Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Photochemical Reactions of Sulfur Ylides

Author(s): Radell Echemendía, Kauê C. Capellaro and Antonio C.B. Burtoloso*

Volume 28, Issue 13, 2024

Published on: 24 April, 2024

Page: [978 - 990] Pages: 13

DOI: 10.2174/0113852728304549240328064426

Price: $65

Abstract

Photochemical reactions offer unparalleled opportunities to access elusive chemical pathways and develop innovative strategies for constructing complex molecules. Within organic synthesis, photochemical reactions have become indispensable tools for accessing complex molecular structures, such as pharmaceuticals and natural products. The ability of sulfur ylides to participate in these diverse processes has made them indispensable tools in the synthetic chemist's toolbox. The use of sulfur ylides in photochemical transformations has garnered significant attention in the synthetic organic chemistry community, and they serve as powerful intermediates in several chemical transformations. This review article presents a comprehensive overview of the photochemical reactions mediated by sulfur ylides. Herein, we describe the key aspects of the reactivity of sulfur ylides in the presence of light. The reactivity of these compounds can be classified into three categories: sulfur ylides as energy acceptors, as electron donors, and as trapping reagents.

« Previous
Graphical Abstract

[1]
Pitre, S.P.; Overman, L.E. Strategic use of visible-light photoredox catalysis in natural product synthesis. Chem. Rev., 2022, 122(2), 1717-1751.
[http://dx.doi.org/10.1021/acs.chemrev.1c00247]
[2]
Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed., 2018, 57(32), 10034-10072.
[http://dx.doi.org/10.1002/anie.201709766]
[3]
Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018]
[4]
Kalthoff, S.F.; James, M.J.; Teders, M.; Pitzer, L.; Glorius, F. Energy transfer catalysis mediated by visible light: Principles, applications, directions. Chem. Soc. Rev., 2018, 47(19), 7190-7202.
[http://dx.doi.org/10.1039/C8CS00054A]
[5]
Twilton, J.; Le, C.; Zhang, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The merger of transition metal and photocatalysis. Nat. Rev. Chem., 2017, 1(7), 0052.
[http://dx.doi.org/10.1038/s41570-017-0052]
[6]
Chen, J.R.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: Reaction design and beyond. Acc. Chem. Res., 2016, 49(9), 1911-1923.
[http://dx.doi.org/10.1021/acs.accounts.6b00254]
[7]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r]
[8]
Tlili, A.; Lakhdar, S. Acridinium salts and cyanoarenes as powerful photocatalysts: Opportunities in organic synthesis. Angew. Chem. Int. Ed., 2021, 60(36), 19526-19549.
[http://dx.doi.org/10.1002/anie.202102262]
[9]
Xuan, J.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems. Eur. J. Org. Chem., 2013, 2013(30), 6755-6770.
[http://dx.doi.org/10.1002/ejoc.201300596]
[10]
Crespi, S.; Fagnoni, M. Generation of alkyl radicals: From the tyranny of tin to the photon democracy. Chem. Rev., 2020, 120(17), 9790-9833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00278]
[11]
Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev., 2013, 42(1), 97-113.
[http://dx.doi.org/10.1039/C2CS35250H]
[12]
Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C−C bond. Chem. Rev., 2007, 107(6), 2725-2756.
[http://dx.doi.org/10.1021/cr068352x]
[13]
Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223]
[14]
Buzzetti, L.; Crisenza, G.E.M.; Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed., 2019, 58(12), 3730-3747.
[http://dx.doi.org/10.1002/anie.201809984]
[15]
Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N]
[16]
Tang, M.; Draper, F.; Pham, L.N.; Ho, C.C.; Huang, H.; Sun, J.; Thickett, S.C.; Coote, M.L.; Connell, T.U.; Bissember, A.C. Photochemical povarov-type reactions: Electron donor–acceptor photoactivation by visible light. J. Org. Chem., 2024, 89(4), 2683-2690.
[http://dx.doi.org/10.1021/acs.joc.3c02746]
[17]
Fan, R.; Tan, C.; Liu, Y.; Wei, Y.; Zhao, X.; Liu, X.; Tan, J.; Yoshida, H. A leap forward in sulfonium salt and sulfur ylide chemistry. Chin. Chem. Lett., 2021, 32(1), 299-312.
[http://dx.doi.org/10.1016/j.cclet.2020.06.003]
[18]
Burtoloso, A.C.B.; Dias, R.M.P.; Leonarczyk, I.A. Sulfoxonium and sulfonium ylides as diazocarbonyl equivalents in metal-catalyzed insertion reactions. Eur. J. Org. Chem., 2013, 2013(23), 5005-5016.
[http://dx.doi.org/10.1002/ejoc.201300581]
[19]
Bisag, G.D.; Ruggieri, S.; Fochi, M.; Bernardi, L. Sulfoxonium ylides: Simple compounds with chameleonic reactivity. Org. Biomol. Chem., 2020, 18(43), 8793-8809.
[http://dx.doi.org/10.1039/D0OB01822H]
[20]
Caiuby, C.A.D.; Furniel, L.G.; Burtoloso, A.C.B. Asymmetric transformations from sulfoxonium ylides. Chem. Sci. , 2022, 13(5), 1192-1209.
[http://dx.doi.org/10.1039/D1SC05708A]
[21]
Suarez, A.I.O.; del Río, M.P.; Remerie, K.; Reek, J.N.H.; de Bruin, B. Rh-mediated C1-polymerization: Copolymers from diazoesters and sulfoxonium ylides. ACS Catal., 2012, 2(9), 2046-2059.
[http://dx.doi.org/10.1021/cs300363m]
[22]
Sarabia, F.; Gálvez, M.F.; Chammaa, S.; Ortiz, M.L.; Ruiz, S.A. Chiral sulfur ylides for the synthesis of bengamide E and analogues. J. Org. Chem., 2010, 75(16), 5526-5532.
[http://dx.doi.org/10.1021/jo100696w]
[23]
Hayashi, M.; Burtoloso, A.C.B. Organocatalytic transformations from sulfur ylides. Catalysts, 2023, 13(4), 689.
[http://dx.doi.org/10.3390/catal13040689]
[24]
Liu, X.; Shao, Y.; Sun, J. Ruthenium-catalyzed chemoselective N–H bond insertion reactions of 2-pyridones/7-azaindoles with sulfoxonium ylides. Org. Lett., 2021, 23(3), 1038-1043.
[http://dx.doi.org/10.1021/acs.orglett.0c04229]
[25]
Furniel, L.G.; Echemendía, R.; Burtoloso, A.C.B. Cooperative copper-squaramide catalysis for the enantioselective N–H insertion reaction with sulfoxonium ylides. Chem. Sci. , 2021, 12(21), 7453-7459.
[http://dx.doi.org/10.1039/D1SC00979F]
[26]
Zhang, X.; Zhang, Y.; Liang, C.; Jiang, J. Copper-catalyzed P–H insertion reactions of sulfoxonium ylides. Org. Biomol. Chem., 2021, 19(26), 5767-5771.
[http://dx.doi.org/10.1039/D1OB00948F]
[27]
Dias, R.M.P.; Burtoloso, A.C.B. Catalyst-free insertion of sulfoxonium ylides into aryl thiols. A direct preparation of β-keto thioethers. Org. Lett., 2016, 18(12), 3034-3037.
[http://dx.doi.org/10.1021/acs.orglett.6b01470]
[28]
Momo, P.B.; Leveille, A.N.; Farrar, E.H.E.; Grayson, M.N.; Mattson, A.E.; Burtoloso, A.C.B. Enantioselective S−H insertion reactions of α-carbonyl sulfoxonium ylides. Angew. Chem. Int. Ed., 2020, 59(36), 15554-15559.
[http://dx.doi.org/10.1002/anie.202005563]
[29]
Cheng, J.; Wu, X.; Sun, S.; Yu, J-T. Recent applications of α-carbonyl sulfoxonium ylides in rhodium- and iridium-catalyzed c–h functionalizations. Synlett, 2019, 30(1), 21-29.
[http://dx.doi.org/10.1055/s-0037-1610263]
[30]
Kumar, A.; Sherikar, M.S.; Hanchate, V.; Prabhu, K.R. Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron, 2021, 101(19), 132478.
[http://dx.doi.org/10.1016/j.tet.2021.132478]
[31]
Gallo, R.D.C. Ahmad, A.; Metzker, G.; Burtoloso, A.C.B. α,α‐Alkylation-halogenation and dihalogenation of sulfoxonium ylides. A direct preparation of geminal difunctionalized ketones. Chemistry, 2017, 23(67), 16980-16984.
[http://dx.doi.org/10.1002/chem.201704609]
[32]
Day, D.P.; Vargas, M.J.A.; Burtoloso, A.C.B. Direct synthesis of α-fluoro-α-triazol-1-yl ketones from sulfoxonium ylides: A one-pot approach. J. Org. Chem., 2021, 86(17), 12427-12435.
[http://dx.doi.org/10.1021/acs.joc.1c01441]
[33]
McAulay, K.; Clark, J.S. Total synthesis of 7- epi -pukalide and 7-acetylsinumaximol B. Chemistry, 2017, 23(41), 9761-9765.
[http://dx.doi.org/10.1002/chem.201702591]
[34]
Nicolaou, K.C.; Sun, Y.P.; Guduru, R.; Banerji, B.; Chen, D.Y.K. Total synthesis of the originally proposed and revised structures of palmerolide a and isomers thereof. J. Am. Chem. Soc., 2008, 130(11), 3633-3644.
[http://dx.doi.org/10.1021/ja710485n]
[35]
Korneev, S.M. Valence isomerization between diazo compounds and diazirines. Eur. J. Org. Chem., 2011, 2011(31), 6153-6175.
[http://dx.doi.org/10.1002/ejoc.201100224]
[36]
Moss, R.A. Diazirines: Carbene precursors par excellence. Acc. Chem. Res., 2006, 39(4), 267-272.
[http://dx.doi.org/10.1021/ar050155h]
[37]
Candeias, N.; Afonso, C. Developments in the photochemistry of diazo compounds. Curr. Org. Chem., 2009, 13(7), 763-787.
[http://dx.doi.org/10.2174/138527209788167231]
[38]
Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev., 2015, 115(18), 9981-10080.
[http://dx.doi.org/10.1021/acs.chemrev.5b00121]
[39]
Trost, B.M. Decomposition of sulfur ylides. Evidence for carbene intermediates. J. Am. Chem. Soc., 1966, 88(7), 1587-1588.
[http://dx.doi.org/10.1021/ja00959a071]
[40]
Maki, Y.; Sako, M.; Kurahashi, N.; Hirota, K. A simple and efficient synthesis of the γ-lactam analogue of β-lactam antibiotics. Ring-expansion of penicillins to homopenicillins. J. Chem. Soc. Chem. Commun., 1988, (2), 110-111.
[http://dx.doi.org/10.1039/C39880000110]
[41]
Stoffregen, S.A.; Heying, M.; Jenks, W.S. C-sulfonium ylides from thiophenes: Potential carbene precursors. J. Am. Chem. Soc., 2007, 129(51), 15746-15747.
[http://dx.doi.org/10.1021/ja076351w]
[42]
Jenks, W.S.; Heying, M.J.; Stoffregen, S.A.; Rockafellow, E.M. Reaction of dicarbomethoxycarbene with thiophene derivatives. J. Org. Chem., 2009, 74(7), 2765-2770.
[http://dx.doi.org/10.1021/jo802823s]
[43]
Wan, C.; Hou, Z.; Yang, D.; Zhou, Z.; Xu, H.; Wang, Y.; Dai, C.; Liang, M.; Meng, J.; Chen, J.; Yin, F.; Wang, R.; Li, Z. The thiol-sulfoxonium ylide photo-click reaction for bioconjugation. Chem. Sci. , 2023, 14(3), 604-612.
[http://dx.doi.org/10.1039/D2SC05650J]
[44]
Xian, N.; Yin, J.; Ji, X.; Deng, G.J.; Huang, H. Visible-light-mediated photoredox carbon radical formation from aqueous sulfoxonium ylides. Org. Lett., 2023, 25(7), 1161-1165.
[http://dx.doi.org/10.1021/acs.orglett.3c00143]
[45]
Sun, Q.; Peng, Y.; Wang, Y.; Bao, X. Construction of α-acyloxy ketones via photoredox-catalyzed O–H insertion of sulfoxonium ylides with carboxylic acids. Org. Lett., 2023, 25(36), 6613-6617.
[http://dx.doi.org/10.1021/acs.orglett.3c02221]
[46]
Gao, P.P.; Yan, D.M.; Bi, M.H.; Jiang, M.; Xiao, W.J.; Chen, J.R. Alkene synthesis by photo-wolff-kischner reaction of sulfur ylides and N -tosylhydrazones. Chemistry, 2021, 27(57), 14195-14201.
[http://dx.doi.org/10.1002/chem.202102671]
[47]
Pramanik, M.M.D.; Yuan, F.; Yan, D.M.; Xiao, W.J.; Chen, J.R. Visible-light-driven radical multicomponent reaction of 2-vinylanilines, sulfonyl chlorides, and sulfur ylides for synthesis of indolines. Org. Lett., 2020, 22(7), 2639-2644.
[http://dx.doi.org/10.1021/acs.orglett.0c00602]
[48]
Yuan, F.; Yan, D.M.; Gao, P.P.; Shi, D.Q.; Xiao, W.J.; Chen, J.R. Photoredox-catalyzed multicomponent cyclization of 2-vinyl phenols, N-alkoxypyridinium salts, and sulfur ylides for synthesis of dihydrobenzofurans. ChemCatChem, 2021, 13(2), 543-547.
[http://dx.doi.org/10.1002/cctc.202001589]
[49]
Yan, D.M.; Xu, S.H.; Qian, H.; Gao, P.P.; Bi, M.H.; Xiao, W.J.; Chen, J.R. Photoredox-catalyzed and copper(II)salt-assisted radical addition/hydroxyla-tion reaction of alkenes, sulfur ylides, and water. ACS Catal., 2022, 12(6), 3279-3285.
[http://dx.doi.org/10.1021/acscatal.2c00638]
[50]
Xu, S.H.; Yan, D.M.; Rao, L.; Jiang, M.; Wu, Y.L.; Xiao, W.J.; Chen, J.R. The photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes with sulfur ylides as the source of alkyl radicals. Org. Chem. Front., 2022, 9(14), 3747-3756.
[http://dx.doi.org/10.1039/D2QO00383J]
[51]
Xia, X.D.; Lu, L.Q.; Liu, W.Q.; Chen, D.Z.; Zheng, Y.H.; Wu, L.Z.; Xiao, W.J. Visible-light-driven photocatalytic activation of inert sulfur ylides for 3-acyl oxindole synthesis. Chemistry, 2016, 22(25), 8432-8437.
[http://dx.doi.org/10.1002/chem.201600871]
[52]
Sana, S.; Dannarm, S.R.; Tokala, R.; Dastari, S.; Sathish, M.; Kumar, R.; Sonti, R.; Shankaraiah, N. Sustainable photocatalytic C–H annulation of heteroarenes with sulfoxonium ylides: Synthesis and photophysical properties of fused imidazo [1,2-a] pyridine-based molecules. Org. Chem. Front., 2023, 10(19), 4800-4808.
[http://dx.doi.org/10.1039/D3QO00923H]
[53]
Peng, Y.; Wang, Y.; Wang, K.; Sun, Q.; Bao, X. Visible-light photocatalyzed C3–H alkylation of 2 H -indazoles/indoles with sulfoxonium ylides via diversified mechanistic pathways. ACS Catal., 2024, 14(2), 1193-1204.
[http://dx.doi.org/10.1021/acscatal.3c04729]
[54]
Liu, Y.Y.; Yu, X.Y.; Chen, J.R.; Qiao, M.M.; Qi, X.; Shi, D.Q.; Xiao, W.J. Visible-light-driven aza-ortho-quinone methide generation for the synthesis of indoles in a multicomponent reaction. Angew. Chem. Int. Ed., 2017, 56(32), 9527-9531.
[http://dx.doi.org/10.1002/anie.201704690]
[55]
Umemoto, T.; Adachi, K.; Ishihara, S. CF3 oxonium salts, O-(Trifluoromethyl)dibenzofuranium salts: In situ synthesis, properties, and application as a real CF3+ species reagent. J. Org. Chem., 2007, 72(18), 6905-6917.
[http://dx.doi.org/10.1021/jo070896r]
[56]
Ye, C.; Cai, B.G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.W.; Xuan, J. Visible-light-promoted polysubstituted olefins synthesis involving sulfur ylides as carbene trapping reagents. J. Org. Chem., 2021, 86(1), 1012-1022.
[http://dx.doi.org/10.1021/acs.joc.0c02500]
[57]
Yang, Z.; Stivanin, M.L.; Jurberg, I.D.; Koenigs, R.M. Visible light-promoted reactions with diazo compounds: A mild and practical strategy towards free carbene intermediates. Chem. Soc. Rev., 2020, 49(19), 6833-6847.
[http://dx.doi.org/10.1039/D0CS00224K]
[58]
Jurberg, I.D.; Davies, H.M.L. Blue light-promoted photolysis of aryldiazoacetates. Chem. Sci. , 2018, 9(22), 5112-5118.
[http://dx.doi.org/10.1039/C8SC01165F]
[59]
Bernardim, B.; Baldwin, H.A.M.; Burtoloso, A.C.B. LED lighting as a simple, inexpensive, and sustainable alternative for Wolff rearrangements. RSC Advances, 2015, 5(18), 13311-13314.
[http://dx.doi.org/10.1039/C4RA15670F]
[60]
Stivanin, M.L.; Fernandes, A.A.G.; da Silva, A.F.; Okada, C.Y., Jr; Jurberg, I.D. Blue light-promoted N−H insertion of carbazoles, pyrazoles and 1,2,3-triazoles into aryldiazoacetates. Adv. Synth. Catal., 2020, 362(5), 1106-1111.
[http://dx.doi.org/10.1002/adsc.201901343]
[61]
Ciszewski, Ł.W.; Jasińska, R.K.; Gryko, D. Recent developments in photochemical reactions of diazo compounds. Org. Biomol. Chem., 2019, 17(3), 432-448.
[http://dx.doi.org/10.1039/C8OB02703J]
[62]
Hua, T.B.; Yang, Q.Q.; Zou, Y.Q. Recent advances in enantioselective photochemical reactions of stabilized diazo compounds. Molecules, 2019, 24(17), 3191.
[http://dx.doi.org/10.3390/molecules24173191]
[63]
Xiao, T.; Mei, M.; He, Y.; Zhou, L. Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chem. Commun. , 2018, 54(64), 8865-8868.
[http://dx.doi.org/10.1039/C8CC04609C]
[64]
Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R.M. Blue-light-induced carbene-transfer reactions of diazoalkanes. Angew. Chem. Int. Ed., 2019, 58(4), 1203-1207.
[http://dx.doi.org/10.1002/anie.201811991]
[65]
Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T. gem-Difluoroallylation of aryl diazoesters via catalyst-free, blue-light-mediated formal doyle–kirmse reaction. Org. Lett., 2019, 21(8), 2654-2657.
[http://dx.doi.org/10.1021/acs.orglett.9b00647]
[66]
Husain, A.; Khan, S.A.; Iram, F.; Iqbal, M.A.; Asif, M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem., 2019, 171, 66-92.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.021]
[67]
Munaretto, L.S.; dos Santos, C.Y.; Gallo, R.D.C.; Okada, C.Y., Jr; Deflon, V.M.; Jurberg, I.D. Visible-light-mediated strategies to assemble alkyl 2-carboxylate- 2,3,3-trisubstituted β-lactams and 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones using aryldiazoacetates and aryldiazoketones. Org. Lett., 2021, 23(23), 9292-9296.
[http://dx.doi.org/10.1021/acs.orglett.1c03662]
[68]
Lu, J.; Li, L.; He, X.K.; Xu, G.Y.; Xuan, J. Visible light-promoted sulfoxonium ylides synthesis from aryl diazoacetates and sulfoxides. Chin. J. Chem., 2021, 39(6), 1646-1650.
[http://dx.doi.org/10.1002/cjoc.202100064]
[69]
Echemendía, R.; de Oliveira, K.T.; Burtoloso, A.C.B. Visible-light-promoted synthesis of 1,3-dicarbonyl sulfoxonium ylides. Org. Lett., 2022, 24(35), 6386-6390.
[http://dx.doi.org/10.1021/acs.orglett.2c02346]
[70]
Dong, Y.; Tian, Y.; Zhang, Z.; Wang, T. Blue light-promoted reaction of α-diazoketones and sulfoxonium ylides: Synthesis of 1,3-dicarbonyl sulfoxonium ylides. Adv. Synth. Catal., 2022, 364(23), 4026-4030.
[http://dx.doi.org/10.1002/adsc.202200944]
[71]
Vaitla, J.; Hopmann, K.H.; Bayer, A. Rhodium-catalyzed synthesis of sulfur ylides via in situ generated iodonium ylides. Org. Lett., 2017, 19(24), 6688-6691.
[http://dx.doi.org/10.1021/acs.orglett.7b03413]
[72]
Yuan, Y.; Wu, X.F. Direct access to 1,1-dicarbonyl sulfoxonium ylides from aryl halides or triflates: Palladium-catalyzed carbonylation. Org. Lett., 2019, 21(13), 5310-5314.
[http://dx.doi.org/10.1021/acs.orglett.9b01926]
[73]
Yuan, Y.; Chen, B.; Zhang, Y.; Wu, X.F. Pd/C-catalyzed carbonylative synthesis of α -carbonyl-α′-amide sulfoxonium ylides from azides. J. Org. Chem., 2020, 85(8), 5733-5740.
[http://dx.doi.org/10.1021/acs.joc.0c00273]
[74]
Capurro, P.; Lambruschini, C.; Lova, P.; Moni, L.; Basso, A. Into the blue: Ketene multicomponent reactions under visible light. J. Org. Chem., 2021, 86(8), 5845-5851.
[http://dx.doi.org/10.1021/acs.joc.1c00278]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy