Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Fluorescent Probe for Hydrazine Based on 4-hydroxycoumarin with High Selectivity and Sensitivity

Author(s): Fang Fang, Wendi Han*, Fang Ke*, Shun Liu, Lipeng Li and Mei Wu

Volume 20, Issue 8, 2024

Published on: 02 May, 2024

Page: [592 - 598] Pages: 7

DOI: 10.2174/0115734110281725231218043256

Price: $65

Abstract

Background: Hydrazine may induce gene abnormalities, cancer, and severe damage to the liver, lungs, kidneys, and central nervous system. Therefore, the development of reliable analytical techniques with high selectivity and sensitivity to detect hydrazine is required for the protection of human health and safety.

Objectives: Traditional methods for detecting N2H4 are frequently time-consuming, less accurate, and unsuitable for the analysis of living systems. Numerous fluorescent probes for hydrazine have been produced and gained some valuable results recently. The creation of a simple fluorescent probe for hydrazine detection is the goal of this project.

Method: In this study, 300 μL of probe 3-methyl-2-oxo-2H-chromen-7-yl propionate (MOCP) was mixed with an equivalent amount of the solution of each analyte to obtain the measurement solution. Following a 10-minute room temperature incubation period, the fluorescence spectra of the resultant solution were recorded.

Results: The fluorescence intensity of the probe was noticeably enhanced when N2H4 was added to the probe, but almost no fluorescence enhancement was observed when other competitive ions were added.

Conclusion: A hydrazine fluorescent probe based on 4-hydroxycoumarin fluorophore was developed. The probe MOCP displayed high sensitivity and selectivity for hydrazine, with a color change from colourless to blue for detection by the naked eye. Moreover, it demonstrated a low detection limit of 20 nM and a fast reaction time of 30 s.

Graphical Abstract

[1]
Rõõm, E.I.; Kütt, A.; Kaljurand, I.; Koppel, I.; Leito, I.; Koppel, I.A.; Mishima, M.; Goto, K.; Miyahara, Y. Brønsted basicities of diamines in the gas phase, acetonitrile, and tetrahydrofuran. Chemistry, 2007, 13(27), 7631-7643.
[http://dx.doi.org/10.1002/chem.200700097] [PMID: 17594707]
[2]
Finkelstein, D.A.; Imbeault, R.; Garbarino, S.; Roué, L.; Guay, D. Trends in catalysis and catalyst cost effectiveness for N2H4 fuel cells and sensors: A rotating disk electrode (RDE) study. J. Phys. Chem. C, 2016, 120(9), 4717-4738.
[http://dx.doi.org/10.1021/acs.jpcc.5b10156]
[3]
Furst, A.; Berlo, R.C.; Hooton, S. Hydrazine as a reducing agent for organic compounds (catalytic hydrazine reductions). Chem. Rev., 1965, 65(1), 51-68.
[http://dx.doi.org/10.1021/cr60233a002]
[4]
Gichner, T.; Menke, M.; Stavreva, D.A.; Schubert, I. Maleic hydrazide induces genotoxic effects but no DNA damage detectable by the Comet assay in tobacco and field beans. Mutagenesis, 2000, 15(5), 385-389.
[http://dx.doi.org/10.1093/mutage/15.5.385] [PMID: 10970443]
[5]
Niemeier, J.K.; Kjell, D.P. Hydrazine and aqueous hydrazine solutions: Evaluating safety in chemical processes. Org. Process Res. Dev., 2013, 17(12), 1580-1590.
[http://dx.doi.org/10.1021/op400120g]
[6]
Reilly, C.A.; Aust, S.D. Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA. Chem. Res. Toxicol., 1997, 10(3), 328-334.
[http://dx.doi.org/10.1021/tx960189l] [PMID: 9084913]
[7]
Garrod, S.; Bollard, M.E.; Nicholls, A.W.; Connor, S.C.; Connelly, J.; Nicholson, J.K.; Holmes, E. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem. Res. Toxicol., 2005, 18(2), 115-122.
[http://dx.doi.org/10.1021/tx0498915] [PMID: 15720114]
[8]
Zelnick, S.D.; Mattie, D.R.; Stepaniak, P.C. Occupational exposure to hydrazines: Treatment of acute central nervous system toxicity. Aviat. Space Environ. Med., 2003, 74(12), 1285-1291.
[PMID: 14692474]
[9]
Suzuki, Y.; Ohkido, M. Contact dermatitis from hydrazine derivatives. Contact Dermat., 1979, 5(2), 113-114.
[http://dx.doi.org/10.1111/j.1600-0536.1979.tb04809.x] [PMID: 157249]
[10]
Keller, W.C. Toxicity assessment of hydrazine fuels. Aviat. Space Environ. Med., 1988, 59(11 Pt 2), A100-A106.
[PMID: 3202799]
[11]
Rungemorris, M.; Wu, N.; Novak, R.F. Hydrazine-mediated DNA damage: Role of hemoprotein, electron transport, and organic free radicals. Toxicol. Appl. Pharmacol., 1994, 125(1), 123-132.
[http://dx.doi.org/10.1006/taap.1994.1056] [PMID: 8128487]
[12]
Beger, R.D.; Sun, J.; Schnackenberg, L.K. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol. Appl. Pharmacol., 2010, 243(2), 154-166.
[http://dx.doi.org/10.1016/j.taap.2009.11.019] [PMID: 19932708]
[13]
Tang, C.; Tong, H.; Liu, B.; Wang, X.; Jin, Y.; Tian, E.; Wang, F. Robust ERα-targeted near-infrared fluorescence probe for selective hydrazine imaging in breast cancer. Anal. Chem., 2022, 94(40), 14012-14020.
[http://dx.doi.org/10.1021/acs.analchem.2c03395] [PMID: 36166661]
[14]
Kavinkumar, T.; Manivannan, S. Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection. Ceram. Int., 2016, 42(1), 1769-1776.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.138]
[15]
Steinhoff, D.; Mohr, U. The question of carcinogenic effects of hydrazine. Exp. Pathol., 1988, 33(3), 133-143.
[http://dx.doi.org/10.1016/S0232-1513(88)80060-4] [PMID: 2852120]
[16]
Olson, E.C. The coulometric determination of hydrazine and substituted hydrazines. Anal. Chem., 1960, 32(12), 1545-1547.
[http://dx.doi.org/10.1021/ac60168a002]
[17]
Malone, H.E. Determination of mixtures of hydrazine and 1,1-dimethylhydrazine. Anal. Chem., 1961, 33(4), 575-577.
[http://dx.doi.org/10.1021/ac60172a027]
[18]
Radushev, A.V.; Chekanova, L.G.; Gusev, V.Y.; Sazonova, E.A. Determination of hydrazides and 1,2-diacylhydrazines of aliphatic carboxylic acids by conductometric titration. J. Anal. Chem., 2000, 55(5), 445-448.
[http://dx.doi.org/10.1007/BF02757481]
[19]
Stetter, J.R.; Blurton, K.F.; Valentine, A.M.; Tellefsen, K.A. The electrochemical oxidation of hydrazine and methylhydrazine on gold: application to gas monitoring. J. Electrochem. Soc., 1978, 125(11), 1804-1807.
[http://dx.doi.org/10.1149/1.2131299]
[20]
Pinter, J.S.; Brown, K.L.; DeYoung, P.A.; Peaslee, G.F. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta, 2007, 71(3), 1219-1225.
[http://dx.doi.org/10.1016/j.talanta.2006.06.017] [PMID: 19071436]
[21]
Wang, C.; Zhang, L.; Guo, Z.; Xu, J.; Wang, H.; Zhai, K.; Zhuo, X. A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Mikrochim. Acta, 2010, 169(1-2), 1-6.
[http://dx.doi.org/10.1007/s00604-010-0304-6]
[22]
Elias, G.; Bauer, W.F. Hydrazine determination in sludge samples by high-performance liquid chromatography. J. Sep. Sci., 2006, 29(3), 460-464.
[http://dx.doi.org/10.1002/jssc.200500380] [PMID: 16544889]
[23]
Duan, N.; Yang, S.; Tian, H.; Sun, B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem., 2021, 358, 129839.
[http://dx.doi.org/10.1016/j.foodchem.2021.129839] [PMID: 33940297]
[24]
Duan, N.; Wang, H.; Li, Y.; Yang, S.; Tian, H.; Sun, B. The research progress of organic fluorescent probe applied in food and drinking water detection. Coord. Chem. Rev., 2021, 427, 213557.
[http://dx.doi.org/10.1016/j.ccr.2020.213557]
[25]
Duan, N.; Feng, J.; Deng, B.; Yang, S.; Tian, H.; Sun, B. A colourimetric fluorescent probe for the sensitive detection of total iron in wine. Food Chem., 2022, 383, 132594.
[http://dx.doi.org/10.1016/j.foodchem.2022.132594] [PMID: 35255366]
[26]
Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New fluorescent chemosensors for metal ions in solution. Coord. Chem. Rev., 2012, 256(1-2), 170-192.
[http://dx.doi.org/10.1016/j.ccr.2011.09.010]
[27]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[28]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[29]
Alhammadi, M.; Yoo, J.; Sonwal, S.; Park, S.Y.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A highly sensitive lateral flow immunoassay for the rapid and on-site detection of enrofloxacin in milk. Front. Nutr., 2022, 9, 1036826.
[http://dx.doi.org/10.3389/fnut.2022.1036826] [PMID: 36352902]
[30]
Jung, Y.; Ju, I.G.; Choe, Y.H.; Kim, Y.; Park, S.; Hyun, Y.M.; Oh, M.S.; Kim, D. Hydrazine exposé: The next-generation fluorescent probe. ACS Sens., 2019, 4(2), 441-449.
[http://dx.doi.org/10.1021/acssensors.8b01429] [PMID: 30652852]
[31]
Qi, Y.L.; Chen, J.; Zhang, B.; Li, H.; Li, D.D.; Wang, B.Z.; Yang, Y.S.; Zhu, H.L. A turn-on fluorescent sensor for selective detection of hydrazine and its application in Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117707.
[http://dx.doi.org/10.1016/j.saa.2019.117707] [PMID: 31699591]
[32]
Vijay, N.; Velmathi, S. Near-infrared-emitting probes for detection of nanomolar hydrazine in a complete aqueous medium with real-time application in bioimaging and vapor-phase hydrazine detection. ACS Sustain. Chem. Eng., 2020, 8(11), 4457-4463.
[http://dx.doi.org/10.1021/acssuschemeng.9b07445]
[33]
Choi, M.G.; Hwang, J.; Moon, J.O.; Sung, J.; Chang, S.K. Hydrazine-selective chromogenic and fluorogenic probe based on levulinated coumarin. Org. Lett., 2011, 13(19), 5260-5263.
[http://dx.doi.org/10.1021/ol202136q] [PMID: 21916492]
[34]
Gupta, V.K.; Mergu, N.; Kumawat, L.K.; Singh, A.K. Selective naked-eye detection of Magnesium (II) ions using a coumarinderived fluorescent probe. Sensor actuat. B-chem., 2015, 207((Pat A)), 216-223.
[http://dx.doi.org/10.1016/j.snb.2014.10.044]
[35]
Tang, Y.; Ma, Y.; Yin, J.; Lin, W. Strategies for designing organic fluorescent probes for biological imaging of reactive carbonyl species. Chem. Soc. Rev., 2019, 48(15), 4036-4048.
[http://dx.doi.org/10.1039/C8CS00956B] [PMID: 31187789]
[36]
Yang, J.; Li, K.; Hou, J.T.; Li, L.L.; Lu, C.Y.; Xie, Y.M.; Wang, X.; Yu, X.Q. Novel tumor-specific and mitochondria-targeted near-infrared-emission fluorescent probe for SO2 derivatives in living cells. ACS Sens., 2016, 1(2), 166-172.
[http://dx.doi.org/10.1021/acssensors.5b00165]
[37]
Dai, X.; Wu, Q.H.; Wang, P.C.; Tian, J.; Xu, Y.; Wang, S.Q.; Miao, J.Y.; Zhao, B.X. A simple and effective coumarin-based fluorescent probe for cysteine. Biosens. Bioelectron., 2014, 59, 35-39.
[http://dx.doi.org/10.1016/j.bios.2014.03.018] [PMID: 24690559]
[38]
Zhang, Z.; Zhuang, Z.; Song, L.; Lin, X.; Zhang, S.; Zheng, G.; Zhan, F. A FRET-based ratiometric fluorescent probe for hydrazine and its application in living cells. J. Photochem. Photobiol. Chem., 2018, 358, 10-16.
[http://dx.doi.org/10.1016/j.jphotochem.2018.02.005]
[39]
Ye, H.; Chen, L.; Wang, X.; Lu, D. A highly sensitive fluorescent probe for hydrazine detection: Synthesis, characterisation and application in living cells. Int. J. Environ. Anal. Chem., 2021, 101(8), 1086-1098.
[http://dx.doi.org/10.1080/03067319.2019.1676422]
[40]
Liu, C.; Liu, K.; Tian, M.; Lin, W. A ratiometric fluorescent probe for hydrazine detection with large fluorescence change ratio and its application for fluorescence imaging in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 212, 42-47.
[http://dx.doi.org/10.1016/j.saa.2018.12.026] [PMID: 30594852]
[41]
Lv, H.; Sun, H.; Wang, S.; Kong, F. A novel dicyanoisophorone based red-emitting fluorescent probe with a large Stokes shift for detection of hydrazine in solution and living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 160-167.
[http://dx.doi.org/10.1016/j.saa.2018.02.026] [PMID: 29444498]
[42]
Ju, Z.; Li, D.; Zhang, D.; Li, D.; Wu, C.; Xu, Z. An ESIPT-based fluorescent probe for hydrazine detection in aqueous solution and its application in living cells. J. Fluoresc., 2017, 27(2), 679-687.
[http://dx.doi.org/10.1007/s10895-016-1997-7] [PMID: 28084555]
[43]
Qiu, X.Y.; Liu, S.J.; Hao, Y.Q.; Sun, J.W.; Chen, S. Phenothiazine-based fluorescence probe for ratiometric imaging of hydrazine in living cells with remarkable Stokes shift. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117675.
[http://dx.doi.org/10.1016/j.saa.2019.117675] [PMID: 31670047]
[44]
He, Y.; Li, Z.; Shi, B.; An, Z.; Yu, M.; Wei, L.; Ni, Z. A new near-infrared ratiometric fluorescent probe for hydrazine. RSC Advances, 2017, 7(41), 25634-25639.
[http://dx.doi.org/10.1039/C7RA04270A]
[45]
Wu, C.; Xu, H.; Li, Y.; Xie, R.; Li, P.; Pang, X.; Zhou, Z.; Li, H.; Zhang, Y. A “naked-eye” colorimetric and ratiometric fluorescence probe for trace hydrazine. Anal. Methods, 2019, 11(19), 2591-2596.
[http://dx.doi.org/10.1039/C9AY00535H]
[46]
Shi, X.; Yin, C.; Zhang, Y.; Wen, Y.; Huo, F. A novel ratiometric and colorimetric fluorescent probe for hydrazine based on ring-opening reaction and its applications. Sens. Actuators B Chem., 2019, 285, 368-374.
[http://dx.doi.org/10.1016/j.snb.2019.01.075]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy