Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Synthesis, In Silico Prediction, and In Vitro Evaluation of Anti-tumor Activities of Novel 4'-Hydroxybiphenyl-4-carboxylic Acid Derivatives as EGFR Allosteric Site Inhibitors

In Press, (this is not the final "Version of Record"). Available online 30 April, 2024
Author(s): Wurood A. Shihab, Ammar A. Razzak Kubba*, Lubna H. Tahtamouni*, Khaled M. Saleh, Mai F. AlSakhen, Sana I. Kanaan, Abdulrahman M. Saleh and Salem R. Yasin
Published on: 30 April, 2024

DOI: 10.2174/0109298673305163240427065543

Price: $95

Abstract

Introduction: Allosteric inhibition of EGFR Tyrosine Kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.

Method: A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR, and HR-mass spectroscopy. Compound S4 had a relatively high pharmacophore-fit score, indicating that it may have biological activity similar to the EGFR allosteric inhibitor reference, and it scored a relatively low ΔG against EGFR TK allosteric site, indicating a high likelihood of drug-receptor complex formation. Compound S4 was cytotoxic to the three cancer cell lines tested, particularly HCT-116 colorectal cancer cells, with an IC50 value comparable to Erlotinib.

Compound S4 induced the intrinsic apoptotic pathway in HCT-116 cells by arresting them in the G2/M phase.

Result: All of the new derivatives, including S4, met the in silico requirements for EGFR allosteric inhibitory activity.

Conclusion: Compound S4 is a promising EGFR tyrosine kinase allosteric inhibitor that warrants further research.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Lee, M.M.L.; Chan, B.D.; Wong, W.Y.; Leung, T.W.; Qu, Z.; Huang, J.; Zhu, L.; Lee, C.S.; Chen, S.; Tai, W.C.S. Synthesis and evaluation of novel anticancer compounds derived from the natural product. Brevilin A. ACS Omega, 2020, 5(24), 14586-14596.
[http://dx.doi.org/10.1021/acsomega.0c01276] [PMID: 32596596]
[3]
Bourzikat, O.; El Abbouchi, A.; Ghammaz, H.; El Brahmi, N.; El Fahime, E.; Paris, A.; Daniellou, R.; Suzenet, F.; Guillaumet, G.; El Kazzouli, S. Synthesis, anticancer activities and molecular docking studies of a novel class of 2-phenyl-5, 6, 7, 8-tetrahydroimidazo [1, 2-b] pyridazine derivatives bearing sulfonamides. Molecules, 2022, 27(16), 5238.
[http://dx.doi.org/10.3390/molecules27165238] [PMID: 36014478]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide. for 36 cancers in 185 countries. CA. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[6]
Wang, Y.H.; Huang, K.; Qin, Z.J.; Xiong, H.J.; Liu, T.F.; Wang, T.Y.; Lai, X.D.; Liu, X.H.; Jiang, H.; Wang, X.M. Tumor microenvironment as a bioreactor for Au&Fe3O4-DNA complex synthesis and targeted cancer therapy. Chem. Eng. J., 2023, 467, 143455.
[http://dx.doi.org/10.1016/j.cej.2023.143455]
[7]
Min, H.Y.; Lee, H.Y. Cellular dormancy in cancer: Mechanisms and potential targeting strategies. Cancer Res. Treat., 2023, 55(3), 720-736.
[http://dx.doi.org/10.4143/crt.2023.468] [PMID: 36960624]
[8]
Ruth, JR.; Pant, DK.; Pan, TC.; Seidel, HE.; Baksh, SC.; Keister, BA.; Singh, R.; Sterner, CJ.; Bakewell, SJ.; Moody, SE.; Belka, GK. Cellular dormancy in minimal residual disease following targeted therapy. Breast Ca. Res, 2021, 23(1), 63.
[http://dx.doi.org/10.1186/s13058-021-01416-9]
[9]
Zhong, L. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives Sig. Transduct. Target Ther, 2021, 6(1), 1-48.
[http://dx.doi.org/10.1038/s41392-021-00572-w]
[10]
Wang, M.D.; Shin, D.M.; Simons, J.W.; Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther., 2007, 7(6), 833-837.
[http://dx.doi.org/10.1586/14737140.7.6.833] [PMID: 17555393]
[11]
Yamaoka, T.; Kusumoto, S.; Ando, K.; Ohba, M.; Ohmori, T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci., 2018, 19(11), 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[12]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[13]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[14]
Backes, A.C.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1427-1449.
[http://dx.doi.org/10.1517/17460440802580106] [PMID: 23506107]
[15]
Bakr, R.B.; Mehany, A.B.M.; Abdellatif, K.R.A. Synthesis, EGFR inhibition and anti-cancer activity of new 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives. Anticancer. Agents Med. Chem., 2017, 17(10), 1389-1400.
[http://dx.doi.org/10.2174/1872211311666170213105004] [PMID: 28270084]
[16]
Kurban, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors. ACS Omega, 2023, 8(34), 31500-31509.
[http://dx.doi.org/10.1021/acsomega.3c04635] [PMID: 37663500]
[17]
Elzahabi, H.S.A.; Nossier, E.S.; Alasfoury, R.A.; El-Manawaty, M.; Sayed, S.M.; Elkaeed, E.B.; Metwaly, A.M.; Hagras, M.; Eissa, I.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1053-1076.
[http://dx.doi.org/10.1080/14756366.2022.2062752] [PMID: 35821615]
[18]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem., 2021, 114, 105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105078] [PMID: 34161878]
[19]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[20]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[21]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[22]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[23]
Beyett, T.S.; To, C.; Heppner, D.E.; Rana, J.K.; Schmoker, A.M.; Jang, J.; De Clercq, D.J.H.; Gomez, G.; Scott, D.A.; Gray, N.S.; Jänne, P.A.; Eck, M.J. Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors. Nat. Commun., 2022, 13(1), 2530.
[http://dx.doi.org/10.1038/s41467-022-30258-y] [PMID: 35534503]
[24]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[25]
Kenakin, T.; Miller, L.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev., 2010, 62(2), 265-304.
[http://dx.doi.org/10.1124/pr.108.000992] [PMID: 20392808]
[26]
Maity, S.; Pai, K.S.R.; Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep., 2020, 72(4), 799-813.
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[27]
To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; Shin, B.H.; Gero, T.W.; Yang, A.; Dahlberg, S.E.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov., 2019, 9(7), 926-943.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[28]
To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can., 2022, 3(4), 402-417.
[http://dx.doi.org/10.1038/s43018-022-00351-8] [PMID: 35422503]
[29]
Zubair, T.; Bandyopadhyay, D. Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities. Int. J. Mol. Sci., 2023, 24(3), 2651.
[http://dx.doi.org/10.3390/ijms24032651] [PMID: 36768973]
[30]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[31]
Singh, S.; Geetha, P.; Ramajayam, R. Isolation, synthesis and medicinal chemistry of biphenyl analogs – A review. Results in Chemistry, 2023, 6, 101135.
[http://dx.doi.org/10.1016/j.rechem.2023.101135]
[32]
Ali, H.A.; Ismail, M.A.; Fouda, A.E.A.S.; Ghaith, E.A. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: Applications and biological aspects. RSC Advances, 2023, 13(27), 18262-18305.
[http://dx.doi.org/10.1039/D3RA03531J] [PMID: 37333795]
[33]
Cheng, B.; Zhu, G.; Meng, L.; Wu, G.; Chen, Q.; Ma, S. Identification and optimization of biphenyl derivatives as novel tubulin inhibitors targeting colchicine-binding site overcoming multidrug resistance. Eur. J. Med. Chem., 2022, 228(228), 113930.
[http://dx.doi.org/10.1016/j.ejmech.2021.113930] [PMID: 34794817]
[34]
Murali, P.; Karuppasamy, R. Imidazole and biphenyl derivatives as anti-cancer agents for glioma therapeutics: Computational drug repurposing strategy. Anticancer. Agents Med. Chem., 2023, 23(9), 1085-1101.
[http://dx.doi.org/10.2174/1871520623666230125090815] [PMID: 36698225]
[35]
Pisano, M.; Dettori, M.A.; Fabbri, D.; Delogu, G.; Palmieri, G.; Rozzo, C. Anticancer activity of two novel hydroxylated biphenyl compounds toward malignant melanoma cells. Int. J. Mol. Sci., 2021, 22(11), 5636.
[http://dx.doi.org/10.3390/ijms22115636] [PMID: 34073232]
[36]
Sang, Y.; Han, S.; Han, S.; Pannecouque, C.; De Clercq, E.; Zhuang, C.; Chen, F. Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains. Bioorg. Chem., 2019, 89(89), 102974.
[http://dx.doi.org/10.1016/j.bioorg.2019.102974] [PMID: 31102693]
[37]
Ismail, M.A.H.; Aboul-Enein, M.N.; El-Azzouny, A.A.E.; Abouzid, K.A.M.; Ismail, N.S.M. Design, synthesis, and antihypertensive evaluation of 2′-tetrazolyl and 2′-carboxy-biphenylylmethyl-pyrrolidine scaffolds substituted at their N1, C3, and C4 positions as potential angiotensin II AT1 receptor antagonists. Med. Chem. Res., 2015, 24(1), 442-458.
[http://dx.doi.org/10.1007/s00044-014-1095-9]
[38]
Zewail, M.B.; El-Gizawy, S.A.; Osman, M.A.; Haggag, Y.A. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed- dose combination of candesartan cilexetil and hydrochlorothiazide. J. Drug Deliv. Sci. Technol., 2021, 61, 102320.
[http://dx.doi.org/10.1016/j.jddst.2021.102320]
[39]
Meka, G.; Chintakunta, R. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. Results in Chemistry, 2023, 5, 100783.
[http://dx.doi.org/10.1016/j.rechem.2023.100783]
[40]
Wang, Y.; Huang, Q.; Zhang, L.; Zheng, C.; Xu, H. Biphenyls in clusiaceae: Isolation, structure diversity, synthesis and bioactivity. Front Chem., 2022, 10, 987009.
[http://dx.doi.org/10.3389/fchem.2022.987009] [PMID: 36531325]
[41]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al- Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[42]
Vale, J.A.; Rodrigues, M.P.; Lima, Â.M.A.; Santiago, S.S.; Lima, G.D.A.; Almeida, A.A.; Oliveira, L.L.; Bressan, G.C.; Teixeira, R.R.; Machado-Neves, M. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother., 2022, 148, 112689.
[http://dx.doi.org/10.1016/j.biopha.2022.112689] [PMID: 35149386]
[43]
Deng, Y.; Yang, T.; Wang, H.; Yang, C.; Cheng, L.; Yin, S.F.; Kambe, N.; Qiu, R. Recent progress on photocatalytic synthesis of ester derivatives and reaction mechanisms. Top. Curr. Chem. (Cham), 2021, 379(6), 42.
[http://dx.doi.org/10.1007/s41061-021-00355-5] [PMID: 34668085]
[44]
Hassan, O.M.; Kubba, A.; Tahtamouni, L.H. Novel 5-bromoindole-2-carboxylic acid derivatives as EGFR inhibitors: Synthesis, docking study, and structure activity relationship. Anticancer. Agents Med. Chem., 2023, 23(11), 1336-1348.
[http://dx.doi.org/10.2174/1871520623666230227153449] [PMID: 36847231]
[45]
Hussein, SA.; Kubba, AA.; Tahtamouni, LH.; Saleh, KM.; Rammaha, MS.; Ridha, DM. Synthesis, docking study, and cytotoxicity evaluation of new hydroxy benzoic acid derivatives. T.J.P.H.S., 2023, 17(1), 30-345.
[http://dx.doi.org/10.25130/tjphs.2023.17.1.4.30.45]
[46]
Kubba, A.A.R.M.; Shihab, W.A.; Al-Shawi, N.N. In silico and in vitro approach for design, synthesis, and anti-proliferative activity of novel derivatives of 5-(4-Aminophenyl)-4-substituted phenyl-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione. Res. J. Pharm. Technol., 2020, 13(7), 3329-3339.
[http://dx.doi.org/10.5958/0974-360X.2020.00591.0]
[47]
Yaseen, Y.S.; Mahmood, A.A.R.; Abbas, A.H.; Shihab, W.A.; Tahtamouni, L.H. New niflumic acid derivatives as egfr inhibitors: Design, synthesis, in-silico studies, and anti-proliferative assessment. Med. Chem., 2023, 19(5), 445-459.
[http://dx.doi.org/10.2174/1573406419666221219144804] [PMID: 36537605]
[48]
Berillo, DA.; Dyusebaeva, MA. Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. S.P.J., , 2022, 30(7), 1036-1043.
[http://dx.doi.org/10.1016/j.jsps.2022.04.009]
[49]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[50]
Hosny, N.M.; Hassan, N.Y.; Mahmoud, H.M.; Abdel-Rhman, M.H. Synthesis, characterization and cytotoxicity of new 2-isonicotinoyl-N-phenylhydrazine-1-carbothioamide and its metal complexes. Appl. Organomet. Chem., 2019, 33(8), e4998.
[http://dx.doi.org/10.1002/aoc.4998]
[51]
El-Gammal, O.A.; Abdel-Latif, E.; Farag, M.G.; Abdel-Rhman, M.H. Synthesis, characterization, and anticancer activity of new binuclear complexes of 2,2′-malonylbis( N -phenylhydrazine-1-carbothioamide). Appl. Organomet. Chem., 2021, 35(5), e6194.
[http://dx.doi.org/10.1002/aoc.6194]
[52]
Acar, E.; Kansız, S.; Dege, N. Synthesis, crystal structure and hirshfeld surface analysis of (E)-2-(4-Methylbenzylidene)-N-Phenylhydrazine-1-Carbothioamide. J. Struct. Chem., 2023, 64(6), 974-983.
[http://dx.doi.org/10.1134/S0022476623060021]
[53]
Allawi, M M.; Mahmood, AA.; Tahtamouni, LH.; AlSakhen, M F.; Kanaan, S I.; Saleh, K M.; Yasin, S R. New indole-6-carboxylic acid derivatives as multi-target antiproliferative agents: Synthesis, in silico studies, and cytotoxicity evaluation. Chem. Biodivers, 2023, e202301892.
[http://dx.doi.org/10.1002/cbdv.202301892]
[54]
Hassan, OM. Design, synthesis, and molecular docking studies of 5-bromoindole-2-carboxylic acid hydrazone derivatives: In vitro anticancer and vegfr-2 inhibitory effects. Chem. Select., 2022, 7(46), e202203726.
[55]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG : A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[56]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in docking. Curr. Med. Chem., 2020, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[57]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[58]
Meng, L.; Lin, Y.; Gu, H.; Su, T.C. Study on dynamic docking process and collision problems of captured-rod docking method. Ocean Eng., 2019, 193, 106624.
[http://dx.doi.org/10.1016/j.oceaneng.2019.106624]
[59]
Kaur, T.; Madgulkar, A.; Bhalekar, M.; Asgaonkar, K. Molecular docking in formulation and development. Curr. Drug Discov. Technol., 2019, 16(1), 30-39.
[http://dx.doi.org/10.2174/1570163815666180219112421] [PMID: 29468973]
[60]
Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522.
[http://dx.doi.org/10.1021/acs.jcim.7b00412] [PMID: 28902511]
[61]
Al-Shabib, N.A.; Khan, J.M.; Malik, A.; Alsenaidy, M.A.; Rehman, M.T.; Al Ajmi, M.F.; Alsenaidy, A.M.; Husain, F.M.; Khan, R.H. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. J. Mol. Liq., 2018, 269, 511-520.
[http://dx.doi.org/10.1016/j.molliq.2018.07.122]
[62]
Vidal-Limon, A.; Aguilar-Toalá, JE.; Liceaga, AM. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem., 2022, 70(4), 934-943.
[http://dx.doi.org/10.1021/acs.jafc.1c06110]
[63]
Hussen, N.H. Synthesis, characterization, molecular docking, ADMET prediction, and anti-inflammatory activity of some Schiff bases derived from salicylaldehyde as a potential cyclooxygenase inhibitor. Baghdad Sci. J, 2023, 20(5), 1662-1674.
[64]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[65]
Tahtamouni, L.; Alzghoul, A.; Alderfer, S.; Sun, J.; Ahram, M.; Prasad, A.; Bamburg, J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One, 2022, 17(12), e0279746.
[http://dx.doi.org/10.1371/journal.pone.0279746] [PMID: 36584207]
[66]
Mehihi, A.A.R.; Kubba, A.A.R.; Shihab, W.A.; Tahtamouni, L.H. New tolfenamic acid derivatives with hydrazine-1- carbothioamide and 1,3,4-oxadiazole moieties targeting VEGFR: Synthesis, in silico studies, and in vitro anticancer assessment. Med. Chem. Res., 2023, 32(11), 2334-2348.
[http://dx.doi.org/10.1007/s00044-023-03137-4]
[67]
Bhanja, K.K.; Sharma, M.; Patra, N. Uncovering the structural and binding insights of dual inhibitors simultaneously targeting two distinct sites on EGFR Kinase. J. Phys. Chem. B, 2023, 127(50), 10749-10765.
[http://dx.doi.org/10.1021/acs.jpcb.3c04337] [PMID: 38055900]
[68]
Dou, D.; Wang, J.; Qiao, Y.; Wumaier, G.; Sha, W.; Li, W.; Mei, W.; Yang, T.; Zhang, C.; He, H.; Wang, C.; Chu, L.; Sun, B.; Su, R.; Ma, X.; Gong, M.; Xie, L.; Jiang, W.; Diao, Y.; Zhu, L.; Zhao, Z.; Chen, Z.; Xu, Y.; Li, S.; Li, H. Discovery and optimization of 4-anilinoquinazoline derivatives spanning ATP binding site and allosteric site as effective EGFR-C797S inhibitors. Eur. J. Med. Chem., 2022, 244, 114856.
[http://dx.doi.org/10.1016/j.ejmech.2022.114856] [PMID: 36279692]
[69]
Kubba, RM.; Mohammed, MA.; Ahamed, LS. DFT calculations and experimental study to inhibit carbon steel corrosion in saline solution by quinoline-2-one derivative: Carbon steel corrosion. Baghdad Sci. J, 2021, 18(1), 113.
[http://dx.doi.org/10.21123/bsj.2021.18.1.0113]
[70]
Calderón-Montaño, J.M.; Martínez-Sánchez, S.M.; Jiménez-González, V.; Burgos-Morón, E.; Guillén-Mancina, E.; Jiménez-Alonso, J.J.; Díaz-Ortega, P.; García, F.; Aparicio, A.; López-Lázaro, M. Screening for selective anticancer activity of 65 extracts of plants collected in Western Andalusia. Spain. Plants, 2021, 10(10), 2193.
[http://dx.doi.org/10.3390/plants10102193] [PMID: 34686002]
[71]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[72]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[73]
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748.
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[74]
Tinivella, A.; Rastelli, G. Investigating the selectivity of allosteric inhibitors for mutant T790M EGFR over wild type using molecular dynamics and binding free energy calculations. ACS Omega, 2018, 3(12), 16556-16562.
[http://dx.doi.org/10.1021/acsomega.8b03256]
[75]
Fan, M.; Hu, L.; Shi, S.; Song, X.; He, H.; Qi, B. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites. Bioorg. Med. Chem., 2023, 96, 117534.
[http://dx.doi.org/10.1016/j.bmc.2023.117534] [PMID: 37952262]
[76]
Bhatia, P.; Sharma, V.; Alam, O.; Manaithiya, A.; Alam, P.; Kahksha; Alam, M.T.; Imran, M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem., 2020, 204, 112640.
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[77]
Tripathi, S.K.; Biswal, B.K. Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discov. Today, 2021, 26(6), 1466-1472.
[http://dx.doi.org/10.1016/j.drudis.2021.02.005] [PMID: 33581322]
[78]
Caporuscio, F.; Tinivella, A.; Restelli, V.; Semrau, M.S.; Pinzi, L.; Storici, P.; Broggini, M.; Rastelli, G. Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking. Future Med. Chem., 2018, 10(13), 1545-1553.
[http://dx.doi.org/10.4155/fmc-2018-0063] [PMID: 29766737]
[79]
Foschi, F.; Tinivella, A.; Crippa, V.; Pinzi, L.; Mologni, L.; Passarella, D.; Rastelli, G. Structure-activity exploration of a small-molecule allosteric inhibitor of T790M/L858R double mutant EGFR. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 239-245.
[http://dx.doi.org/10.1080/14756366.2022.2145284] [PMID: 36373202]
[80]
Miljković, F.; Bajorath, J. Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome. ACS Omega, 2018, 3(12), 17295-17308.
[http://dx.doi.org/10.1021/acsomega.8b02998]
[81]
Al-Rubaye, IM. In silico and in vitro evaluation of novel carbothioamide-based and heterocyclic derivatives of 4-(tert-butyl)-3-methoxybenzoic acid as EGFR tyrosine kinase allosteric site inhibitors. Results Chem., 2024, 7, 101329.
[http://dx.doi.org/10.1016/j.rechem.2024.101329]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy