157.
[http://dx.doi.org/10.1128/IAI.02006-06] [PMID: 17785480]
[56]
Sano, H.; Hsu, D.K.; Apgar, J.R.; Yu, L.; Sharma, B.B.; Kuwabara, I.; Izui, S.; Liu, F.T. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest., 2003, 112(3), 389-397.
[http://dx.doi.org/10.1172/JCI200317592] [PMID: 12897206]
[57]
Erriah, M.; Pabreja, K.; Fricker, M.; Baines, K.J.; Donnelly, L.E.; Bylund, J.; Karlsson, A.; Simpson, J.L. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir. Res., 2019, 20(1), 1-11.
[http://dx.doi.org/10.1186/s12931-018-0967-9] [PMID: 30606211]
[58]
He, Y.S.; Hu, Y.Q.; Xiang, K.; Chen, Y.; Feng, Y.T.; Yin, K.J.; Huang, J.X.; Wang, J.; Wu, Z.D.; Wang, G.H.; Pan, H.F. Therapeutic potential of galectin-1 and galectin-3 in autoimmune diseases. Curr. Pharm. Des., 2022, 28(1), 36-45.
[http://dx.doi.org/10.2174/1381612827666210927164935] [PMID: 34579628]
[59]
Zhang, Z.; Kang, X.; Guo, Y.; Zhang, J.; Xie, J.; Shao, S.; Xiang, Y.; Chen, G.; Yu, X. Association of circulating galectin-3 with gestational diabetes mellitus, progesterone, and insulin resistance. J. Diabetes, 2021, 13(1), 54-62.
[http://dx.doi.org/10.1111/1753-0407.13088] [PMID: 32671973]
[60]
Petrovic, I.; Pejnovic, N.; Ljujic, B.; Pavlovic, S.; Kovacevic, M.M.; Jeftic, I.; Djukic, A.; Draginic, N.; Andjic, M.; Arsenijevic, N.; Lukic, M.L.; Jovicic, N. Overexpression of galectin 3 in pancreatic β cells amplifies β-Cell apoptosis and islet inflammation in type-2 diabetes in mice. Front. Endocrinol., 2020, 11, 30.
[http://dx.doi.org/10.3389/fendo.2020.00030] [PMID: 32117058]
[61]
Li, Y.; Li, T.; Zhou, Z.; Xiao, Y. Emerging roles of galectin-3 in diabetes and diabetes complications: A snapshot. Rev. Endocr. Metab. Disord., 2022, 23(3), 569-577.
[http://dx.doi.org/10.1007/s11154-021-09704-7] [PMID: 35083706]
[62]
Darrow, A.L.; Shohet, R.V. Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes. Cardiovasc. Diabetol., 2015, 14(1), 73.
[http://dx.doi.org/10.1186/s12933-015-0230-3] [PMID: 26047815]
[63]
Menini, S; Iacobini, C; Fantauzzi, BC; Pesce, CM; Pugliese, G Role of galectin-3 in obesity and impaired glucose homeostasis. Oxid. Med. Cell. Longev., 2016, 2016, 9618092.
[http://dx.doi.org/10.1155/2016/9618092]
[64]
Fantauzzi, B.C.; Iacobini, C.; Menini, S.; Vitale, M.; Sorice, G.P.; Mezza, T.; Cinti, S.; Giaccari, A.; Pugliese, G. Galectin-3 gene deletion results in defective adipose tissue maturation and impaired insulin sensitivity and glucose homeostasis. Sci. Rep., 2020, 10(1), 20070.
[http://dx.doi.org/10.1038/s41598-020-76952-z] [PMID: 33208796]
[65]
Yilmaz, H.; Cakmak, M.; Inan, O.; Darcin, T.; Akcay, A. Increased levels of galectin-3 were associated with prediabetes and diabetes: New risk factor? J. Endocrinol. Invest., 2015, 38(5), 527-533.
[http://dx.doi.org/10.1007/s40618-014-0222-2] [PMID: 25501605]
[66]
Weigert, J.; Neumeier, M.; Wanninger, J.; Bauer, S.; Farkas, S.; Scherer, M.N.; Schnitzbauer, A.; Schäffler, A.; Aslanidis, C.; Schölmerich, J.; Buechler, C. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J. Clin. Endocrinol. Metab., 2010, 95(3), 1404-1411.
[http://dx.doi.org/10.1210/jc.2009-1619] [PMID: 20080851]
[67]
Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules, 2020, 10(3), 389.
[http://dx.doi.org/10.3390/biom10030389] [PMID: 32138174]
[68]
Hara, A.; Niwa, M.; Kanayama, T.; Noguchi, K.; Niwa, A.; Matsuo, M.; Kuroda, T.; Hatano, Y.; Okada, H.; Tomita, H. Galectin-3: A potential prognostic and diagnostic marker for heart disease and detection of early stage pathology. Biomolecules, 2020, 10(9), 1277.
[http://dx.doi.org/10.3390/biom10091277] [PMID: 32899694]
[69]
De Boer, R.A.; Edelmann, F.; Cohen-Solal, A.; Mamas, M.A.; Maisel, A.; Pieske, B. Galectin-3 in heart failure with preserved ejection fraction. Eur. J. Heart Fail., 2013, 15(10), 1095-1101.
[http://dx.doi.org/10.1093/eurjhf/hft077] [PMID: 23650131]
[70]
Aderinto, N.; Abdulbasit, M.O.; Olatunji, D.; Edun, M. Unveiling the potential of galectin-3 as a diagnostic biomarker for pancreatic cancer: A review. Ann. Med. Surg., 2023, 85(11), 5557-5567.
[http://dx.doi.org/10.1097/MS9.0000000000001363] [PMID: 37915694]
[71]
Wang, Y.; Liu, S.; Tian, Y.; Wang, Y.; Zhang, Q.; Zhou, X.; Meng, X.; Song, N. Prognostic role of galectin-3 expression in patients with solid tumors: A meta-analysis of 36 eligible studies. Cancer Cell Int., 2018, 18(1), 172.
[http://dx.doi.org/10.1186/s12935-018-0668-y] [PMID: 30410421]
[72]
Zhang, H.; Liang, X.; Duan, C.; Liu, C.; Zhao, Z.; Duan, C.; Gu, H.; Chen, G.; Zhao, X.; Zhao, Z.; Liu, C. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One, 2014, 9(9), e103482.
[http://dx.doi.org/10.1371/journal.pone.0103482] [PMID: 25254965]
[73]
Nangia-Makker, P.; Nakahara, S.; Hogan, V.; Raz, A. Galectin-3 in apoptosis, a novel therapeutic target. J. Bioenerg. Biomembr., 2007, 39(1), 79-84.
[http://dx.doi.org/10.1007/s10863-006-9063-9] [PMID: 17318396]
[74]
Hirani, N.; MacKinnon, A.C.; Nicol, L.; Ford, P.; Schambye, H.; Pedersen, A.; Nilsson, U.J.; Leffler, H.; Sethi, T.; Tantawi, S.; Gravelle, L.; Slack, R.J.; Mills, R.; Karmakar, U.; Humphries, D.; Zetterberg, F.; Keeling, L.; Paul, L.; Molyneaux, P.L.; Li, F.; Funston, W.; Forrest, I.A.; Simpson, A.J.; Gibbons, M.A.; Maher, T.M. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J., 2021, 57(5), 2002559.
[http://dx.doi.org/10.1183/13993003.02559-2020] [PMID: 33214209]
[75]
Kolatsi-Joannou, M.; Price, K.L.; Winyard, P.J.; Long, D.A. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PLoS One, 2011, 6(4), e18683.
[http://dx.doi.org/10.1371/journal.pone.0018683] [PMID: 21494626]
[76]
Abu-Elsaad, N.M.; Elkashef, W.F. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Can. J. Physiol. Pharmacol., 2016, 94(5), 554-562.
[http://dx.doi.org/10.1139/cjpp-2015-0284] [PMID: 27010252]
[77]
Slack, R.J.; Mills, R.; Mackinnon, A.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell Biol., 2021, 130, 105881.
[http://dx.doi.org/10.1016/j.biocel.2020.105881] [PMID: 33181315]
[78]
Jiang, X; Torok, NJ; Barchi, JJ, Jr Galectin-3 involvement in fibrotic diseases. In: Drug Discovery; Royal Society of Chemistry, 2020.
[79]
Fang, T.; Liu, D.; Ning, H.; Dan Liu; Sun, J.; Huang, X.; Dong, Y.; Geng, M.; Yun, S.; Yan, J.; Huang, R. Modified citrus pectin inhibited bladder tumor growth through downregulation of galectin-3. Acta Pharmacol. Sin., 2018, 39(12), 1885-1893.
[http://dx.doi.org/10.1038/s41401-018-0004-z] [PMID: 29769742]
[80]
Xu, G.R.; Zhang, C.; Yang, H.X.; Sun, J.H.; Zhang, Y.; Yao, T.; Li, Y.; Ruan, L.; An, R.; Li, A.Y. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed. Pharmacother., 2020, 126, 110071.
[http://dx.doi.org/10.1016/j.biopha.2020.110071] [PMID: 32172066]
[81]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[82]
Chatterjee, R.; Mitra, A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int. Immunopharmacol., 2015, 24(2), 335-345.
[http://dx.doi.org/10.1016/j.intimp.2014.12.024] [PMID: 25560752]
[83]
Ezhilarasan, D. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver. J. Cell. Physiol., 2023, 238(4), 673-686.
[http://dx.doi.org/10.1002/jcp.30956] [PMID: 36745560]
[84]
Pejnovic, N.; Jeftic, I.; Jovicic, N.; Arsenijevic, N.; Lukic, M.L. Galectin-3 and IL-33/ST2 axis roles and interplay in diet-induced steatohepatitis. World J. Gastroenterol., 2016, 22(44), 9706-9717.
[http://dx.doi.org/10.3748/wjg.v22.i44.9706] [PMID: 27956794]
[85]
Gudowska, M.; Gruszewska, E.; Cylwik, B.; Panasiuk, A.; Rogalska, M.; Flisiak, R.; Szmitkowski, M.; Chrostek, L. Galectin-3 concentration in liver diseases. Ann. Clin. Lab. Sci., 2015, 45(6), 669-673.
[PMID: 26663797]
[86]
Cai, X.; Wang, J.; Wang, J.; Zhou, Q.; Yang, B.; He, Q.; Weng, Q. Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol. Res., 2020, 155, 104720.
[http://dx.doi.org/10.1016/j.phrs.2020.104720] [PMID: 32092405]
[87]
Zhang, C.Y.; Yuan, W.G.; He, P.; Lei, J.H.; Wang, C.X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol., 2016, 22(48), 10512-10522.
[http://dx.doi.org/10.3748/wjg.v22.i48.10512] [PMID: 28082803]
[88]
Puche, J.E.; Saiman, Y.; Friedman, S.L. Hepatic stellate cells and liver fibrosis. Compr. Physiol., 2013, 3(4), 1473-1492.
[http://dx.doi.org/10.1002/cphy.c120035] [PMID: 24265236]
[89]
Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev., 2017, 121, 27-42.
[http://dx.doi.org/10.1016/j.addr.2017.05.007] [PMID: 28506744]
[90]
Ezhilarasan, D.; Sokal, E.; Najimi, M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat. Dis. Int., 2018, 17(3), 192-197.
[http://dx.doi.org/10.1016/j.hbpd.2018.04.003] [PMID: 29709350]
[91]
Wu, M.H.; Chen, Y.L.; Lee, K.H.; Chang, C.C.; Cheng, T.M.; Wu, S.Y.; Tu, C.C.; Tsui, W.L. Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci. Rep., 2017, 7(1), 11006.
[http://dx.doi.org/10.1038/s41598-017-11212-1] [PMID: 28887481]
[92]
Pricci, F.; Leto, G.; Amadio, L.; Iacobini, C.; Romeo, G.; Cordone, S.; Gradini, R.; Barsotti, P.; Liu, F.T.; Di Mario, U.; Pugliese, G. Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int., 2000, 58, S31-S39.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07706.x] [PMID: 10997688]
[93]
Wright, R.D. Modulation of galectin expression and glycosylation profile of immune cells during inflammation. Doctoral dissertation, Queen Mary University of London, 2015.
[94]
Torre, P.; Motta, B.M.; Sciorio, R.; Masarone, M.; Persico, M. Inflammation and fibrogenesis in MAFLD: role of the hepatic immune system. Front. Med., 2021, 8, 781567.
[http://dx.doi.org/10.3389/fmed.2021.781567] [PMID: 34957156]
[95]
Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol., 2018, 14(8), 493-507.
[http://dx.doi.org/10.1038/s41581-018-0023-5] [PMID: 29895977]
[96]
Martin-Mateos, R.; Alvarez-Mon, M.; Albillos, A. Dysfunctional immune response in acute-on-chronic liver failure: It takes two to tango. Front. Immunol., 2019, 10, 973.
[http://dx.doi.org/10.3389/fimmu.2019.00973] [PMID: 31118937]
[97]
Bieghs, V.; Trautwein, C. The innate immune response during liver inflammation and metabolic disease. Trends Immunol., 2013, 34(9), 446-452.
[http://dx.doi.org/10.1016/j.it.2013.04.005] [PMID: 23668977]
[98]
Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Mon, A.M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(2), 112-134.
[http://dx.doi.org/10.1038/s41575-021-00520-7] [PMID: 34703031]
[99]
Hou, X.; Ye, F.; Li, X.; Liu, W.; Jing, Y.; Han, Z.; Wei, L. Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell. Immunol., 2018, 326, 52-59.
[http://dx.doi.org/10.1016/j.cellimm.2017.08.004] [PMID: 28860007]
[100]
Laleman, W; Claria, J; Van der Merwe, S; Moreau, R; Trebicka, J Systemic inflammation and acute-on-chronic liver failure: too much, not enough. Can. J. Gastroenterol. Hepatol., 2018, 2018, 1027152.
[http://dx.doi.org/10.1155/2018/1027152]
[101]
Pugliese, G.; Iacobini, C.; Pesce, C.M.; Menini, S. Galectin-3: An emerging all-out player in metabolic disorders and their complications. Glycobiology, 2015, 25(2), 136-150.
[http://dx.doi.org/10.1093/glycob/cwu111] [PMID: 25303959]
[102]
Hsieh, W-C; Mackinnon, AC; Lu, W-Y Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut, 2015, 64(2), 312-321.
[103]
Stillman, B.N.; Hsu, D.K.; Pang, M.; Brewer, C.F.; Johnson, P.; Liu, F.T.; Baum, L.G. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol., 2006, 176(2), 778-789.
[http://dx.doi.org/10.4049/jimmunol.176.2.778] [PMID: 16393961]
[104]
Srejovic, I.M.; Lukic, M.L. Galectin-3 in T cell-mediated immunopathology and autoimmunity. Immunol. Lett., 2021, 233, 57-67.
[http://dx.doi.org/10.1016/j.imlet.2021.03.009] [PMID: 33753135]
[105]
Vasil’eva, O.A.; Yakushina, V.D.; Ryazantseva, N.V.; Novitsky, V.V.; Tashireva, L.A.; Starikova, E.G.; Zima, A.P.; Prokhorenko, T.S.; Krasnova, T.Y.; Nebesnaya, I.S. Regulation of gene expression of CD4+ T lymphocyte differentiation transcription factors by galectin-3 in vitro. Mol. Biol., 2013, 47(6), 879-884.
[http://dx.doi.org/10.1134/S0026893313060150]
[106]
Su, Y-J. Galectin-3 Plays A Role In Th17 Polarization; University of California: Davis, 2008.
[107]
Kouo, T.; Huang, L.; Pucsek, A.B.; Cao, M.; Solt, S.; Armstrong, T.; Jaffee, E. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res., 2015, 3(4), 412-423.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0150] [PMID: 25691328]
[108]
Fermino, M.L.; Dias, F.C.; Lopes, C.D.; Souza, M.A.; Cruz, Â.K.; Liu, F.T.; Chammas, R.; Barreira, R.M.C.; Rabinovich, G.A.; Bernardes, E.S. Galectin-3 negatively regulates the frequency and function of CD4+ CD25+ Foxp3+ regulatory T cells and influences the course ofLeishmania major infection. Eur. J. Immunol., 2013, 43(7), 1806-1817.
[http://dx.doi.org/10.1002/eji.201343381] [PMID: 23592449]
[109]
Gilson, R.C.; Gunasinghe, S.D.; Johannes, L.; Gaus, K. Galectin-3 modulation of T-cell activation: Mechanisms of membrane remodelling. Prog. Lipid Res., 2019, 76, 101010.
[http://dx.doi.org/10.1016/j.plipres.2019.101010] [PMID: 31682868]
[110]
Novak, R.; Dabelic, S.; Dumic, J. Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(9), 1383-1390.
[http://dx.doi.org/10.1016/j.bbagen.2011.11.014] [PMID: 22155450]
[111]
Wu, Q.; Sun, S.; Wei, L.; Liu, M.; Liu, H.; Liu, T.; Zhou, Y.; Jia, Q.; Wang, D.; Yang, Z.; Duan, M.; Yang, X.; Gao, P.; Ning, X. Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3. Cell. Mol. Life Sci., 2022, 79(3), 137.
[http://dx.doi.org/10.1007/s00018-022-04137-0] [PMID: 35182235]
[112]
Bai, L.; Lu, W.; Tang, S.; Tang, H.; Xu, M.; Liang, C.; Zheng, S.; Liu, S.; Kong, M.; Duan, Z.; Chen, Y. Galectin-3 critically mediates the hepatoprotection conferred by M2-like macrophages in ACLF by inhibiting pyroptosis but not necroptosis signalling. Cell Death Dis., 2022, 13(9), 775.
[http://dx.doi.org/10.1038/s41419-022-05181-1] [PMID: 36075893]
[113]
Cheng, P.; Li, S.; Chen, H. Macrophages in lung injury, repair, and fibrosis. Cells, 2021, 10(2), 436.
[http://dx.doi.org/10.3390/cells10020436] [PMID: 33670759]
[114]
Braga, T.T.; Agudelo, J.S.H.; Camara, N.O.S. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol., 2015, 6, 602.
[http://dx.doi.org/10.3389/fimmu.2015.00602] [PMID: 26635814]
[115]
Zhou, D.; Yang, K.; Chen, L.; Wang, Y.; Zhang, W.; Xu, Z.; Zuo, J.; Jiang, H.; Luan, J. Macrophage polarization and function: New prospects for fibrotic disease. Immunol. Cell Biol., 2017, 95(10), 864-869.
[http://dx.doi.org/10.1038/icb.2017.64] [PMID: 29044201]
[116]
Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 2020, 877, 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[117]
Bacigalupo, M.L.; Manzi, M.; Rabinovich, G.A.; Troncoso, M.F. Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J. Gastroenterol., 2013, 19(47), 8831-8849.
[http://dx.doi.org/10.3748/wjg.v19.i47.8831] [PMID: 24379606]
[118]
Matsuda, Y.; Yamagiwa, Y.; Fukushima, K.; Ueno, Y.; Shimosegawa, T. Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol. Res., 2008, 38(11), 1098-1111.
[http://dx.doi.org/10.1111/j.1872-034X.2008.00387.x] [PMID: 18684128]
[119]
Kong, F.; Jin, M.; Cao, D.; Jia, Z.; Liu, Y.; Jiang, J. Galectin-3 not galectin-9 as a candidate prognosis marker for hepatocellular carcinoma. PeerJ, 2020, 8, e9949.
[http://dx.doi.org/10.7717/peerj.9949] [PMID: 32995093]
[120]
Setayesh, T.; Colquhoun, S.D.; Wan, Y.J.Y. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma. Liver Res., 2020, 4(4), 173-179.
[http://dx.doi.org/10.1016/j.livres.2020.11.001] [PMID: 34567824]
[121]
Serizawa, N.; Tian, J.; Fukada, H.; Baghy, K.; Scott, F.; Chen, X.; Kiss, Z.; Olson, K.; Hsu, D.; Liu, F.T.; Török, N.J.; Zhao, B.; Jiang, J.X. Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation. Lab. Invest., 2015, 95(10), 1145-1156.
[http://dx.doi.org/10.1038/labinvest.2015.77] [PMID: 26146960]
[122]
Wang, T.; Ou, L.; Li, X.; Zhang, P.; Miao, Q.; Niu, R.; Chen, Y. Inhibition of Galectin-3 attenuates silica particles-induced silicosis via regulating the GSK-3β/β-catenin signal pathway-mediated epithelial-mesenchymal transition. Chem. Biol. Interact., 2022, 368, 110218.
[http://dx.doi.org/10.1016/j.cbi.2022.110218] [PMID: 36223831]
[123]
Deng, L; Chen, T; Xu, H; Li, Y; Deng, M; Mo, D The expression of snail, galectin-3, and IGF1R in the differential diagnosis of benign and malignant pheochromocytoma and paraganglioma. Biomed. Res. Int., 2020, 2020, 4150735.
[124]
Tang, H.; Zhang, P.; Zeng, L.; Zhao, Y.; Xie, L.; Chen, B. RETRACTED ARTICLE: Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res. Ther., 2021, 12(1), 409.
[http://dx.doi.org/10.1186/s13287-021-02429-z]
[125]
Al Attar, A.; Antaramian, A.; Noureddin, M. Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis. Expert Rev. Clin. Pharmacol., 2021, 14(4), 457-464.
[http://dx.doi.org/10.1080/17512433.2021.1894127] [PMID: 33612037]
[126]
Oikonomou, T.; Orfanidou, A.; Goulis, I.; Ntogramatzi, F.; Athanasiadou, Z.; Papatheodoridis, G.V.; Cholongitas, E. New prognostic score based on galectin-3 has similar performance to model for end-stage liver disease and sodium score in patients with stable decompensated cirrhosis. Ann. Gastroenterol., 2021, 34(5), 728-735.
[http://dx.doi.org/10.20524/aog.2021.0633] [PMID: 34475745]
[127]
Butscheid, M.; Hauptvogel, P.; Fritz, P.; Klotz, U.; Alscher, D. Hepatic expression of Galectin-3 and RAGE in patients with liver disease. J. Clin. Pathol., 2007, 60(4), 415-418.
[http://dx.doi.org/10.1136/jcp.2005.032391]
[128]
Zahra, M.K.; Attia, T.E.; Ahmad, A.Y.; Othman, M.A. Serum galectin-3 levels in patients with hepatocellular carcinoma, liver cirrhosis and chronic viral hepatitis. Egypt. J. Hosp. Med., 2018, 70(1), 132-139.
[http://dx.doi.org/10.12816/0042976]
[129]
Wanninger, J.; Weigert, J.; Wiest, R.; Bauer, S.; Karrasch, T.; Farkas, S.; Scherer, M.N.; Walter, R.; Weiss, T.S.; Hellerbrand, C.; Neumeier, M.; Schäffler, A.; Buechler, C. Systemic and hepatic vein galectin-3 are increased in patients with alcoholic liver cirrhosis and negatively correlate with liver function. Cytokine, 2011, 55(3), 435-440.
[http://dx.doi.org/10.1016/j.cyto.2011.06.001] [PMID: 21715185]
[130]
Zheng, D.; Hu, Z.; He, F.; Gao, C.; Xu, L.; Zou, H.; Wu, Z.; Jiang, X.; Wang, J. Downregulation of galectin-3 causes a decrease in uPAR levels and inhibits the proliferation, migration and invasion of hepatocellular carcinoma cells. Oncol. Rep., 2014, 32(1), 411-418.
[http://dx.doi.org/10.3892/or.2014.3170] [PMID: 24807674]
[131]
Blanchard, H.; Yu, X.; Collins, P.M.; Bum-Erdene, K. Galectin-3 inhibitors: A patent review (2008–present). Expert Opin. Ther. Pat., 2014, 24(10), 1053-1065.
[http://dx.doi.org/10.1517/13543776.2014.947961] [PMID: 25109359]
[132]
Matsuo, M.; Kanbe, A.; Noguchi, K.; Niwa, A.; Imaizumi, Y.; Kuroda, T.; Ichihashi, K.; Okubo, T.; Mori, K.; Kanayama, T.; Tomita, H.; Hara, A. Time-course analysis of liver and serum galectin-3 in acute liver injury after alpha-galactosylceramide injection. PLoS One, 2024, 19(2), e0298284.
[http://dx.doi.org/10.1371/journal.pone.0298284] [PMID: 38330036]
[133]
Ulu, M; Alacacioglu, A; Yuksel, E; Pamukk, BO; Bozkaya, G; Ari, A Prognostic significance of serum galectin-3 levels in patients with hepatocellular cancer and chronic viral hepatitis. Saudi J. Gastroenterol., 2015, 21(1), 47-50.
[http://dx.doi.org/10.4103/1319-3767.151228]
[134]
Gomez, V.E; Bertot, C.L; Wong, VWS; Castellanos, M; de la Fuente, A.R; Metwally, M Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: A multi-national cohort study. Gastroenterology, 2018, 155(2), 443-457.e17.
[http://dx.doi.org/10.1053/j.gastro.2018.04.034]
[135]
Kechagias, S.; Nasr, P.; Blomdahl, J.; Ekstedt, M. Established and emerging factors affecting the progression of nonalcoholic fatty liver disease. Metabolism, 2020, 111, 154183.
[http://dx.doi.org/10.1016/j.metabol.2020.154183] [PMID: 32061907]
[136]
Sohn, W.; Kwon, H.J.; Chang, Y.; Ryu, S.; Cho, Y.K. Liver fibrosis in Asians with metabolic dysfunction–associated fatty liver disease. Clin. Gastroenterol. Hepatol., 2022, 20(5), e1135-e1148.
[http://dx.doi.org/10.1016/j.cgh.2021.06.042] [PMID: 34224877]
[137]
Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver fibrosis in non-alcoholic fatty liver disease: From liver biopsy to non-invasive biomarkers in diagnosis and treatment. Front. Med., 2021, 8, 615978.
[http://dx.doi.org/10.3389/fmed.2021.615978] [PMID: 33937277]
[138]
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65, 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[139]
Arriazu, E.; de Galarreta, R.M.; Cubero, F.J.; Rey, V.M.; de Obanos, P.M.P.; Leung, T.M.; Lopategi, A.; Benedicto, A.; Enachescu, A.I.; Nieto, N. Extracellular matrix and liver disease. Antioxid. Redox Signal., 2014, 21(7), 1078-1097.
[http://dx.doi.org/10.1089/ars.2013.5697] [PMID: 24219114]
[140]
Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol., 2023, 20(10), 633-646.
[http://dx.doi.org/10.1038/s41575-023-00807-x] [PMID: 37400694]
[141]
Venkatesh, S.K.; Torbenson, M.S. Liver fibrosis quantification. Abdom. Radiol., 2022, 47(3), 1032-1052.
[http://dx.doi.org/10.1007/s00261-021-03396-y] [PMID: 35022806]
[142]
Zhang, C.Y.; Liu, S.; Yang, M. Treatment of liver fibrosis: Past, current, and future. World J. Hepatol., 2023, 15(6), 755-774.
[http://dx.doi.org/10.4254/wjh.v15.i6.755] [PMID: 37397931]
[143]
Møller, S.; Henriksen, J.H.; Bendtsen, F. Extrahepatic complications to cirrhosis and portal hypertension: Haemodynamic and homeostatic aspects. World J. Gastroenterol., 2014, 20(42), 15499-15517.
[http://dx.doi.org/10.3748/wjg.v20.i42.15499] [PMID: 25400435]
[144]
Poelstra, K.; Schuppan, D. Targeted therapy of liver fibrosis/cirrhosis and its complications. J. Hepatol., 2011, 55(3), 726-728.
[http://dx.doi.org/10.1016/j.jhep.2011.04.008] [PMID: 21601600]
[145]
Shipley, L.C.; Axley, P.D.; Singal, A.K. Liver fibrosis: A clinical update. Hepatology, 2019, 7, 105-117.
[146]
Wieckowska, K.A.; Simoes, I.C.M.; Kalinowski, P.; Arciszewska, L.M.; Zieniewicz, K.; Milkiewicz, P.; Ponikowska, G.M.; Pinton, P.; Malik, A.N.; Krawczyk, M.; Oliveira, P.J.; Wieckowski, M.R. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur. J. Clin. Invest., 2022, 52(3), e13622.
[http://dx.doi.org/10.1111/eci.13622] [PMID: 34050922]
[147]
Sabir, U.; Irfan, H.M.; Alamgeer; Ullah, A.; Althobaiti, Y.S.; Asim, M.H. Reduction of hepatic steatosis, oxidative stress, inflammation, ballooning and insulin resistance after therapy with safranal in NAFLD animal model: A new approach. J. Inflamm. Res., 2022, 15, 1293-1316.
[http://dx.doi.org/10.2147/JIR.S354878] [PMID: 35241921]
[148]
Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci., 2019, 19(7), 994-1003.
[http://dx.doi.org/10.1080/17461391.2019.1571114] [PMID: 30732555]
[149]
Tovar, R.E.; Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants, 2020, 9(12), 1279.
[http://dx.doi.org/10.3390/antiox9121279] [PMID: 33333846]
[150]
Dongiovanni, P.; Anstee, Q.; Valenti, L. Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr. Pharm. Des., 2013, 19(29), 5219-5238.
[http://dx.doi.org/10.2174/13816128113199990381] [PMID: 23394097]
[151]
Park, K.S.; Lee, Y.S.; Park, H.W.; Seo, S.H.; Jang, B.G.; Hwang, J.Y.; Cho, K.B.; Hwang, J.S.; Ahn, S.H.; Kang, Y.N.; Kim, G.C. Factors associated or related to with pathological severity of nonalcoholic fatty liver disease. Korean J. Intern. Med., 2004, 19(1), 19-26.
[http://dx.doi.org/10.3904/kjim.2004.19.1.19] [PMID: 15053039]
[152]
Tasneem, A.A.; Luck, N.H.; Majid, Z. Factors predicting non-alcoholic steatohepatitis (NASH) and advanced fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Trop. Doct., 2018, 48(2), 107-112.
[http://dx.doi.org/10.1177/0049475517742261] [PMID: 29145775]
[153]
Pelusi, S; Cespiati, A; Rametta, R; Pennisi, G; Mannisto, V; Rosso, C Prevalence and risk factors of significant fibrosis in patients with nonalcoholic fatty liver without steatohepatitis. Clin. Gastroenterol. Hepatol., 2019, 17, 2310-2319. e6.
[http://dx.doi.org/10.1016/j.cgh.2019.01.027]
[154]
Lambrecht, J.; Verhulst, S.; Mannaerts, I.; Reynaert, H.; van Grunsven, L.A. Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4), 1024-1036.
[http://dx.doi.org/10.1016/j.bbadis.2018.01.009] [PMID: 29329986]
[155]
Wee, A.; Ting Soon, G.S. Liver biopsy in the quantitative assessment of liver fibrosis in nonalcoholic fatty liver disease. Indian J. Pathol. Microbiol., 2021, 64(S5), 104.
[http://dx.doi.org/10.4103/IJPM.IJPM_947_20] [PMID: 34135151]
[156]
Germani, G.; Hytiroglou, P.; Fotiadu, A.; Burroughs, A.K.; Dhillon, A.P. Assessment of fibrosis and cirrhosis in liver biopsies: An update. Semin Liver Dis, 2011, 31(1), 82-90.
[http://dx.doi.org/10.1055/s-0031-1272836]
[157]
Cataldo, I.; Sarcognato, S.; Sacchi, D.; Cacciatore, M.; Baciorri, F.; Mangia, A.; Cazzagon, N.; Guido, M. Pathology of non-alcoholic fatty liver disease. Pathologica, 2021, 113(3), 194-202.
[http://dx.doi.org/10.32074/1591-951X-242] [PMID: 34294937]
[158]
Burt, A.D.; Lackner, C.; Tiniakos, D.G. Diagnosis and assessment Of NAFLD: Definitions and histopathological classification. In: Seminars In Liver Disease; Thieme Medical Publishers, 2015; pp. 207-220.
[159]
Rockey, D.C.; Caldwell, S.H.; Goodman, Z.D.; Nelson, R.C.; Smith, A.D. Liver biopsy. Hepatology, 2009, 49(3), 1017-1044.
[http://dx.doi.org/10.1002/hep.22742] [PMID: 19243014]
[160]
Ratziu, V.; Charlotte, F.; Heurtier, A.; Gombert, S.; Giral, P.; Bruckert, E.; Grimaldi, A.; Capron, F.; Poynard, T. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology, 2005, 128(7), 1898-1906.
[http://dx.doi.org/10.1053/j.gastro.2005.03.084] [PMID: 15940625]
[161]
Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Reports, 2020, 2(2), 100067.
[http://dx.doi.org/10.1016/j.jhepr.2020.100067] [PMID: 32118201]
[162]
Trujillo, M.J.; Chen, J.; Rubin, J.M.; Gao, J. Non-invasive imaging biomarkers to assess nonalcoholic fatty liver disease: A review. Clin. Imaging, 2021, 78, 22-34.
[http://dx.doi.org/10.1016/j.clinimag.2021.02.039] [PMID: 33721575]
[163]
Loomba, R.; Adams, L.A. Advances in non-invasive assessment of hepatic fibrosis. Gut, 2020, 69(7), 1343-1352.
[http://dx.doi.org/10.1136/gutjnl-2018-317593] [PMID: 32066623]
[164]
Wang, J.; Qin, T.; Sun, J.; Li, S.; Cao, L.; Lu, X. Non-invasive methods to evaluate liver fibrosis in patients with non-alcoholic fatty liver disease. Front. Physiol., 2022, 13, 1046497.
[http://dx.doi.org/10.3389/fphys.2022.1046497] [PMID: 36589424]
[165]
Ajmera, V.; Loomba, R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol. Metab., 2021, 50, 101167.
[http://dx.doi.org/10.1016/j.molmet.2021.101167] [PMID: 33460786]
[166]
Sanyal, A.J.; Castéra, L.; Wong, V.W.S. Non-invasive assessment of liver fibrosis in NAFLD. Clin. Gastroenterol. Hepatol., 2023, 21(8), 2026-2039.
[http://dx.doi.org/10.1016/j.cgh.2023.03.042]
[167]
Castera, L. Non-invasive tests for liver fibrosis in NAFLD: Creating pathways between primary healthcare and liver clinics. Liver Int., 2020, 40(S1), 77-81.
[http://dx.doi.org/10.1111/liv.14347] [PMID: 32077617]
[168]
Anstee, Q.M.; Castera, L.; Loomba, R. Impact of non-invasive biomarkers on hepatology practice: Past, present and future. J. Hepatol., 2022, 76(6), 1362-1378.
[http://dx.doi.org/10.1016/j.jhep.2022.03.026] [PMID: 35589256]
[169]
Amernia, B.; Moosavy, S.H.; Banookh, F.; Zoghi, G. FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol., 2021, 21(1), 453.
[http://dx.doi.org/10.1186/s12876-021-02038-3] [PMID: 34861841]
[170]
Lee, J.; Vali, Y.; Boursier, J.; Spijker, R.; Anstee, Q.M.; Bossuyt, P.M.; Zafarmand, M.H. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review. Liver Int., 2021, 41(2), 261-270.
[http://dx.doi.org/10.1111/liv.14669] [PMID: 32946642]
[171]
Tamaki, N; Imajo, K; Sharpton, SR; Jung, J; Sutter, N; Kawamura, N Two-step strategy, FIB-4 followed by magnetic resonance elastography, for detecting advanced fibrosis in NAFLD. Clin. Gastroenterol. Hepatol., 2023, 21, 380-387.e3.
[172]
Rigor, J.; Diegues, A.; Presa, J.; Barata, P.; Mendes, M.D. Noninvasive fibrosis tools in NAFLD: validation of APRI, BARD, FIB-4, NAFLD fibrosis score, and Hepamet fibrosis score in a Portuguese population. Postgrad. Med., 2022, 134(4), 435-440.
[http://dx.doi.org/10.1080/00325481.2022.2058285] [PMID: 35332833]
[173]
Zambrano-Huailla, R.; Guedes, L.; Stefano, J.T.; de Souza, A.A.A.; Marciano, S.; Yvamoto, E.; Michalczuk, M.T.; Vanni, D.S.; Rodriguez, H.; Carrilho, F.J.; da-Silva, A.M.R.; Gadano, A.; Arrese, M.; Miranda, A.L.; Oliveira, C.P. Diagnostic performance of three non-invasive fibrosis scores (Hepamet, FIB-4, NAFLD fibrosis score) in NAFLD patients from a mixed Latin American population. Ann. Hepatol., 2020, 19(6), 622-626.
[http://dx.doi.org/10.1016/j.aohep.2020.08.066] [PMID: 32919087]
[174]
Liebig, S.; Stoeckmann, N.; Geier, A.; Rau, M.; Schattenberg, J.M.; Bahr, M.J.; Manns, M.P.; Jaeckel, E.; Osthoff, S.K.; Bantel, H. Multicenter validation study of a diagnostic algorithm to detect NASH and fibrosis in NAFLD patients with low NAFLD fibrosis score or liver stiffness. Clin. Transl. Gastroenterol., 2019, 10(8), e00066.
[http://dx.doi.org/10.14309/ctg.0000000000000066] [PMID: 31397685]
[175]
Chen, C.; Wang, L.; Wu, J.; Lu, M.; Yang, S.; Ye, W.; Guan, M.; Liang, M.; Zou, H. Circulating collagen metabolites and the enhanced liver fibrosis (ELF) score as fibrosis markers in systemic sclerosis. Front. Pharmacol., 2022, 13, 805708.
[http://dx.doi.org/10.3389/fphar.2022.805708] [PMID: 35177989]
[176]
Abignano, G.; Cuomo, G.; Buch, M.; Rosenberg, W.M.; Valentini, G.; Emery, P.; Del Galdo, F. FRI0405 Sub-analysis of elf score biomarkers components indicates a specific correlation with different organ involvement in systemic sclerosis. Ann. Rheum. Dis., 2013, 72(S3), A510.3-A511.
[http://dx.doi.org/10.1136/annrheumdis-2013-eular.1532]
[177]
Kjaergaard, M.; Lindvig, K.P.; Thorhauge, K.H.; Andersen, P.; Hansen, J.K.; Kastrup, N.; Jensen, J.M.; Hansen, C.D.; Johansen, S.; Israelsen, M.; Torp, N.; Trelle, M.B.; Shan, S.; Detlefsen, S.; Antonsen, S.; Andersen, J.E.; Graupera, I.; Ginés, P.; Thiele, M.; Krag, A. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease. J. Hepatol., 2023, 79(2), 277-286.
[http://dx.doi.org/10.1016/j.jhep.2023.04.002] [PMID: 37088311]
[178]
Younossi, ZM; Felix, S; Jeffers, T; Younossi, E; Nader, F; Pham, H Performance of the enhanced liver fibrosis test to estimate advanced fibrosis among patients with nonalcoholic fatty liver disease. JAMA Network Open., 2021, 4, e2123923.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.23923]
[179]
Reinson, T.; Buchanan, R.M.; Byrne, C.D. Noninvasive serum biomarkers for liver fibrosis in NAFLD: Current and future. Clin. Mol. Hepatol., 2023, 29(Suppl.), S157-S170.
[http://dx.doi.org/10.3350/cmh.2022.0348] [PMID: 36417894]
[180]
Liu, T; Wang, X; Karsdal, MA; Leeming, DJ; Genovese, F Molecular serum markers of liver fibrosis. Biomarker insights., 2012, 7, S10009.
[http://dx.doi.org/10.4137/BMI.S10009]
[181]
Yilmaz, Y.; Eren, F. Serum biomarkers of fibrosis and extracellular matrix remodeling in patients with nonalcoholic fatty liver disease: Association with liver histology. Eur. J. Gastroenterol. Hepatol., 2019, 31(1), 43-46.
[http://dx.doi.org/10.1097/MEG.0000000000001240] [PMID: 30134384]
[182]
1602-P: Galectin-3 inhibition protects ApoE knockout mice against western diet–induced nonalcoholic steatohepatitis and glucose intolerance. Diabetes, 2023, 72(S1), 1602.
[183]
Marcos, H.L.V.; Beamonte, M.R.; Herranz, M.M.; Arnal, C.; Barranquero, C.; Lanzarote, P.J.J.; Gascón, S.; Continente, H.T.; Romeo, G.G.; Vera, A.V.; Blázquez, G.D.; Bonafonte, L.J.M.; Surra, J.C.; Yoldi, R.M.J.; Gil, G.A.; Güemes, A.; Osada, J. Hepatic galectin-3 is associated with lipid droplet area in non-alcoholic steatohepatitis in a new swine model. Sci. Rep., 2022, 12(1), 1024.
[http://dx.doi.org/10.1038/s41598-022-04971-z] [PMID: 35046474]
[184]
Henderson, N.C.; Mackinnon, A.C.; Farnworth, S.L.; Poirier, F.; Russo, F.P.; Iredale, J.P.; Haslett, C.; Simpson, K.J.; Sethi, T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl. Acad. Sci., 2006, 103(13), 5060-5065.
[http://dx.doi.org/10.1073/pnas.0511167103] [PMID: 16549783]
[185]
Mackinnon, A; Hsieh, WC; Boulter, L; Wojtacha, D; Lu, WY; Bird, T Galectin-3 regulates hepatic progenitor cell expansion during liver injury. J. Hepatol., 2013, 58, S16.
[http://dx.doi.org/10.1016/S0168-8278(13)60040-9]
[186]
Harrison, S.A.; Marri, S.R.; Chalasani, N.; Kohli, R.; Aronstein, W.; Thompson, G.A.; Irish, W.; Miles, M.V.; Xanthakos, S.A.; Lawitz, E.; Noureddin, M.; Schiano, T.D.; Siddiqui, M.; Sanyal, A.; Tetri, N.B.A.; Traber, P.G. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment. Pharmacol. Ther., 2016, 44(11-12), 1183-1198.
[http://dx.doi.org/10.1111/apt.13816] [PMID: 27778367]
[187]
de Oliveira, S.A.; de Souza, F.B.S.; Barreto, E.P.S.; Kaneto, C.M.; Neto, H.A.; Azevedo, C.M.; Guimarães, E.T.; de Freitas, L.A.R.; Santos, R.D.R.; Soares, M.B.P. Reduction of galectin-3 expression and liver fibrosis after cell therapy in a mouse model of cirrhosis. Cytotherapy, 2012, 14(3), 339-349.
[http://dx.doi.org/10.3109/14653249.2011.637668] [PMID: 22149185]
[188]
Shirabe, K.; Bekki, Y.; Gantumur, D.; Araki, K.; Ishii, N.; Kuno, A.; Narimatsu, H.; Mizokami, M. Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: More than a biomarker of liver fibrosis. J. Gastroenterol., 2018, 53(7), 819-826.
[http://dx.doi.org/10.1007/s00535-017-1425-z] [PMID: 29318378]
[189]
Nomoto, K; Tsuneyama, K; Aziz, A.H; Takahashi, H; Murai, Y; Cui, ZG Disrupted galectin-3 causes non-alcoholic fatty liver disease in male mice. J Pathol, 2006, 210(4), 469-477.
[http://dx.doi.org/10.1002/path.2065]
[190]
Tian, J.; Yang, G.; Chen, H.Y.; Hsu, D.K.; Tomilov, A.; Olson, K.A.; Dehnad, A.; Fish, S.R.; Cortopassi, G.; Zhao, B.; Liu, F.T.; Gershwin, M.E.; Török, N.J.; Jiang, J.X. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J., 2016, 30(12), 4202-4213.
[http://dx.doi.org/10.1096/fj.201600392RR] [PMID: 27630169]
[191]
Tremblay, M.; Perrot, N.; Ghodsian, N.; Gobeil, É.; Couture, C.; Mitchell, P.L.; Thériault, S.; Arsenault, B.J. Circulating galectin-3 levels are not associated with nonalcoholic fatty liver disease: A mendelian randomization study. J. Clin. Endocrinol. Metab., 2021, 106(8), e3178-e3184.
[http://dx.doi.org/10.1210/clinem/dgab144] [PMID: 33693708]
[192]
Yilmaz, Y.; Eren, F.; Kurt, R.; Yonal, O.; Polat, Z.; Senates, E.; Bacha, M.; Imeryuz, N. Serum galectin-3 levels in patients with nonalcoholic fatty liver disease. Clin. Biochem., 2011, 44(12), 955-958.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.05.015] [PMID: 21635880]
[193]
Cyr, B.; Keane, R.W.; de Vaccari, R.J.P. ASC, IL-18 and galectin-3 as biomarkers of non-alcoholic steatohepatitis: A proof of concept study. Int. J. Mol. Sci., 2020, 21(22), 8580.
[http://dx.doi.org/10.3390/ijms21228580] [PMID: 33203036]
[194]
de Oliveira, F.L.; Panera, N.; De Stefanis, C.; Mosca, A.; D’Oria, V.; Crudele, A.; De Vito, R.; Nobili, V.; Alisi, A. The number of liver galectin-3 positive cells is dually correlated with NAFLD severity in children. Int. J. Mol. Sci., 2019, 20(14), 3460.
[http://dx.doi.org/10.3390/ijms20143460] [PMID: 31337151]
[195]
Moon, H.W.; Park, M.; Hur, M.; Kim, H.; Choe, W.H.; Yun, Y.M. Usefulness of enhanced liver fibrosis, glycosylation isomer of Mac-2 binding protein, galectin-3, and soluble suppression of tumorigenicity 2 for assessing liver fibrosis in chronic liver diseases. Ann. Lab. Med., 2018, 38(4), 331-337.
[http://dx.doi.org/10.3343/alm.2018.38.4.331] [PMID: 29611383]
[196]
Nangia-Makker, P.; Hogan, V.; Balan, V.; Raz, A. Chimeric galectin-3 and collagens: Biomarkers and potential therapeutic targets in fibroproliferative diseases. J. Biol. Chem., 2022, 298(12), 102622.
[http://dx.doi.org/10.1016/j.jbc.2022.102622] [PMID: 36272642]
[197]
Traber, P.G.; Zomer, E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One, 2013, 8(12), e83481.
[http://dx.doi.org/10.1371/journal.pone.0083481] [PMID: 24367597]
[198]
Nakanishi, Y.; Tsuneyama, K.; Nomoto, K.; Fujimoto, M.; Salunga, T.L.; Nakajima, T.; Miwa, S.; Murai, Y.; Hayashi, S.; Kato, I.; Hiraga, K.; Hsu, D.K.; Liu, F.T.; Takano, Y. Nonalcoholic steatohepatitis and hepatocellular carcinoma in galectin-3 knockout mice. Hepatol. Res., 2008, 38(12), 1241-1251.
[http://dx.doi.org/10.1111/j.1872-034X.2008.00395.x] [PMID: 18637146]
[199]
Kram, M. Galectin-3 inhibition as a potential therapeutic target in non-alcoholic steatohepatitis liver fibrosis. World J. Hepatol., 2023, 15(2), 201-207.
[http://dx.doi.org/10.4254/wjh.v15.i2.201] [PMID: 36926236]
[200]
Yu, H.; Yang, F.; Zhong, W.; Jiang, X.; Zhang, F.; Ji, X.; Xue, M.; Qiu, Y.; Yu, J.; Hu, X.; Chen, J.; Bao, Z. Secretory Galectin-3 promotes hepatic steatosis via regulation of the PPARγ/CD36 signaling pathway. Cell. Signal., 2021, 84, 110043.
[http://dx.doi.org/10.1016/j.cellsig.2021.110043] [PMID: 33991615]
[201]
Maeda, N.; Kawada, N.; Seki, S.; Arakawa, T.; Ikeda, K.; Iwao, H.; Okuyama, H.; Hirabayashi, J.; Kasai, K.; Yoshizato, K. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem., 2003, 278(21), 18938-18944.
[http://dx.doi.org/10.1074/jbc.M209673200] [PMID: 12646584]
[202]
Iacobini, C.; Menini, S.; Ricci, C.; Fantauzzi, C.B.; Scipioni, A.; Salvi, L.; Cordone, S.; Delucchi, F.; Serino, M.; Federici, M.; Pricci, F.; Pugliese, G. Galectin-3 ablation protects mice from diet-induced NASH: A major scavenging role for galectin-3 in liver. J. Hepatol., 2011, 54(5), 975-983.
[http://dx.doi.org/10.1016/j.jhep.2010.09.020] [PMID: 21145823]
[203]
Volarevic, V.; Milovanovic, M.; Ljujic, B.; Pejnovic, N.; Arsenijevic, N.; Nilsson, U.; Leffler, H.; Lukic, M.L. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology, 2012, 55(6), 1954-1964.
[http://dx.doi.org/10.1002/hep.25542] [PMID: 22213244]
[204]
Tacke, F.; Weiskirchen, R. An update on the recent advances in antifibrotic therapy. Expert Rev. Gastroenterol. Hepatol., 2018, 12(11), 1143-1152.
[http://dx.doi.org/10.1080/17474124.2018.1530110] [PMID: 30261763]
[205]
Rein-Fischboeck, L.; Haberl, E.M.; Bajraktari, G.; Feder, S.; Pohl, R.; Eggenhofer, E.; Buechler, C. Alpha-syntrophin deficiency protects against non-alcoholic steatohepatitis associated increase of macrophages, CD8+ T-cells and galectin-3 in the liver. Exp. Mol. Pathol., 2020, 113, 104363.
[http://dx.doi.org/10.1016/j.yexmp.2019.104363] [PMID: 31881201]
[206]
Chalasani, N; Abdelmalek, MF; Garcia-Tsao, G; Vuppalanchi, R; Alkhouri, N; Rinella, M Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology, 2020, 158, 1334-1345. e5.
[http://dx.doi.org/10.1053/j.gastro.2019.11.296]
[207]
Sanz, T.R.; Fuentes, G.L.; Berenguel, V.A. Human galectin-3 selective and high affinity inhibitors. Present state and future perspectives. Curr. Med. Chem., 2013, 20(24), 2979-2990.
[http://dx.doi.org/10.2174/09298673113209990163] [PMID: 23834183]
[208]
Traber, P.G.; Chou, H.; Zomer, E.; Hong, F.; Klyosov, A.; Fiel, M.I.; Friedman, S.L. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One, 2013, 8(10), e75361.
[http://dx.doi.org/10.1371/journal.pone.0075361] [PMID: 24130706]
[209]
Nomoto, K; Nishida, T; Nakanishi, Y; Fujimoto, M; Takasaki, I; Tabuchi, Y Deficiency in galectin-3 promotes hepatic injury in CDAA diet-induced nonalcoholic fatty liver disease. Sci. World J., 2012, 2012, 959824.
[http://dx.doi.org/10.1100/2012/959824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy