Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Meta-Analysis

Which Drugs are More Effective in Preventing Familial Adenomatous Polyposis Progression based on Network Meta-analysis?

Author(s): Pei Luo, Wenjun Shi, Xianshuo Cheng, Jun Yang, Gen Pei and Jian Dong*

Volume 30, Issue 20, 2024

Published on: 02 May, 2024

Page: [1548 - 1563] Pages: 16

DOI: 10.2174/0113816128289465240422074745

Price: $65

Abstract

Background: Familial adenomatous polyposis (FAP) is an inherited disorder. At present, an increasing number of medications are being employed to treat FAP; however, only a few have been assessed for their efficacy and safety. Therefore, this study aimed to conduct a network meta-analysis to compare the therapeutic outcomes and adverse drug reactions of all FAP-associated medications.

Methods: Six relevant databases were searched to identify pertinent randomized controlled trials (RCTs), and information on the dosage and frequency of various drugs was extracted. Additionally, data on changes in polyp counts and dimensions, as well as treatment-related adverse reactions for different medications were collected. The Bayesian method was employed to directly or indirectly compare the impact of different treatment regimens on changes in polyp numbers and diameters, and the safety of the drugs was investigated.

Results: CXB at 16 mg/kg/day significantly reduced polyp numbers. Celecoxib at 8 mg/kg/day and sulindac (150 mg twice daily) plus erlotinib (75 mg/day) were effective for tolerant FAP patients. Additionally, EPAFFA 2 g daily and sulindac (150 mg twice daily) plus erlotinib (75 mg/day) emerged as the most effective for reducing polyp size.

Conclusion: The most effective treatment for reducing the number of colorectal polyps is celecoxib 16 mg/kg/day. On the other hand, a daily dosage of 2 g EPA-FFA demonstrates the best results in terms of decreasing colorectal polyp diameter.

[1]
Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis 2009; 4(1): 22.
[http://dx.doi.org/10.1186/1750-1172-4-22] [PMID: 19822006]
[2]
Dinarvand P, Davaro EP, Doan JV, et al. Familial adenomatous polyposis syndrome: An update and review of extraintestinal manifestations. Arch Pathol Lab Med 2019; 143(11): 1382-98.
[http://dx.doi.org/10.5858/arpa.2018-0570-RA] [PMID: 31070935]
[3]
Laurent S, Franchimont D, Coppens JP, et al. Familial adenomatous polyposis: Clinical presentation, detection and surveillance. Acta Gastroenterol Belg 2011; 74(3): 415-20.
[PMID: 22103047]
[4]
Dolan S. Familial adenomatous polyposis: Development, presentation, and treatment strategies. Clin J Oncol Nurs 2019; 23(2): 135-8.
[http://dx.doi.org/10.1188/19.CJON.135-138] [PMID: 30880794]
[5]
Aihara H, Kumar N, Thompson CC. Diagnosis, surveillance, and treatment strategies for familial adenomatous polyposis. Eur J Gastroenterol Hepatol 2014; 26(3): 255-62.
[http://dx.doi.org/10.1097/MEG.0000000000000010] [PMID: 24161962]
[6]
Stanich PP, Sullivan B, Kim AC, Kalady MF. Endoscopic management and surgical considerations for familial adenomatous polyposis. Gastrointest Endosc Clin N Am 2022; 32(1): 113-30.
[http://dx.doi.org/10.1016/j.giec.2021.08.007] [PMID: 34798980]
[7]
Vitellaro M, Ferrari A, Trencheva K, et al. Is laparoscopic surgery an option to support prophylactic colectomy in adolescent patients with Familial Adenomatous Polyposis (FAP)? Pediatr Blood Cancer 2012; 59(7): 1223-8.
[http://dx.doi.org/10.1002/pbc.24113] [PMID: 22378577]
[8]
Kemp Bohan PM, Mankaney G, Vreeland TJ, et al. Chemoprevention in familial adenomatous polyposis: past, present and future. Fam Cancer 2021; 20(1): 23-33.
[http://dx.doi.org/10.1007/s10689-020-00189-y] [PMID: 32507936]
[9]
Vasen HFA, Möslein G, Alonso A, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut 2008; 57(5): 704-13.
[http://dx.doi.org/10.1136/gut.2007.136127] [PMID: 18194984]
[10]
Lynch PM. Low-dose aspirin and mesalazine for patients with familial adenomatous polyposis. Lancet Gastroenterol Hepatol 2021; 6(6): 418-9.
[http://dx.doi.org/10.1016/S2468-1253(21)00102-3] [PMID: 33812493]
[11]
Herendeen JM, Lindley C. Use of NSAIDs for the chemoprevention of colorectal cancer. Ann Pharmacother 2003; 37(11): 1664-74.
[http://dx.doi.org/10.1345/aph.1C489] [PMID: 14565811]
[12]
Roser C, Tóth C, Renner M, Herpel E, Schirmacher P. Expression of apoptosis repressor with caspase recruitment domain (ARC) in familial adenomatous polyposis (FAP) adenomas and its correlation with DNA mismatch repair proteins, p53, Bcl-2, COX-2 and beta-catenin. Cell Commun Signal 2021; 19(1): 15.
[http://dx.doi.org/10.1186/s12964-020-00702-x] [PMID: 33579312]
[13]
Shi YJ, Zhao QQ, Liu XS, et al. Toll‐like receptor 4 regulates spontaneous intestinal tumorigenesis by up‐regulating IL‐6 and GM‐CSF. J Cell Mol Med 2020; 24(1): 385-97.
[http://dx.doi.org/10.1111/jcmm.14742] [PMID: 31650683]
[14]
Xavier A, Scott RJ, Talseth-Palmer B. Exome sequencing of familial adenomatous polyposis‐like individuals identifies both known and novel causative genes. Clin Genet 2021; 100(4): 478-83.
[http://dx.doi.org/10.1111/cge.14029] [PMID: 34259353]
[15]
Paziewska A, Horbacka K, Goryca K, et al. Transcriptional changes between uninflamed ulcerative colitis and familial adenomatous polyposis pouch mucosa can be attributed to an altered immune response. Acta Biochim Pol 2015; 62(1): 69-75.
[http://dx.doi.org/10.18388/abp.2014_778] [PMID: 25654358]
[16]
Khan N, Lipsa A, Arunachal G, Ramadwar M, Sarin R. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort. Sci Rep 2017; 7(1): 2214.
[http://dx.doi.org/10.1038/s41598-017-02319-6] [PMID: 28533537]
[17]
Keane S, Herring M, Rolny P, Wettergren Y, Ejeskär K. Inflammation suppresses DLG2 expression decreasing inflammasome formation. J Cancer Res Clin Oncol 2022; 148(9): 2295-311.
[http://dx.doi.org/10.1007/s00432-022-04029-7] [PMID: 35499706]
[18]
Shureiqi I. Molecular predicators of duodenal familial adenomatous polyposis chemoprevention: do chemopreventive drugs hit their presumed molecular targets? Cancer Prev Res 2018; 11(1): 1-3.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0372] [PMID: 29263155]
[19]
Benamouzig R, Uzzan B, Little J, Chaussade S. Low dose aspirin, COX-inhibition and chemoprevention of colorectal cancer. Curr Top Med Chem 2005; 5(5): 493-503.
[http://dx.doi.org/10.2174/1568026054201631] [PMID: 15974944]
[20]
Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann Intern Med 2015; 162(11): 777-84.
[http://dx.doi.org/10.7326/M14-2385] [PMID: 26030634]
[21]
Burke CA, Dekker E, Lynch P, et al. Eflornithine plus sulindac for prevention of progression in familial adenomatous polyposis. N Engl J Med 2020; 383(11): 1028-39.
[http://dx.doi.org/10.1056/NEJMoa1916063] [PMID: 32905675]
[22]
Park JJ, Kim BC, Hong SP, et al. The effect of metformin in treatment of adenomas in patients with familial adenomatous polyposis. Cancer Prev Res 2021; 14(5): 563-72.
[http://dx.doi.org/10.1158/1940-6207.CAPR-20-0580] [PMID: 33509804]
[23]
Higuchi T, Iwama T, Yoshinaga K, Toyooka M, Taketo MM, Sugihara K. A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res 2003; 9(13): 4756-60.
[PMID: 14581346]
[24]
Burke C, Phillips R, Berger MF, et al. Children’s International Polyposis (CHIP) study: A randomized, double-blind, placebo-controlled study of celecoxib in children with familial adenomatous polyposis. Clin Exp Gastroenterol 2017; 10: 177-85.
[http://dx.doi.org/10.2147/CEG.S121841] [PMID: 28765715]
[25]
Burn J, Bishop DT, Chapman PD, et al. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev Res 2011; 4(5): 655-65.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0106] [PMID: 21543343]
[26]
Balaguer F, Stoffel EM, Burke CA, et al. Combination of sulindac and eflornithine delays the need for lower gastrointestinal surgery in patients with familial adenomatous polyposis: Post hoc analysis of a randomized clinical trial. Dis Colon Rectum 2022; 65(4): 536-45.
[http://dx.doi.org/10.1097/DCR.0000000000002095] [PMID: 34261858]
[27]
Cruz-Correa M, Hylind LM, Marrero JH, et al. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology 2018; 155(3): 668-73.
[http://dx.doi.org/10.1053/j.gastro.2018.05.031] [PMID: 29802852]
[28]
Debinski HS, Trojan J, Nugent KP, Spigelman AD, Phillips RKS. Effect of sulindac on small polyps in familial adenomatous polyposis. Lancet 1995; 345(8953): 855-6.
[http://dx.doi.org/10.1016/S0140-6736(95)92989-4] [PMID: 7898240]
[29]
Delker DA, Wood AC, Snow AK, et al. Chemoprevention with cyclooxygenase and epidermal growth factor receptor inhibitors in familial adenomatous polyposis patients: mrna signatures of duodenal neoplasia. Cancer Prev Res 2018; 11(1): 4-15.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0130] [PMID: 29109117]
[30]
Gilad O, Rosner G, Ivancovsky-Wajcman D, et al. Efficacy of wholistic turmeric supplement on adenomatous polyps in patients with familial adenomatous polyposis a randomized, double-blinded, placebo-controlled study. Genes 2022; 13(12): 2182.
[http://dx.doi.org/10.3390/genes13122182] [PMID: 36553450]
[31]
Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993; 328(18): 1313-6.
[http://dx.doi.org/10.1056/NEJM199305063281805] [PMID: 8385741]
[32]
Giardiello FM, Yang VW, Hylind LM, et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 2002; 346(14): 1054-9.
[http://dx.doi.org/10.1056/NEJMoa012015] [PMID: 11932472]
[33]
Ishikawa H, Wakabayashi K, Suzuki S, et al. Preventive effects of low‐dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis: Double‐blind, randomized clinical trial. Cancer Med 2013; 2(1): 50-6.
[http://dx.doi.org/10.1002/cam4.46] [PMID: 24133627]
[34]
Iwama T, Akasu T, Utsunomiya J, Muto T. Does a selective cyclooxygenase-2 inhibitor (tiracoxib) induce clinically sufficient suppression of adenomas in patients with familial adenomatous polyposis? A randomized double-blind placebo-controlled clinical trial. Int J Clin Oncol 2006; 11(2): 133-9.
[http://dx.doi.org/10.1007/s10147-005-0548-z] [PMID: 16622748]
[35]
Keller JJ, Offerhaus GJA, Polak M, et al. Rectal epithelial apoptosis in familial adenomatous polyposis patients treated with sulindac. Gut 1999; 45(6): 822-8.
[http://dx.doi.org/10.1136/gut.45.6.822] [PMID: 10562579]
[36]
Ladenheim J, Garcia G, Titzer D, et al. Effect of sulindac on sporadic colonic polyps. Gastroenterology 1995; 108(4): 1083-7.
[http://dx.doi.org/10.1016/0016-5085(95)90206-6] [PMID: 7698575]
[37]
Lynch PM, Ayers GD, Hawk E, et al. The safety and efficacy of celecoxib in children with familial adenomatous polyposis. Am J Gastroenterol 2010; 105(6): 1437-43.
[http://dx.doi.org/10.1038/ajg.2009.758] [PMID: 20234350]
[38]
Lynch PM, Burke CA, Phillips R, et al. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut 2016; 65(2): 286-95.
[http://dx.doi.org/10.1136/gutjnl-2014-307235] [PMID: 25792707]
[39]
Nugent KP, Farmer KCR, Spigelman AD, Williams CB, Phillips RKS. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg 2005; 80(12): 1618-9.
[http://dx.doi.org/10.1002/bjs.1800801244] [PMID: 8298943]
[40]
Pasricha PJ, Bedi A, O’Connor K, et al. The effects of sulindac on colorectal proliferation and apoptosis in familial adenomatous polyposis. Gastroenterology 1995; 109(3): 994-8.
[http://dx.doi.org/10.1016/0016-5085(95)90411-5] [PMID: 7657130]
[41]
Phillips RKS, Wallace MH, Lynch PM, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002; 50(6): 857-60.
[http://dx.doi.org/10.1136/gut.50.6.857] [PMID: 12010890]
[42]
Samadder NJ, Neklason DW, Boucher KM, et al. Effect of sulindac and erlotinib vs. placebo on duodenal neoplasia in familial adenomatous polyposis: A randomized clinical trial. JAMA 2016; 315(12): 1266-75.
[http://dx.doi.org/10.1001/jama.2016.2522]
[43]
Sinicrope FA, Half E, Morris JS, et al. Cell proliferation and apoptotic indices predict adenoma regression in a placebo-controlled trial of celecoxib in familial adenomatous polyposis patients. Cancer Epidemiol Biomarkers Prev 2004; 13(6): 920-7.
[http://dx.doi.org/10.1158/1055-9965.920.13.6]
[44]
Ura H, Togi S, Hatanaka H, Niida Y. Establishment of a human induced pluripotent stem cell line, KMUGMCi004-A, from a patient bearing a heterozygous c.1832delG mutation in the APC gene leading familial adenomatous polyposis (FAP). Stem Cell Res 2022; 63: 102867.
[http://dx.doi.org/10.1016/j.scr.2022.102867] [PMID: 35868288]
[45]
Chiang JM, Chen HW, Tang RP, et al. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families. Fam Cancer 2010; 9(2): 117-24.
[http://dx.doi.org/10.1007/s10689-009-9292-2] [PMID: 19768578]
[46]
Yen T, Stanich PP, Axell L, Patel SG. Apc-Associated Polyposis Conditions. Apc-Associated Polyposis Conditions. In: Adam MP, Mirzaa GM, Pagon RA, et al, Eds. Genereviews(®). Seattle (WA): University of Washington, Seattle Copyright© 1993-2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved 1993.
[47]
Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol 2006; 101(2): 385-98.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00375.x] [PMID: 16454848]
[48]
Sheng JQ, Li SR, Yang XY, et al. Clinical management of adenomatous polyposis in patients with hereditary non-polyposis colorectal cancer and familial adenomatous polyposis. Zhonghua Yi Xue Za Zhi 2006; 86(8): 526-9.
[PMID: 16681880]
[49]
Davis JS, Kanikarla-Marie P, Gagea M, et al. Sulindac plus a phospholipid is effective for polyp reduction and safer than sulindac alone in a mouse model of colorectal cancer development. BMC Cancer 2020; 20(1): 871.
[http://dx.doi.org/10.1186/s12885-020-07311-4] [PMID: 32912193]
[50]
Giardiello FM. NSAID-induced polyp regression in familial adenomatous polyposis patients. Gastroenterol Clin North Am 1996; 25(2): 349-61.
[http://dx.doi.org/10.1016/S0889-8553(05)70251-X] [PMID: 9229577]
[51]
Davies NM, Gudde TW, de Leeuw MAWC. Celecoxib: A new option in the treatment of arthropathies and familial adenomatous polyposis. Expert Opin Pharmacother 2001; 2(1): 139-52.
[http://dx.doi.org/10.1517/14656566.2.1.139] [PMID: 11336575]
[52]
Brophy JM. Celecoxib and cardiovascular risks. Expert Opin Drug Saf 2005; 4(6): 1005-15.
[http://dx.doi.org/10.1517/14740338.4.6.1005] [PMID: 16255660]
[53]
Bannwarth B. COX-2 selective drugs and cardiovascular risks: Same data but discrepant conclusions? Expert Opin Drug Saf 2006; 5(1): 1-2.
[http://dx.doi.org/10.1517/14740338.5.1.1] [PMID: 16370948]
[54]
van Heumen BWH, Roelofs HMJ, Vink-Börger M, et al. Ursodeoxycholic acid counteracts celecoxib in reduction of duodenal polyps in patients with familial adenomatous polyposis: A multicentre, randomized controlled trial. Orphanet J Rare Dis 2013; 8(1): 118.
[http://dx.doi.org/10.1186/1750-1172-8-118] [PMID: 23919274]
[55]
Seow-Choen F, Vijayan V, Keng V. Prospective randomized study of sulindac versus calcium and calciferol for upper gastrointestinal polyps in familial adenomatous polyposis. Br J Surg 2005; 83(12): 1763-6.
[http://dx.doi.org/10.1002/bjs.1800831232] [PMID: 9038563]
[56]
Bertagnolli MM, Eagle CJ, Zauber AG, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006; 355(9): 873-84.
[http://dx.doi.org/10.1056/NEJMoa061355] [PMID: 16943400]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy