Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Systematic Review Article

Antioxidative and Anti-inflammatory Effects of Plant-derived Hypoglycemic Medicines: An In vivo/In vitro Systematic Review

Author(s): Mohammad Sadegh Adel-Mehraban, Ozra Tabatabaei-Malazy*, Azadeh Manayi*, Sudabeh Alatab, Shahrzad Mohseni, Saeed Ebrahimi Fana, Pooria Asili, Roodabeh Bahramsoltani, Fataneh Esmaeili and Bayan Azizi

Volume 24, Issue 16, 2024

Published on: 19 April, 2024

Page: [1408 - 1450] Pages: 43

DOI: 10.2174/0115680266295032240415064750

Price: $65

conference banner
Abstract

Background: The activation of oxidative stress and inflammatory conditions has been associated with acceleration in diabetes (DM) onset and complications. Despite various anti-DM medications, there is a growing trend to discover inexpensive and effective treatments with low adverse effects from plants as one of the promising sources for drug development.

Objective: This study aimed to systematically investigate the simultaneous anti-inflammatory and antioxidant effects of plant-derived hypoglycemic medicines in diabetic experimental models.

Methods: The search terms consisted of “diabetes”, “herbal medicine”, “antioxidant”, “Inflammatory biomarker”, and their equivalents among PubMed, Scopus, Web of Science, and Cochrane Library databases up to 17 August 2021.

Results: Throughout the search of databases, 201 eligible experimental studies were recorded. The results showed that the most commonly assessed inflammatory and oxidative stress biomarkers were tumor necrosis factor (TNF)-α, interleukin (IL) 6, IL-1β, IL-10, malondialdehyde (MDA), and nitric oxide (NO). The activity of antioxidant enzymes, including superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were assessed in the present review. Among herbal treatments, Trigonella foenum-graecum L., Centella asiatica (L.) Urb., Vitis vinifera L., and Moringa oleifera Lam. were most commonly used for diabetic complications. Due to the dispersion of the treatments, meta-analysis was not applicable.

Conclusion: Our findings showed that the application of different plant-derived hypoglycemic treatments in animal models improved diabetes and its complications, as well as modulated concomitant inflammatory and oxidative stress biomarkers. These findings suggest that plant-based antidiabetic medicines and food supplements have the potential to manage diabetes and its complications.

« Previous
Graphical Abstract

[1]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Ibrahim, M.; Parveen, B.; Zahiruddin, S.; Gautam, G.; Parveen, R.; Khan, M.A.; Gupta, A.; Ahmad, S. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti-inflammatory status. J. Food Biochem., 2022, 46(4), e13852.
[http://dx.doi.org/10.1111/jfbc.13852] [PMID: 34250628]
[3]
Rashid, U.; Khan, M.R. Phytochemicals of Periploca aphylla Dcne. Ameliorated streptozotocin-induced diabetes in rat. Environ. Health Prev. Med., 2021, 26(1), 38.
[http://dx.doi.org/10.1186/s12199-021-00962-0] [PMID: 33752586]
[4]
Berköz, M.; Kahraman, T.; Shamsulddin, Z.N.; Krośniak, M. Antioxidant and anti-inflammatory effect of olive leaf extract treatment in diabetic rat brain. J. Basic Clin. Physiol. Pharmacol., 2023, 34(2), 187-196.
[http://dx.doi.org/10.1515/jbcpp-2021-0054] [PMID: 34134180]
[5]
Chen, X.; Sun, X.; Wang, C.; He, H. Effects of exercise on inflammatory cytokines in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Oxid. Med. Cell. Longev., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6660557] [PMID: 33456672]
[6]
Henshaw, F.R.; Dewsbury, L.S.; Lim, C.K.; Steiner, G.Z. The effects of cannabinoids on pro- and anti-inflammatory cytokines: A systematic review of in vivo studies. Cannabis Cannabinoid Res., 2021, 6(3), 177-195.
[http://dx.doi.org/10.1089/can.2020.0105] [PMID: 33998900]
[7]
Rhibi, F.; Zouhal, H.; Lira, F.S.; Ouerghi, N.; Prioux, J.; Besbes, S.; Tijani, J.M.; Hackney, A.C.; Abderrahman, B.A. Inflammatory cytokines and metabolic responses to high-intensity intermittent training: Effect of the exercise intensity. Biol. Sport, 2022, 39(2), 263-272.
[http://dx.doi.org/10.5114/biolsport.2022.104914] [PMID: 35309531]
[8]
Saeidnia, S.; Abdollahi, M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol. Appl. Pharmacol., 2013, 273(3), 442-455.
[http://dx.doi.org/10.1016/j.taap.2013.09.031] [PMID: 24121054]
[9]
Fabio, G.; Romanucci, V.; Marino, C.; Pisanti, A.; Zarrelli, A. Gymnema sylvestre R. Br., An Indian medicinal herb: Traditional uses, chemical composition, and biological activity. Curr. Pharm. Biotechnol., 2015, 16(6), 506-516.
[http://dx.doi.org/10.2174/138920101606150407112903] [PMID: 25860062]
[10]
Rezaeiamiri, E.; Bahramsoltani, R.; Rahimi, R. Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. Clin. Nutr., 2020, 39(2), 331-342.
[http://dx.doi.org/10.1016/j.clnu.2019.02.006] [PMID: 30797623]
[11]
Malazy, T.O.; Abdollahi, M.; Larijani, B. Beneficial effects of anti-oxidative herbal medicines in diabetic patients infected with COVID-19: A hypothesis. Diabetes Metab. Syndr. Obes., 2020, 13, 3113-3116.
[http://dx.doi.org/10.2147/DMSO.S264824] [PMID: 32943897]
[12]
Mirahmad, M.; Mohseni, S.; Malazy, T.O.; Esmaeili, F.; Alatab, S.; Bahramsoltani, R.; Ejtahed, H.S.; Qulami, H.; Bitarafan, Z.; Arjmand, B.; Nazeri, E. Antioxidative hypoglycemic herbal medicines with in vivo and in vitro activity against C-reactive protein; A systematic review. Phytomedicine, 2023, 109, 154615.
[http://dx.doi.org/10.1016/j.phymed.2022.154615] [PMID: 36610136]
[13]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[14]
Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Hoitinga, R.M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14(1), 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[15]
Ablat, A.; Halabi, M.F.; Mohamad, J.; Hasnan, M.H.H.; Hazni, H.; Teh, S.; Shilpi, J.A.; Mohamed, Z.; Awang, K. Antidiabetic effects of Brucea javanica seeds in type 2 diabetic rats. BMC Complement. Altern. Med., 2017, 17(1), 94.
[http://dx.doi.org/10.1186/s12906-017-1610-x] [PMID: 28166749]
[16]
Elmatty, A.D.M.; Essawy, S.S.; Badr, J.M.; Sterner, O. Antioxidant and anti-inflammatory effects of Urtica pilulifera extracts in type2 diabetic rats. J. Ethnopharmacol., 2013, 145(1), 269-277.
[http://dx.doi.org/10.1016/j.jep.2012.11.002] [PMID: 23159471]
[17]
Enein, A.A.M.; Salama, Z.A.; Gaafar, A.A.; Aly, H.F.; Ahmed, H.A. Alleviation of oxidative stress and suppression of inflammatory cytokines in STZ -induced diabetes by banana (Musa paradisiacal), Kiwi (Actinidiadeliciosa planch) and Olive (OleaeuropaeaL.), by-products, extract: Comparative study. J. Glob. Pharma Technol., 2019, 11, 234-352.
[18]
Adam, S.H.; Giribabu, N.; Bakar, N.M.A.; Salleh, N. Marantodes pumilum (Kacip fatimah) enhances in-vitro glucose uptake in 3T3-L1 adipocyte cells and reduces pancreatic complications in streptozotocin-nicotinamide induced male diabetic rats. Biomed. Pharmacother., 2017, 96, 716-726.
[http://dx.doi.org/10.1016/j.biopha.2017.10.042] [PMID: 29040959]
[19]
Adam, S.H.; Giribabu, N.; Kassim, N.; Kumar, K.E.; Brahmayya, M.; Arya, A.; Salleh, N. Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomed. Pharmacother., 2016, 81, 439-452.
[http://dx.doi.org/10.1016/j.biopha.2016.04.032] [PMID: 27261624]
[20]
Ajiboye, B.O.; Shonibare, M.T.; Oyinloye, B.E. Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J. Diabetes Metab. Disord., 2020, 19(1), 343-352.
[http://dx.doi.org/10.1007/s40200-020-00515-2] [PMID: 32550185]
[21]
Ajiboye, B.O.; Ojo, O.A.; Akuboh, O.S.; Abiola, O.M.; Idowu, O.; Amuzat, A.O. Anti-hyperglycemic and anti-inflammatory activities of polyphenolic-rich extract of syzygium cumini linn leaves in alloxan-induced diabetic rats. J. Evid. Based Integr. Med., 2018, 23, 2515690X1877063.
[http://dx.doi.org/10.1177/2515690X18770630] [PMID: 29756477]
[22]
Al-Malki, A.; Barbour, E.; Abulnaja, K.; Moselhy, S. Management of hyperglycaemia by ethyl acetate extract of Balanites aegyptiaca (Desert Date). Molecules, 2015, 20(8), 14425-14434.
[http://dx.doi.org/10.3390/molecules200814425] [PMID: 26262605]
[23]
Aguilar, A.F.J.; Barrera, F.A.; Mejia, A.S.; Dorantes, B.T.R.; Villagomez, J.E.I.; Perez, A.J.C.; Flores, B.G.; Zamilpa, A.; Flores, D.M.; Ramos, R.R. Anti-inflammatory and antioxidant effects of a hypoglycemic fructan fraction from Psacalium peltatum (H.B.K.) Cass. in streptozotocin-induced diabetes mice. J. Ethnopharmacol., 2010, 132(2), 400-407.
[http://dx.doi.org/10.1016/j.jep.2010.08.003] [PMID: 20713141]
[24]
Arya, A.; Cheah, S.C.; Looi, C.Y.; Taha, H.; Rais Mustafa, M.; Mohd, M.A. The methanolic fraction of Centratherum anthelminticum seed downregulates pro-inflammatory cytokines, oxidative stress, and hyperglycemia in STZ-nicotinamide-induced type 2 diabetic rats. Food Chem. Toxicol., 2012, 50(11), 4209-4220.
[http://dx.doi.org/10.1016/j.fct.2012.08.012] [PMID: 22939938]
[25]
Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-diabetic effect of portulaca oleracea l. polysaccharideandits mechanism in diabetic rats. Int. J. Mol. Sci., 2016, 17(8), 1201.
[http://dx.doi.org/10.3390/ijms17081201] [PMID: 27463713]
[26]
Rengarajan, T.; Bamagous, G.A.; Ghamdi, A.S.S.; Ibrahim, A.I.A.; Mahfoz, A.M.; Afify, M.A.; Alsugoor, M.H.M.; Shammah, A.A.; Arulselvan, P. Antidiabetic and antioxidant activity of ethyl acetate extract fraction of Moringa oleifera leaves in streptozotocin-induced diabetes rats via inhibition of inflammatory mediators. Asian Pac. J. Trop. Biomed., 2018, 8(6), 320-327.
[http://dx.doi.org/10.4103/2221-1691.235327]
[27]
Banerjee, A.; Singh, S.; Prasad, S.K.; Kumar, S.; Banerjee, O.; Seal, T.; Mukherjee, S.; Maji, B.K. Protective efficacy of Tinospora sinensis against streptozotocin induced pancreatic islet cell injuries of diabetic rats and its correlation to its phytochemical profiles. J. Ethnopharmacol., 2020, 248, 112356.
[http://dx.doi.org/10.1016/j.jep.2019.112356] [PMID: 31669668]
[28]
Bin-Jumah, M.N. Antidiabetic effect of Monolluma quadrangula is mediated via modulation of glucose metabolizing enzymes, antioxidant defenses, and adiponectin in type 2 diabetic rats. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/6290143] [PMID: 30915195]
[29]
Chakraborty, D.; Samadder, A.; Dutta, S.; Bukhsh, K.A.R. Antihyperglycemic potentials of a threatened plant, Helonias dioica : Antioxidative stress responses and the signaling cascade. Exp. Biol. Med., 2012, 237(1), 64-76.
[http://dx.doi.org/10.1258/ebm.2011.011161] [PMID: 22169161]
[30]
Chen, L.; Lin, X.; Xu, X.; Wang, L.; Teng, H.; Cao, H. Anti-inflammatory effect of self-emulsifying delivery system containing Sonchus oleraceus Linn extract on streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2020, 135, 110953.
[http://dx.doi.org/10.1016/j.fct.2019.110953] [PMID: 31707032]
[31]
Dong, J.; Liang, Q.; Niu, Y.; Jiang, S.; Zhou, L.; Wang, J.; Ma, C.; Kang, W. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int. J. Biol. Macromol., 2020, 159, 725-738.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.042] [PMID: 32437806]
[32]
Khayat, E.Z.; Hussein, J.; Ramzy, T.; Ashour, M. Antidiabetic antioxidant effect of panax ginseng. J. Med. Plants Res., 2011, 5, 4616-4620.
[33]
Fathy, S.M.; Drees, E.A. Protective effects of Egyptian cloudy apple juice and apple peel extract on lipid peroxidation, antioxidant enzymes and inflammatory status in diabetic rat pancreas. BMC Complement. Altern. Med., 2015, 16(1), 8.
[http://dx.doi.org/10.1186/s12906-015-0957-0] [PMID: 26753525]
[34]
Güçlü, A.; Yonguç, N.; Dodurga, Y.; Gündoğdu, G.; Güçlü, Z.; Yonguç, T.; Adıgüzel, E.; Turkmen, K. The effects of grape seed on apoptosis-related gene expression and oxidative stress in streptozotocin-induced diabetic rats. Ren. Fail., 2015, 37(2), 192-197.
[http://dx.doi.org/10.3109/0886022X.2014.991996] [PMID: 25565258]
[35]
Guex, C.G.; Reginato, F.Z.; de Jesus, P.R.; Brondani, J.C.; Lopes, G.H.H.; Bauermann, L.F. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J. Ethnopharmacol., 2019, 235, 1-7.
[http://dx.doi.org/10.1016/j.jep.2019.02.001] [PMID: 30721736]
[36]
Guo, C.; Li, R.; Zheng, N.; Xu, L.; Liang, T.; He, Q. Anti-diabetic effect of ramulus mori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int. Immunopharmacol., 2013, 16(1), 93-99.
[http://dx.doi.org/10.1016/j.intimp.2013.03.029] [PMID: 23566811]
[37]
Hacioglu, C.; Kar, F.; Kara, Y.; Yucel, E.; Donmez, D.B.; Sentürk, H.; Kanbak, G. Comparative effects of metformin and Cistus laurifolius L. extract in streptozotocin-induced diabetic rat model: Oxidative, inflammatory, apoptotic, and histopathological analyzes. Environ. Sci. Pollut. Res. Int., 2021, 28(41), 57888-57901.
[http://dx.doi.org/10.1007/s11356-021-14780-y] [PMID: 34097215]
[38]
Hsu, C.; Guo, Y.; Wang, Z.; Yin, M. Protective effects of an aqueous extract from pepino ( Solanum muricatum Ait.) in diabetic mice. J. Sci. Food Agric., 2011, 91(8), 1517-1522.
[http://dx.doi.org/10.1002/jsfa.4345] [PMID: 21445856]
[39]
Huang, J.; Wang, X.; Tao, G.; Song, Y.; Ho, C.; Zheng, J.; Ou, S. Feruloylated oligosaccharides from maize bran alleviate the symptoms of diabetes in streptozotocin-induced type 2 diabetic rats. Food Funct., 2018, 9(3), 1779-1789.
[http://dx.doi.org/10.1039/C7FO01825H] [PMID: 29508881]
[40]
Jaiyesimi, K.F.; Agunbiade, O.S.; Ajiboye, B.O.; Afolabi, O.B. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J. Diabetes Metab. Disord., 2020, 19(2), 1543-1556.
[http://dx.doi.org/10.1007/s40200-020-00690-2] [PMID: 33553038]
[41]
Joshi, D.V.; Patil, R.R.; Naik, S.R. Hydroalcohol extract of Trigonella foenum-graecum seed attenuates markers of inflammation and oxidative stress while improving exocrine function in diabetic rats. Pharm. Biol., 2015, 53(2), 201-211.
[http://dx.doi.org/10.3109/13880209.2014.913296] [PMID: 25339548]
[42]
Jung, J.Y.; Lim, Y.; Moon, M.S.; Kim, J.Y.; Kwon, O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr. Metab., 2011, 8(1), 18.
[http://dx.doi.org/10.1186/1743-7075-8-18] [PMID: 21439094]
[43]
Khamchan, A.; Paseephol, T.; Hanchang, W. Protective effect of wax apple (Syzygium samarangense (Blume) Merr. & L.M. Perry) against streptozotocin-induced pancreatic ß-cell damage in diabetic rats. Biomed. Pharmacother., 2018, 108, 634-645.
[http://dx.doi.org/10.1016/j.biopha.2018.09.072] [PMID: 30245463]
[44]
Khattab, H.A.H.; El-Shitany, E.N.A.; Abdallah, I.Z.A.; Yousef, F.M.; Alkreathy, H.M. Antihyperglycemic potential of Grewia asiatica fruit extract against streptozotocin-induced hyperglycemia in rats: Anti-inflammatory and antioxidant mechanisms. Oxid. Med. Cell. Longev., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/549743] [PMID: 26347423]
[45]
Kim, J.H.; Pan, J.H.; Cho, H.T.; Kim, Y.J. Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS One, 2016, 11(1), e0146843.
[http://dx.doi.org/10.1371/journal.pone.0146843] [PMID: 26751692]
[46]
Sayed, K.E.M.I.; Massarani, A.S.; Gamal, E.A.; Shaibany, E.A.; Mahbashi, A.H.M. Mechanism of antidiabetic effects of plicosepalus acaciae flower in streptozotocin-induced type 2 diabetic rats, as complementary and alternative therapy. BMC Complementary Medicine and Therapies, 2020, 20(1), 290.
[http://dx.doi.org/10.1186/s12906-020-03087-z] [PMID: 32967670]
[47]
Kuate, D.; Kengne, A.P.N.; Biapa, C.P.N.; Azantsa, B.G.K.; Muda, W.W.A.M.B. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis., 2015, 14(1), 50.
[http://dx.doi.org/10.1186/s12944-015-0051-0] [PMID: 26003803]
[48]
Lee, S.C.; Xu, W.X.; Lin, L.Y.; Yang, J.J.; Liu, C.T. Chemical composition and hypoglycemic and pancreas-protective effect of leaf essential oil from indigenous cinnamon (Cinnamomum osmophloeum Kanehira). J. Agric. Food Chem., 2013, 61(20), 4905-4913.
[http://dx.doi.org/10.1021/jf401039z] [PMID: 23627599]
[49]
Li, P.Y.; Hsu, C.C.; Yin, M.C.; Kuo, Y.H.; Tang, F.Y.; Chao, C.Y. Protective effects of red guava on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Molecules, 2015, 20(12), 22341-22350.
[http://dx.doi.org/10.3390/molecules201219831] [PMID: 26703532]
[50]
Mahmoodi, M.; Koohpeyma, F.; Saki, F.; Maleksabet, A.; Zare, M.A. The protective effect of Zataria multiflora Boiss. hydroalcoholic extract on TNF-α production, oxidative stress, and insulin level in streptozotocin-induced diabetic rats. Avicenna J. Phytomed., 2019, 9(1), 72-83.
[PMID: 30788280]
[51]
Mathiyazhagan, J.; Muthukaliannan, k.G. The role of mTOR and oral intervention of combined Zingiber officinale-Terminalia chebula extract in type 2 diabetes rat models. J. Food Biochem., 2020, 44(7), e13250.
[http://dx.doi.org/10.1111/jfbc.13250] [PMID: 32462682]
[52]
Mesbahzadeh, B.; Rajaei, S.A.; Tarahomi, P.; Seyedinia, S.A.; Rahmani, M.; Rezamohamadi, F.; Kakar, M.A.; Moradi-Kor, N. Beneficial effects of spirogyra neglecta extract on antioxidant and anti-inflammatory factors in streptozotocin-induced diabetic rats. Biomol. Concepts, 2018, 9(1), 184-189.
[http://dx.doi.org/10.1515/bmc-2018-0015] [PMID: 30660132]
[53]
Morakinyo, A.O.; Akindele, A.J.; Ahmed, Z. Modulation of antioxidant enzymes and inflammatory cytokines: Possible mechanism of anti-diabetic effect of ginger extracts. Afr. J. Biomed. Res., 2011, 14, 195-202.
[54]
Mu, J.; Xin, G.; Zhang, B.; Wang, Y.; Ning, C.; Meng, X. Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats. J. Food Sci., 2020, 85(4), 1307-1318.
[http://dx.doi.org/10.1111/1750-3841.15109] [PMID: 32249934]
[55]
Muniroh, M.; Nindita, Y.; Karlowee, V.; Purwoko, Y.; Rahmah, N.; Widyowati, R.; Suryono, S. Effect of Garcinia mangostana pericarp extract on glial NF-κB levels and expression of serum inflammation markers in an obese-type 2 diabetes mellitus animal model. Biomed. Rep., 2021, 15(1), 63.
[http://dx.doi.org/10.3892/br.2021.1439] [PMID: 34113445]
[56]
Nemes, A.; Homoki, J.R.; Kiss, R.; Hegedűs, C.; Kovács, D.; Peitl, B.; Gál, F.; Stündl, L.; Szilvássy, Z.; Remenyik, J. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients, 2019, 11(9), 1966.
[http://dx.doi.org/10.3390/nu11091966] [PMID: 31438590]
[57]
Nopparat, J.; Nualla-Ong, A.; Phongdara, A. Treatment with Pluchea indica (L.) Less. leaf ethanol extract alleviates liver injury in multiple low-dose streptozotocin-induced diabetic BALB/c mice. Exp. Ther. Med., 2020, 20(2), 1385-1396.
[http://dx.doi.org/10.3892/etm.2020.8877] [PMID: 32742373]
[58]
Noratto, G.D.; Chew, B.P.; Atienza, L.M. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem., 2017, 227, 305-314.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.097] [PMID: 28274436]
[59]
Noratto, G.; Chew, B.P.; Ivanov, I. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct., 2016, 7(12), 4944-4955.
[http://dx.doi.org/10.1039/C6FO01330A] [PMID: 27841417]
[60]
Omodanisi, E.I.; Aboua, Y.G.; Chegou, N.N.; Oguntibeju, O.O. Hepatoprotective, antihyperlipidemic, and anti-inflammatory activity of Moringa oleifera in diabetic-induced damage in male wistar rats. Pharmacognosy Res., 2017, 9(2), 182-187.
[PMID: 28539743]
[61]
Pari, L.; Majeed, M.; Rathinam, A.; Chandramohan, R. Molecular action of inflammation and oxidative stress in hyperglycemic rats: Effect of different concentrations of Pterocarpus marsupiums extract. J. Diet. Suppl., 2018, 15(4), 452-470.
[http://dx.doi.org/10.1080/19390211.2017.1356416] [PMID: 28981393]
[62]
Paul, S.; Bandyopadhyay, T.K.; Bhattacharyya, A. Immunomodulatory effect of leaf extract of Murraya koenigii in diabetic mice. Immunopharmacol. Immunotoxicol., 2011, 33(4), 691-699.
[http://dx.doi.org/10.3109/08923973.2011.561354] [PMID: 21401386]
[63]
Rashid, U.; Khan, M.R.; Sajid, M. Antioxidant, anti-inflammatory and hypoglycemic effects of Fagonia olivieri DC on STZ-nicotinamide induced diabetic rats - in vivo and in vitro study. J. Ethnopharmacol., 2019, 242, 112038.
[http://dx.doi.org/10.1016/j.jep.2019.112038] [PMID: 31247238]
[64]
Rout, D.; Chandra Dash, U.; Kanhar, S.; Swain, S.K.; Sahoo, A.K. The modulatory role of prime identified compounds in the bioactive fraction of Homalium zeylanicum in high-fat diet fed-streptozotocin-induced type 2 diabetic rats. J. Ethnopharmacol., 2020, 260, 113099.
[http://dx.doi.org/10.1016/j.jep.2020.113099] [PMID: 32535241]
[65]
Rozenberg, K.; Wollman, A.; Ben-Shachar, M.; Argaev-Frenkel, L.; Rosenzweig, T. Anti-inflammatory effects of Sarcopoterium spinosum extract. J. Ethnopharmacol., 2020, 249, 112391.
[http://dx.doi.org/10.1016/j.jep.2019.112391] [PMID: 31730890]
[66]
Samadder, A.; Chakraborty, D.; De, A.; Bhattacharyya, S.S.; Bhadra, K.; Khuda-Bukhsh, A.R. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: Drug-DNA interaction with calf thymus DNA as target. Eur. J. Pharm. Sci., 2011, 44(3), 207-217.
[http://dx.doi.org/10.1016/j.ejps.2011.07.012] [PMID: 21839831]
[67]
Samarghandian, S.; Borji, A.; Farkhondeh, T. Attenuation of oxidative stress and inflammation by Portulaca oleracea in streptozotocin-induced diabetic rats. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 562-566.
[http://dx.doi.org/10.1177/2156587217692491] [PMID: 29228809]
[68]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Immunomodulatory and antioxidant effects of saffron aqueous extract ( Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J., 2017, 69(2), 151-159.
[http://dx.doi.org/10.1016/j.ihj.2016.09.008] [PMID: 28460761]
[69]
Sarhat, E.R.; Wadi, S.A.; Sarhat, T.R.; Jasim, N.A.; Jasim, N.A. Study of histopathological and biochemical effect of Punica granatum L. extract on streptozotocin -induced diabetes in rabbits. Iraqi J. Vet. Sci., 2019, 33(2), 189-194.
[http://dx.doi.org/10.33899/ijvs.2019.125523.1045]
[70]
Sharma, A.K.; Bharti, S.; Kumar, R.; Krishnamurthy, B.; Bhatia, J.; Kumari, S.; Arya, D.S. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J. Pharmacol. Sci., 2012, 119(3), 205-213.
[http://dx.doi.org/10.1254/jphs.11184FP] [PMID: 22786584]
[71]
Sharma, A.K.; Bharti, S.; Goyal, S.; Arora, S.; Nepal, S.; Kishore, K.; Joshi, S.; Kumari, S.; Arya, D.S. Upregulation of PPARγ by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytother. Res., 2011, 25(10), 1457-1465.
[http://dx.doi.org/10.1002/ptr.3442] [PMID: 21351301]
[72]
Sole, S.S.; Srinivasan, B.P. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets’ intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus. Nutr. Res., 2012, 32(8), 626-636.
[http://dx.doi.org/10.1016/j.nutres.2012.06.015] [PMID: 22935346]
[73]
Srivastava, S.; Pandey, H.; Singh, S.K.; Tripathi, Y.B. Anti-oxidant, anti-apoptotic, anti-hypoxic and anti-inflammatory conditions induced by PTY-2 against STZ-induced stress in islets. Biosci. Trends, 2019, 13(5), 382-393.
[http://dx.doi.org/10.5582/bst.2019.01181] [PMID: 31597821]
[74]
Tian, J.; Popal, M.S.; Liu, Y.; Gao, R.; Lyu, S.; Chen, K.; Liu, Y. Ginkgo biloba leaf extract attenuates atherosclerosis in streptozotocin-induced diabetic ApoE-/- mice by inhibiting endoplasmic reticulum stress via restoration of autophagy through the mTOR signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 8134678.
[PMID: 31080547]
[75]
Truong, C.S.; Seo, E.; Jun, H.S. Psoralea corylifolia L. Seed extract attenuates methylglyoxal-induced insulin resistance by inhibition of advanced glycation end product formation. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/4310319] [PMID: 31976027]
[76]
Veeramani, C.; Alsaif, M.A.; Al-Numair, K.S. Lavatera critica controls systemic insulin resistance by ameliorating adipose tissue inflammation and oxidative stress using bioactive compounds identified by GC–MS. Biomed. Pharmacother., 2018, 106, 183-191.
[http://dx.doi.org/10.1016/j.biopha.2018.06.121] [PMID: 29958142]
[77]
Xia, X.; Xu, J.; Wang, X.; Wang, H.; Lin, Z.; Shao, K.; Fang, L.; Zhang, C.; Zhao, Y. Jiaogulan tea ( Gpostemma pentaphyllum ) potentiates the antidiabetic effect of white tea via the AMPK and PI3K pathways in C57BL/6 mice. Food Funct., 2020, 11(5), 4339-4355.
[http://dx.doi.org/10.1039/D0FO00395F] [PMID: 32369096]
[78]
Yang, J.Y.; Kang, M.Y.; Nam, S.H.; Friedman, M. Antidiabetic effects of rice hull smoke extract in alloxan-induced diabetic mice. J. Agric. Food Chem., 2012, 60(1), 87-94.
[http://dx.doi.org/10.1021/jf2035077] [PMID: 22129064]
[79]
Yin, X.L.; Liu, H.Y.; Zhang, Y.Q. Mulberry branch bark powder significantly improves hyperglycemia and regulates insulin secretion in type II diabetic mice. Food Nutr. Res., 2017, 61(1), 1368847.
[http://dx.doi.org/10.1080/16546628.2017.1368847] [PMID: 28970780]
[80]
Zhang, Y.; Zuo, J.; Yan, L.; Cheng, Y.; Li, Q.; Wu, S.; Chen, L.; Thring, R.W.; Yang, Y.; Gao, Y.; Wu, M.; Tong, H. Sargassum fusiforme fucoidan alleviates high-fat diet-induced obesity and insulin resistance associated with the improvement of hepatic oxidative stress and gut microbiota profile. J. Agric. Food Chem., 2020, 68(39), 10626-10638.
[http://dx.doi.org/10.1021/acs.jafc.0c02555] [PMID: 32866006]
[81]
Zheng, X.; Li, Y.; Zhang, L.; Feng, W.; Zhang, X. Antihyperglycemic activity of Selaginella tamariscina (Beauv.) Spring. J. Ethnopharmacol., 2011, 133(2), 531-537.
[http://dx.doi.org/10.1016/j.jep.2010.10.028] [PMID: 20969941]
[82]
Zhu, L.; Sha, L.; Li, K.; Wang, Z.; Wang, T.; Li, Y.; Liu, P.; Dong, X.; Dong, Y.; Zhang, X.; Wang, H. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis., 2020, 19(1), 20.
[http://dx.doi.org/10.1186/s12944-019-1167-4] [PMID: 32028957]
[83]
Agrawal, S.S.; Naqvi, S.; Gupta, S.K.; Srivastava, S. Prevention and management of diabetic retinopathy in STZ diabetic rats by Tinospora cordifolia and its molecular mechanisms. Food Chem. Toxicol., 2012, 50(9), 3126-3132.
[http://dx.doi.org/10.1016/j.fct.2012.05.057] [PMID: 22687550]
[84]
Mahmoud, A.M.; Abd El-Twab, S.M.; Abdel-Reheim, E.S. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism. Eur. J. Nutr., 2017, 56(4), 1671-1684.
[http://dx.doi.org/10.1007/s00394-016-1214-0] [PMID: 27059477]
[85]
Du, H.; Zhang, M.; Yao, K.; Hu, Z. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat. Biomed. Pharmacother., 2017, 89, 617-622.
[http://dx.doi.org/10.1016/j.biopha.2017.01.179] [PMID: 28262614]
[86]
Gupta, S.K.; Kumar, B.; Nag, T.C.; Srinivasan, B.P.; Srivastava, S.; Gaur, S.; Saxena, R. Effects of Trigonella foenum-graecum (L.) on retinal oxidative stress, and proinflammatory and angiogenic molecular biomarkers in streptozotocin-induced diabetic rats. Mol. Cell. Biochem., 2014, 388(1-2), 1-9.
[http://dx.doi.org/10.1007/s11010-013-1893-2] [PMID: 24242137]
[87]
Kumar Gupta, S.; Kumar, B.; Srinivasan, B.P.; Nag, T.C.; Srivastava, S.; Saxena, R.; Aggarwal, A. Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J. Ocul. Pharmacol. Ther., 2013, 29(4), 419-426.
[http://dx.doi.org/10.1089/jop.2012.0089] [PMID: 23215831]
[88]
Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res., 2012, 47(2), 103-108.
[http://dx.doi.org/10.1159/000330051] [PMID: 21997135]
[89]
Liu, J.; Bhuvanagiri, S.; Qu, X. The protective effects of lycopus lucidus turcz in diabetic retinopathy and its possible mechanisms. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2900-2908.
[http://dx.doi.org/10.1080/21691401.2019.1640230] [PMID: 31307239]
[90]
Song, Y.; Huang, L.; Yu, J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J. Neuroimmunol., 2016, 301, 1-6.
[http://dx.doi.org/10.1016/j.jneuroim.2016.11.001] [PMID: 27847126]
[91]
Tzeng, T.F.; Liu, W.; Liou, S.S.; Hong, T.Y.; Liu, I.M. Antioxidant-rich extract from plantaginis semen ameliorates diabetic retinal injury in a streptozotocin-induced diabetic rat model. Nutrients, 2016, 8(9), 572.
[http://dx.doi.org/10.3390/nu8090572] [PMID: 27649243]
[92]
Umran, N.S.S.; Mohamed, S.; Lau, S.F.; Mohd Ishak, N.I. Citrus hystrix leaf extract attenuated diabetic-cataract in STZ-rats. J. Food Biochem., 2020, 44(8), e13258.
[http://dx.doi.org/10.1111/jfbc.13258] [PMID: 32539198]
[93]
Alabi, T.D.; Chegou, N.N.; Brooks, N.L.; Oguntibeju, O.O. Effects of anchomanes difformis on inflammation, apoptosis, and organ toxicity in STZ-induced diabetic cardiomyopathy. Biomedicines, 2020, 8(2), 29.
[http://dx.doi.org/10.3390/biomedicines8020029] [PMID: 32046294]
[94]
Alizadeh-Fanalou, S.; Nazarizadeh, A.; Babaei, M.; Khosravi, M.; Farahmandian, N.; Bahreini, E. Effects of Securigera securidaca (L.) Degen & Dorfl seed extract combined with glibenclamide on paraoxonase1 activity, lipid profile and peroxidation, and cardiovascular risk indices in diabetic rats. Bioimpacts, 2019, 10(3), 159-167.
[http://dx.doi.org/10.34172/bi.2020.20] [PMID: 32793438]
[95]
Amin, A.H. Ameliorative effects of Carica papaya extracts against type II diabetes-induced myocardial pathology and dysfunction in albino rats. Environ. Sci. Pollut. Res. Int., 2021, 28(41), 58232-58240.
[http://dx.doi.org/10.1007/s11356-021-14843-0] [PMID: 34109525]
[96]
Giribabu, N.; Roslan, J.; Rekha, S.S.; Salleh, N. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin–nicotinamide induced male diabetic rats. Int. J. Cardiol., 2016, 222, 850-865.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.250] [PMID: 27522389]
[97]
Hosseini, S.; Nili-Ahmadabadi, A.; Nachvak, S.M.; Dastan, D.; Moradi, S.; Abdollahzad, H.; Mostafai, R. Antihyperlipidemic and antioxidative properties of pistacia atlantica subsp. Kurdica in streptozotocin-induced diabetic mice. Diabetes Metab. Syndr. Obes., 2020, 13, 1231-1236.
[http://dx.doi.org/10.2147/DMSO.S250417] [PMID: 32368115]
[98]
Hsu, C.; Yang, H.; Ho, J.; Yin, M.; Hsu, J. Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice. Eur. J. Nutr., 2016, 55(2), 845-854.
[http://dx.doi.org/10.1007/s00394-015-0994-y] [PMID: 26197872]
[99]
Khaliq, F.; Parveen, A.; Singh, S.; Hussain, M.E.; Fahim, M. Terminalia arjuna improves cardiovascular autonomic neuropathy in streptozotocin-induced diabetic rats. Cardiovasc. Toxicol., 2013, 13(1), 68-76.
[http://dx.doi.org/10.1007/s12012-012-9187-6] [PMID: 23001577]
[100]
Latha, R.; Shanthi, P.; Sachdanandam, P. Kalpaamruthaa ameliorates myocardial and aortic damage in cardiovascular complications associated with type 2 diabetes mellitus. Can. J. Physiol. Pharmacol., 2013, 91(2), 116-123.
[http://dx.doi.org/10.1139/cjpp-2012-0292] [PMID: 23458195]
[101]
Li, Y.; Huang, C.; Fu, W.; Zhang, H.; Lao, Y.; Zhou, H.; Tan, H.; Xu, H. Screening of the active fractions from the Coreopsis tinctoria Nutt. Flower on diabetic endothelial protection and determination of the underlying mechanism. J. Ethnopharmacol., 2020, 253, 112645.
[http://dx.doi.org/10.1016/j.jep.2020.112645] [PMID: 32045684]
[102]
Mandave, P.; Khadke, S.; Karandikar, M.; Pandit, V.; Ranjekar, P.; Kuvalekar, A.; Mantri, N. Antidiabetic, lipid normalizing, and nephroprotective actions of the strawberry: A potent supplementary fruit. Int. J. Mol. Sci., 2017, 18(1), 124.
[http://dx.doi.org/10.3390/ijms18010124] [PMID: 28085064]
[103]
Min, Q.; Bai, Y.; Zhang, Y.; Yu, W.; Zhang, M.; Liu, D.; Diao, T.; Lv, W. Hawthorn leaf flavonoids protect against diabetes-induced cardiomyopathy in rats via PKC- α signaling pathway. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/2071952] [PMID: 29234372]
[104]
Peng, S.; Wei, P.; Lu, Q.; Liu, R.; Ding, Y.; Zhang, J. Beneficial effects of poplar buds on hyperglycemia, dyslipidemia, oxidative stress, and inflammation in streptozotocin-induced type-2 diabetes. J. Immunol. Res., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/7245956] [PMID: 30320140]
[105]
Qiu, S.; Guo, Z.; Wang, R.; Yin, L. Renoprotective effects of EGb761 in spontaneous hypertensive rats with diabetes. Int. J. Clin. Exp. Med., 2016, 9, 18890-18899.
[106]
RamPravinKumar, M.; Dhananjayan, K. Peripheral arterial disease: Effects of ethanolic extracts of seed kernels of mango (Mangifera indica. L) on acute hind limb ischemia-reperfusion injury in diabetic rats. J. Tradit. Complement. Med., 2021, 11(6), 520-531.
[http://dx.doi.org/10.1016/j.jtcme.2021.05.004] [PMID: 34765516]
[107]
Sharma, M.; Afaque, A.; Dwivedi, S.; Jairajpuri, Z.S.; Shamsi, Y.; Khan, M.F.; Khan, M.I.; Ahmed, D. Cichorium intybus attenuates streptozotocin induced diabetic cardiomyopathy via inhibition of oxidative stress and inflammatory response in rats. Interdiscip. Toxicol., 2019, 12(3), 111-119.
[http://dx.doi.org/10.2478/intox-2019-0013] [PMID: 32210699]
[108]
Sharma, S.; Pathak, S.; Gupta, G.; Sharma, S.K.; Singh, L.; Sharma, R.K.; Mishra, A.; Dua, K. Pharmacological evaluation of aqueous extract of syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—Role of PPARγ and PPARα. Biomed. Pharmacother., 2017, 89, 447-453.
[http://dx.doi.org/10.1016/j.biopha.2017.02.048] [PMID: 28249245]
[109]
Stolf, A.M.; Campos Cardoso, C.; Morais, H.; Alves de Souza, C.E.; Lomba, L.A.; Brandt, A.P.; Agnes, J.P.; Collere, F.C.; Galindo, C.M.; Corso, C.R.; Spercoski, K.M.; Locatelli Dittrich, R.; Zampronio, A.R.; Cadena, S.M.S.C.; Acco, A. Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed. Pharmacother., 2018, 108, 232-243.
[http://dx.doi.org/10.1016/j.biopha.2018.09.042] [PMID: 30219681]
[110]
Topal, G.; Koç, E.; Karaca, Ç.; Altuğ, T.; Ergin, B.; Demirci, C.; Melikoğlu, G.; Meriçli, A.H.; Kucur, M.; Özdemir, O.; Uydeş Doğan, B.S. Effects of Crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats. Phytother. Res., 2013, 27(3), 330-337.
[http://dx.doi.org/10.1002/ptr.4726] [PMID: 22585450]
[111]
Wang, Y.; Zheng, X.J.; Li, L.Y.; Wang, H.; Chen, K.Y.; Xu, M.; Wu, Y.; Huang, X.; Zhang, M.; Ye, X.; Xu, T.; Chen, R.; Zhu, Y. Cyclocarya paliurus ethanol leaf extracts protect against diabetic cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-kappa B signaling. Food Nutr. Res., 2020, 64.
[112]
Wen, W.; Lin, Y.; Ti, Z. Antidiabetic, antihyperlipidemic, antioxidant, anti-inflammatory activities of ethanolic seed extract of Annona reticulata L. in streptozotocin induced diabetic rats. Front. Endocrinol., 2019, 10, 716.
[http://dx.doi.org/10.3389/fendo.2019.00716] [PMID: 31708869]
[113]
Xu, Z.; Wang, S.; Ji, H.; Zhang, Z.; Chen, J.; Tan, Y.; Wintergerst, K.; Zheng, Y.; Sun, J.; Cai, L. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci. Rep., 2016, 6(1), 30252.
[http://dx.doi.org/10.1038/srep30252] [PMID: 27457280]
[114]
Yeh, Y.T.; Chiang, A.N.; Hsieh, S.C. Chinese olive (Canarium album L.) fruit extract attenuates metabolic dysfunction in diabetic rats. Nutrients, 2017, 9(10), 1123.
[http://dx.doi.org/10.3390/nu9101123] [PMID: 29036927]
[115]
Zanchet, B.; Gomes, D.B.; Corralo, V.S.; Diel, K.A.P.; Schönell, A.P.; Faust, C.; Nicola, P.; Muller, L.G.; Zanatta, A.P.; Wildner, S.M.; Bevilaqua, F.; Chitolina, R.; Sachett, A.; Zanatta, L.; Duarte, M.M.M.F.; Conterato, G.M.M.; Rocha, C.Q.; Peretti, C.; Brumelhaus, T.; Alves, N.S.; Menegatt, J.C.O.; Conte, F.; Serena, G.; Ramos, A.T.; Zimermann, F.C.; Junior, W.A.R. Effects of hydroalcoholic extract of Celtis iguanaea on markers of cardiovascular diseases and glucose metabolism in cholesterol-fed rats. Rev. Bras. Farmacogn., 2018, 28(1), 80-91.
[http://dx.doi.org/10.1016/j.bjp.2017.12.001]
[116]
Zhang, L.; Mao, Y.; Pan, J.; Wang, S.; Chen, L.; Xiang, J. Bamboo leaf extract ameliorates cardiac fibrosis possibly via alleviating inflammation, oxidative stress and apoptosis. Biomed. Pharmacother., 2017, 95, 808-817.
[http://dx.doi.org/10.1016/j.biopha.2017.08.138] [PMID: 28892792]
[117]
Al-Brakati, A.; Albarakati, A.J.A.; Daabo, H.M.A.; Baty, R.S.; Salem, F.E.H.; Habotta, O.A.; Elmahallawy, E.K.; Abdel-Mohsen, D.M.; Taha, H.; Akabawy, A.M.A.; Kassab, R.B.; Abdel Moneim, A.E.; Amin, H.K. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab. Brain Dis., 2020, 35(7), 1175-1187.
[http://dx.doi.org/10.1007/s11011-020-00583-6] [PMID: 32548708]
[118]
Albasher, G.; Aljarba, N.; Al Sultan, N.; Alqahtani, W.S.; Alkahtani, S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J. Food Biochem., 2020, 44(8), e13337.
[http://dx.doi.org/10.1111/jfbc.13337] [PMID: 32588466]
[119]
Alsenosy, A.A.; El-Far, A.H.; Sadek, K.M.; Ibrahim, S.A.; Atta, M.S.; Sayed-Ahmed, A.; Al Jaouni, S.K.; Mousa, S.A. Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats. PLoS One, 2019, 14(9), e0222410.
[http://dx.doi.org/10.1371/journal.pone.0222410] [PMID: 31509596]
[120]
Balbaa, M.; Abdulmalek, S.A.; Khalil, S. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs. PLoS One, 2017, 12(5), e0172429.
[http://dx.doi.org/10.1371/journal.pone.0172429] [PMID: 28505155]
[121]
Bhavsar, V.; Vaghasiya, J.; Suhagia, B.N.; Thaker, P. Protective effect of eichhornia crassipes against cerebral ischemia reperfusion injury in normal and diabetic rats. J. Stroke Cerebrovasc. Dis., 2020, 29(12), 105385.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105385] [PMID: 33096494]
[122]
Elseweidy, M.M.; Zein, N.; Hassan, M.M.A.; Mohamed, F.Y. Modulation of serum inflammatory pattern, oxidative stress, selected neurotransmitters in cerebral cortex of alloxan diabetic rats: Role of curcuminoids and fish oil as therapeutic agents. IJPCR, 2015, 7, 164-172.
[123]
Fatani, A.J.; Al-Rejaie, S.S.; Abuohashish, H.M.; Al-Assaf, A.; Parmar, M.Y.; Ola, M.S.; Ahmed, M.M. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats. Exp. Ther. Med., 2015, 9(5), 1670-1678.
[http://dx.doi.org/10.3892/etm.2015.2305] [PMID: 26136876]
[124]
Giribabu, N.; Karim, K.; Kilari, E.K.; Nelli, S.R.; Salleh, N. Oral administration of Centella asiatica (L.) Urb leave aqueous extract ameliorates cerebral oxidative stress, inflammation, and apoptosis in male rats with type-2 diabetes. Inflammopharmacology, 2020, 28(6), 1599-1622.
[http://dx.doi.org/10.1007/s10787-020-00733-3] [PMID: 32588370]
[125]
Giribabu, N.; Srinivasarao, N.; Swapna Rekha, S.; Muniandy, S.; Salleh, N. Centella asiatica attenuates diabetes induced hippocampal changes in experimental diabetic rats. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/592062] [PMID: 25161691]
[126]
Gomaa, A.A.; Makboul, R.M.; Al-Mokhtar, M.A.; Nicola, M.A. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed. Pharmacother., 2019, 109, 281-292.
[http://dx.doi.org/10.1016/j.biopha.2018.10.056] [PMID: 30396086]
[127]
Hamden, K.; Masmoudi, H.; Carreau, S.; elfeki, A. Immunomodulatory, β-cell, and neuroprotective actions of fenugreek oil from alloxan-induced diabetes. Immunopharmacol. Immunotoxicol., 2010, 32(3), 437-445.
[http://dx.doi.org/10.3109/08923970903490486] [PMID: 20100065]
[128]
Ibrahim, D.S. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes. Metab. Brain Dis., 2017, 32(1), 69-75.
[http://dx.doi.org/10.1007/s11011-016-9886-y] [PMID: 27488111]
[129]
Kajal, A.; Singh, R. Coriandrum sativum improve neuronal function via inhibition of oxidative/nitrosative stress and TNF-α in diabetic neuropathic rats. J. Ethnopharmacol., 2020, 263, 112959.
[http://dx.doi.org/10.1016/j.jep.2020.112959] [PMID: 32413574]
[130]
Ma, C.T.; Chyau, C.C.; Hsu, C.C.; Kuo, S.M.; Chuang, C.W.; Lin, H.H.; Chen, J.H. Pepino polyphenolic extract improved oxidative, inflammatory and glycative stress in the sciatic nerves of diabetic mice. Food Funct., 2016, 7(2), 1111-1121.
[http://dx.doi.org/10.1039/C5FO01358E] [PMID: 26791916]
[131]
Masola, B.; Oguntibeju, O.O.; Oyenihi, A.B. Centella asiatica ameliorates diabetes-induced stress in rat tissues via influences on antioxidants and inflammatory cytokines. Biomed. Pharmacother., 2018, 101, 447-457.
[http://dx.doi.org/10.1016/j.biopha.2018.02.115] [PMID: 29501767]
[132]
Mbiantcha, M.; Khalid, R.; Atsamo, D.A.; Njoku, I.S.; Mehreen, A.; Ateufack, G.; Hamza, D.; Nana, W.Y.; Naeem, R.U.; Izhar, A. Anti-hypernociceptive effects of methanol extract of Boswellia dalzielii on STZ-induced diabetic neuropathic pain. Advances in Traditional Medicine, 2020, 20(3), 405-417.
[http://dx.doi.org/10.1007/s13596-019-00411-y]
[133]
Njan, A.A.; Adenuga, F.O.; Ajayi, A.M.; Sotunde, O.; Ologe, M.O.; Olaoye, S.O.; Erdogan, O.N.; Iwalewa, O.E. Neuroprotective and memory-enhancing effects of methanolic leaf extract of Peristrophe bicalyculata in rat model of type 2 diabetes mellitus. Heliyon, 2020, 6(5), e04011.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04011] [PMID: 32490237]
[134]
Patel, S.S.; Ray, R.S.; Sharma, A.; Mehta, V.; Katyal, A.; Udayabanu, M. Antidepressant and anxiolytic like effects of Urtica dioica leaves in streptozotocin induced diabetic mice. Metab. Brain Dis., 2018, 33(4), 1281-1292.
[http://dx.doi.org/10.1007/s11011-018-0243-1] [PMID: 29704081]
[135]
Patil, M.Y.; Vadivelan, R.; Dhanabal, S.P.; Satishkumar, M.N.; Elango, K.; Antony, S. Anti-oxidant, anti-inflammatory and anti-cholinergic action of Adhatoda vasica Nees contributes to amelioration of diabetic encephalopathy in rats: Behavioral and biochemical evidences. Int. J. Diabetes Dev. Ctries., 2014, 34(1), 24-31.
[http://dx.doi.org/10.1007/s13410-013-0145-z]
[136]
Rahmati, M.; Keshvari, M.; Mirnasouri, R.; Chehelcheraghi, F. Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed. Pharmacother., 2021, 139, 111577.
[http://dx.doi.org/10.1016/j.biopha.2021.111577] [PMID: 33839493]
[137]
Ranjithkumar, R.; Prathab Balaji, S.; Balaji, B.; Ramesh, R.V.; Ramanathan, M. Standardized Aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: Role of oxidative stress and inflammatory mediators. Phytother. Res., 2013, 27(11), 1646-1657.
[http://dx.doi.org/10.1002/ptr.4915] [PMID: 23280817]
[138]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/920857] [PMID: 25114929]
[139]
Solanki, N.; Bhavsar, S. An evaluation of the protective role of Ficus racemosa Linn. in streptozotocin-induced diabetic neuropathy with neurodegeneration. Indian J. Pharmacol., 2015, 47(6), 610-615.
[http://dx.doi.org/10.4103/0253-7613.169579] [PMID: 26729951]
[140]
Tiwari, V.; Kuhad, A.; Chopra, K. Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother. Res., 2011, 25(10), 1527-1536.
[http://dx.doi.org/10.1002/ptr.3440] [PMID: 21394805]
[141]
Tsafack, E.G.; Mbiantcha, M.; Ateufack, G.; Djuichou Nguemnang, S.F.; Nana Yousseu, W.; Atsamo, A.D.; Matah Marthe Mba, V.; Adjouzem, C.F.; Ben Besong, E. Antihypernociceptive and neuroprotective effects of the aqueous and methanol stem-bark extracts of Nauclea pobeguinii (Rubiaceae) on STZ-induced diabetic neuropathic pain. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6637584] [PMID: 33603820]
[142]
Yonguc, G.N.; Dodurga, Y.; Adiguzel, E.; Gundogdu, G.; Kucukatay, V.; Ozbal, S.; Yilmaz, I.; Cankurt, U.; Yilmaz, Y.; Akdogan, I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene, 2015, 555(2), 119-126.
[http://dx.doi.org/10.1016/j.gene.2014.10.052] [PMID: 25445279]
[143]
Zhang, L.; Ma, Q.; Zhou, Y. Strawberry leaf extract treatment alleviates cognitive impairment by activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes. Front. Aging Neurosci., 2020, 12, 201.
[http://dx.doi.org/10.3389/fnagi.2020.00201] [PMID: 32792939]
[144]
Abbasi-Oshaghi, E.; Khodadadi, I.; Mirzaei, F.; Ahmadi, M.; Tayebinia, H.; Goodarzi, M.T. Anethum graveolens l. Alleviates sperm damage by limiting oxidative stress and insulin resistance in diabetic rats. Open Med. Chem. J., 2020, 14(1), 35-44.
[http://dx.doi.org/10.2174/1874104502014010035]
[145]
Afshari, M.; Malayeri, A.R.; Mohammadshahi, M. Effects of Eryngium caucasicum extract on Testosterone, inflammation and oxidative status of Nicotinamide-Streptozotocin induced Type-2 Diabetes in male rats. J. Contemp. Med. Sci., 2019, 5(2), 77-81.
[http://dx.doi.org/10.22317/jcms.v5i2.568]
[146]
AL-Megrin, W.A.; El-Khadragy, M.F.; Hussein, M.H.; Mahgoub, S.; Abdel-Mohsen, D.M.; Taha, H.; Bakkar, A.A.A.; Abdel Moneim, A.E.; Amin, H.K.; Amin, H.K. Green Coffea arabica Extract Ameliorates Testicular Injury in High-Fat Diet/Streptozotocin-Induced Diabetes in Rats. J. Diabetes Res., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/6762709] [PMID: 32626781]
[147]
Albasher, G. Modulation of reproductive dysfunctions associated with streptozocin-induced diabetes by Artemisia judaica extract in rats fed a high-fat diet. Mol. Biol. Rep., 2020, 47(10), 7517-7527.
[http://dx.doi.org/10.1007/s11033-020-05814-8] [PMID: 32920759]
[148]
Ebokaiwe, A.P.; Osawe, S.; Griffin, S.; Keck, C.M.; Olusanya, O.; Ehiri, R.C. Loranthus micranthus nanoparticles abates streptozotocin-instigated testicular dysfunction in Wistar rats: Involvement of glucose metabolism enzymes, oxido-inflammatory stress, steroidogenic enzymes/protein and Nrf2 pathway. Andrologia, 2020, 52(10), e13749.
[http://dx.doi.org/10.1111/and.13749] [PMID: 32672386]
[149]
Kong, Z.L.; Johnson, A.; Ko, F.C.; He, J.L.; Cheng, S.C. Effect of cistanche tubulosa extracts on male reproductive function in streptozotocin–nicotinamide-induced diabetic rats. Nutrients, 2018, 10(10), 1562.
[http://dx.doi.org/10.3390/nu10101562] [PMID: 30360409]
[150]
Mao, C.F.; Zhang, X.R.; Johnson, A.; He, J.L.; Kong, Z.L. Modulation of diabetes mellitus-induced male rat reproductive dysfunction with micro-nanoencapsulated Echinacea purpurea ethanol extract. BioMed Res. Int., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/4237354] [PMID: 30246020]
[151]
Song, P.; Sun, C.; Li, J.; Long, T.; Yan, Y.; Qin, H.; Makinde, E.A.; Famurewa, A.C.; Jaisi, A.; Nie, Y.; Olatunji, O.J. Tiliacora triandra extract and its major constituent attenuates diabetic kidney and testicular impairment by modulating redox imbalance and pro-inflammatory responses in rats. J. Sci. Food Agric., 2021, 101(4), 1598-1608.
[http://dx.doi.org/10.1002/jsfa.10779] [PMID: 32875596]
[152]
Zhao, L.L.; Makinde, E.A.; Olatunji, O.J. Protective effects of ethyl acetate extract from Shorea roxburghii against diabetes induced testicular damage in rats. Environ. Toxicol., 2021, 36(3), 374-385.
[http://dx.doi.org/10.1002/tox.23043] [PMID: 33058396]
[153]
Abd El Motteleb, D.M.; Abd El Aleem, D.I. Renoprotective effect of Hypericum perforatum against diabetic nephropathy in rats: Insights in the underlying mechanisms. Clin. Exp. Pharmacol. Physiol., 2017, 44(4), 509-521.
[http://dx.doi.org/10.1111/1440-1681.12729] [PMID: 28079268]
[154]
Ajiboye, B.O.; Oyinloye, B.E.; Essien, P.E.; Onikanni, S.A.; Ojo, O.A.; Kappo, A.P. Ameliorative potential of Sterculia tragacantha aqueous extract on renal gene expression and biochemical parameters in streptozotocin-induced diabetic rats. J. Pharm. Investig., 2021, 51(1), 103-113.
[http://dx.doi.org/10.1007/s40005-020-00506-8]
[155]
Alamri, O.D.; Albeltagy, R.S.; Akabawy, A.M.A.; Mahgoub, S.; Abdel-Mohsen, D.M.; Abdel Moneim, A.E.; Amin, H.K. Investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J. Funct. Foods, 2020, 71, 103996.
[http://dx.doi.org/10.1016/j.jff.2020.103996]
[156]
Albasher, G.; Alwahaibi, M.; Abdel-Daim, M.M.; Alkahtani, S.; Almeer, R. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. Environ. Sci. Pollut. Res. Int., 2020, 27(32), 40525-40536.
[http://dx.doi.org/10.1007/s11356-020-09997-2] [PMID: 32666453]
[157]
Aljarba, N.H.; Hasnain, M.S.; AlKahtane, A.; Algamdy, H.; Alkahtani, S. Lagerstroemia speciosa extract ameliorates oxidative stress in rats with diabetic nephropathy by inhibiting AGEs formation. J. King Saud Univ. Sci., 2021, 33(6), 101493.
[http://dx.doi.org/10.1016/j.jksus.2021.101493]
[158]
El-Beih, N.M.; Ramadan, G.; El-Husseiny, E.A.; Hussein, A.M. Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Mol. Biol. Rep., 2019, 46(4), 3701-3711.
[http://dx.doi.org/10.1007/s11033-019-04813-8] [PMID: 31006095]
[159]
Borgohain, M.P.; Chowdhury, L.; Ahmed, S.; Bolshette, N.; Devasani, K.; Das, T.J.; Mohapatra, A.; Lahkar, M. Renoprotective and antioxidative effects of methanolic Paederia foetida leaf extract on experimental diabetic nephropathy in rats. J. Ethnopharmacol., 2017, 198, 451-459.
[http://dx.doi.org/10.1016/j.jep.2017.01.035] [PMID: 28111217]
[160]
Chan, K.C.; Kok, K.E.; Huang, K.F.; Weng, Y.L.; Chung, Y.C. Effects of fermented red bean extract on nephropathy in streptozocin-induced diabetic rats. Food Nutr. Res., 2020, 64, 64.
[http://dx.doi.org/10.29219/fnr.v64.4272] [PMID: 33447179]
[161]
Du, M.; Hu, X.; Kou, L.; Zhang, B.; Zhang, C. Lycium barbarum polysaccharide mediated the antidiabetic and antinephritic effects in diet-streptozotocin-induced diabetic sprague dawley rats via regulation of NF- κ B. BioMed Res. Int., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/3140290] [PMID: 27200371]
[162]
El Rabey, H.A.; Al-Seeni, M.N.; Bakhashwain, A.S. The antidiabetic activity of nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/5439645] [PMID: 28298934]
[163]
Gao, Y.; Zhang, R.R.; Li, J.H.; Ren, M.; Ren, Z.X.; Shi, J.H.; Pan, Q.Z.; Ren, S.P. Radix Astragali lowers kidney oxidative stress in diabetic rats treated with insulin. Endocrine, 2012, 42(3), 592-598.
[http://dx.doi.org/10.1007/s12020-012-9670-7] [PMID: 22527888]
[164]
Giribabu, N.; Karim, K.; Kilari, E.K.; Salleh, N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J. Ethnopharmacol., 2017, 205, 123-137.
[http://dx.doi.org/10.1016/j.jep.2017.05.002] [PMID: 28483637]
[165]
Hsu, J.D.; Wu, C.C.; Hung, C.N.; Wang, C.J.; Huang, H.P. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. Yao Wu Shi Pin Fen Xi, 2016, 24(4), 730-737.
[PMID: 28911610]
[166]
Ibrahim, D.S.; Abd El-Maksoud, M.A.E. Effect of strawberry ( Fragaria × ananassa ) leaf extract on diabetic nephropathy in rats. Int. J. Exp. Pathol., 2015, 96(2), 87-93.
[http://dx.doi.org/10.1111/iep.12116] [PMID: 25645466]
[167]
Jiang, S.; Tang, Y.; Bao, Y.; Su, X.; Li, K.; Guo, Y.; Liu, Z.; Song, W. Protective effect of coptis chinensis polysaccharide against renal injury by suppressing oxidative stress and inflammation in diabetic rats. Nat. Prod. Commun., 2019, 14(9), 1934578X19860998.
[http://dx.doi.org/10.1177/1934578X19860998]
[168]
Khanra, R.; Dewanjee, S.; K Dua, T.; Sahu, R.; Gangopadhyay, M.; De Feo, V.; Zia-Ul-Haq, M. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J. Transl. Med., 2015, 13(1), 6.
[http://dx.doi.org/10.1186/s12967-014-0364-1] [PMID: 25591455]
[169]
Kundu, A.; Dey, P.; Sarkar, P.; Karmakar, S.; Tae, I.H.; Kim, K.S.; Park, J.H.; Lee, S.H.; Lee, B.M.; Renthlei, L.; Puia, Z.; Kim, H.S. Protective effects of Croton hookeri on streptozotocin-induced diabetic nephropathy. Food Chem. Toxicol., 2020, 135, 110873.
[http://dx.doi.org/10.1016/j.fct.2019.110873] [PMID: 31600566]
[170]
Lin, C.Y.; Yin, M.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr., 2012, 67(3), 303-308.
[http://dx.doi.org/10.1007/s11130-012-0294-0] [PMID: 22581156]
[171]
Manna, K.; Mishra, S.; Saha, M.; Mahapatra, S.; Saha, C.; Yenge, G.; Gaikwad, N.; Pal, R.; Oulkar, D.; Banerjee, K.; Das Saha, K. Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: Assessment of NF-κB and Nrf2 signaling system. Int. J. Nanomedicine, 2019, 14, 1753-1777.
[http://dx.doi.org/10.2147/IJN.S176013] [PMID: 30880978]
[172]
Mousum, S.A.; Ahmed, S.; Gawali, B.; Kwatra, M.; Ahmed, A.; Lahkar, M. Nyctanthes arbor-tristis leaf extract ameliorates hyperlipidemia- and hyperglycemia-associated nephrotoxicity by improving anti-oxidant and anti-inflammatory status in high-fat diet–streptozotocin-induced diabetic rats. Inflammopharmacology, 2018, 26(6), 1415-1428.
[http://dx.doi.org/10.1007/s10787-018-0497-6] [PMID: 29858739]
[173]
Ni, Z.; Guo, L.; Liu, F.; Olatunji, O.J.; Yin, M. Allium tuberosum alleviates diabetic nephropathy by supressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats. Biomed. Pharmacother., 2019, 112, 108678.
[http://dx.doi.org/10.1016/j.biopha.2019.108678] [PMID: 30784905]
[174]
Ojha, S.; Alkaabi, J.; Amir, N.; Sheikh, A.; Agil, A.; Fahim, M.A.; Adem, A. Withania coagulans fruit extract reduces oxidative stress and inflammation in kidneys of streptozotocin-induced diabetic rats. Oxid. Med. Cell. Longev., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/201436] [PMID: 25295146]
[175]
Ojo, O.A.; Osukoya, O.A.; Ekakitie, L.I.; Ajiboye, B.O.; Oyinloye, B.E.; Agboinghale, P.E.; Kappo, A.P. Gongronema latifolium leaf extract modulates hyperglycaemia, inhibits redox imbalance and inflammation in alloxan-induced diabetic nephropathy. J. Diabetes Metab. Disord., 2020, 19(1), 469-481.
[http://dx.doi.org/10.1007/s40200-020-00533-0] [PMID: 32550199]
[176]
Olatunji, O.J.; Chen, H.; Zhou, Y. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation. Biomed. Pharmacother., 2018, 102, 1145-1151.
[http://dx.doi.org/10.1016/j.biopha.2018.03.037] [PMID: 29710532]
[177]
Omotuyi, O.I.; Nash, O.; Enejoh, O.A.; Oribamise, E.I.; Adelakun, N.S. Chromolaena odorata flavonoids attenuate experimental nephropathy: Involvement of pro-inflammatory genes downregulation. Toxicol. Rep., 2020, 7, 1421-1427.
[http://dx.doi.org/10.1016/j.toxrep.2020.10.006] [PMID: 33102146]
[178]
Pal, P.B.; Sinha, K.; Sil, P.C. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PLoS One, 2014, 9(9), e107220.
[http://dx.doi.org/10.1371/journal.pone.0107220] [PMID: 25233093]
[179]
Pradeep, S.R.; Srinivasan, K. Alleviation of oxidative stress-mediated nephropathy by dietary fenugreek ( Trigonella foenum-graecum ) seeds and onion ( Allium cepa ) in streptozotocin-induced diabetic rats. Food Funct., 2018, 9(1), 134-148.
[http://dx.doi.org/10.1039/C7FO01044C] [PMID: 29068452]
[180]
Punaro, G.R.; Lima, D.Y.; Rodrigues, A.M.; Pugliero, S.; Mouro, M.G.; Rogero, M.M.; Higa, E.M.S. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clin. Nutr., 2019, 38(1), 364-371.
[http://dx.doi.org/10.1016/j.clnu.2017.12.016] [PMID: 29336891]
[181]
Qiu, Y.; Jiang, X.; Liu, D.; Deng, Z.; Hu, W.; Li, Z.; Li, Y. The hypoglycemic and renal protection properties of crocin via oxidative stress-regulated NF-κB signaling in db/db mice. Front. Pharmacol., 2020, 11, 541.
[http://dx.doi.org/10.3389/fphar.2020.00541] [PMID: 32425787]
[182]
Roosdiana, A.; Permata, F.S.; Fitriani, R.I.; Umam, K.; Safitri, A. Ruellia tuberosa l extract improves histopathology and lowers malondialdehyde levels and tnf alpha expression in the kidney of streptozotocin-induced diabetic rats. Vet. Med. Int., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/8812758] [PMID: 33110487]
[183]
Sato, S.; Kataoka, S.; Kimura, A.; Mukai, Y. Azuki bean ( Vigna angularis ) extract reduces oxidative stress and stimulates autophagy in the kidneys of streptozotocin-induced early diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(12), 1298-1303.
[http://dx.doi.org/10.1139/cjpp-2015-0540] [PMID: 27602794]
[184]
Sayed, A.A.R.; Khalifa, M.; Abd el-Latif, F.F. Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats. J. Physiol. Biochem., 2012, 68(2), 263-269.
[http://dx.doi.org/10.1007/s13105-011-0139-6] [PMID: 22237966]
[185]
Sharma, B.R.; Kim, M.S.; Rhyu, D.Y. Nelumbo Nucifera leaf extract attenuated pancreatic ß-cells toxicity induced by interleukin-1ß and interferon-γ, and increased insulin secrection of pancreatic ß-cells in streptozotocin-induced diabetic rats. J. Tradit. Chin. Med., 2016, 36(1), 71-77.
[http://dx.doi.org/10.1016/S0254-6272(16)30011-5] [PMID: 26946622]
[186]
Shukla, R.; Banerjee, S.; Tripathi, Y.B. Pueraria tuberosa extract inhibits iNOS and IL-6 through suppression of PKC-α and NF-kB pathway in diabetes-induced nephropathy. J. Pharm. Pharmacol., 2018, 70(8), 1102-1112.
[http://dx.doi.org/10.1111/jphp.12931] [PMID: 29770444]
[187]
Tang, Y.; Choi, E.J.; Han, W.C.; Oh, M.; Kim, J.; Hwang, J.Y.; Park, P.J.; Moon, S.H.; Kim, Y.S.; Kim, E.K. Moringa oleifera from cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in type 2 diabetic mice. J. Med. Food, 2017, 20(5), 502-510.
[http://dx.doi.org/10.1089/jmf.2016.3792] [PMID: 28467233]
[188]
Waris, M.; Shahzad, N.; Anjum, H.; Al-Ghamdi, S.S.; Mir, S.R.; Singh, T. Withania coagulans extract loaded nano-formulation ameliorates streptozotocin-induced diabetes and associated renal stress and inflammation. J. Drug Deliv. Sci. Technol., 2021, 63, 102514.
[http://dx.doi.org/10.1016/j.jddst.2021.102514]
[189]
Wu, J.; Jia, A.; Tan, Y.; Xu, H.; Tian, J.; Wang, Y.; Li, H.L.; Gao, B.; Li, Y. Effect of Alpina oxyphylla extract on streptozotocin-induced kidney injure via regulating TGF-β1 and MyD88. BMC Complement. Med. Ther., 2020, 20(1), 217.
[http://dx.doi.org/10.1186/s12906-020-02972-x]
[190]
Zhao, L.L.; Makinde, E.A.; Shah, M.A.; Olatunji, O.J.; Panichayupakaranant, P. Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. J. Food Biochem., 2019, 43(4), e12812.
[http://dx.doi.org/10.1111/jfbc.12812] [PMID: 31353582]
[191]
Zhou, Y.; Liao, Q.; Luo, Y.; Zhang, Q.; He, G. Rosalaevigata michx extract inhibits oxidative stress in diabetic nephropathy by activating Nrf2/ARE signaling. Int. J. Clin. Exp. Med., 2016, 9, 2831-2839.
[192]
Ziamajidi, N.; Nasiri, A.; Abbasalipourkabir, R.; Sadeghi Moheb, S. Effects of garlic extract on TNF-α expression and oxidative stress status in the kidneys of rats with STZ + nicotinamide-induced diabetes. Pharm. Biol., 2017, 55(1), 526-531.
[http://dx.doi.org/10.1080/13880209.2016.1255978] [PMID: 27937047]
[193]
Alanazi, A.Z.; Alqahtani, F.; Mothana, R.A.A.; Mohany, M.; Abuohashish, H.M.; Ahmed, M.M.; Al-Rejaie, S.S. Protective role of Loranthus regularis against liver dysfunction, inflammation, and oxidative stress in streptozotocin diabetic rat model. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/5027986] [PMID: 33488745]
[194]
Metwally, N.S.; Mohamed, A.M.; El Sharabasy, F.S. Chemical constituents of the egyptian plant anabasis articulata (forssk) moq and its antidiabetic effects on rats with streptozotocininduced diabetic hepatopathy. J. Appl. Pharm. Sci., 2012, 2, 54-65.
[195]
Ofuegbe, S.O.; Oyagbemi, A.A.; Omobowale, T.O.; Adedapo, A.D.; Ayodele, A.E.; Yakubu, M.A.; Oguntibeju, O.O.; Adedapo, A.A. Methanol leaf extract of Momordica charantia protects alloxan-induced hepatopathy through modulation of caspase-9 and interleukin-1β signaling pathways in rats. Vet. World, 2020, 13(8), 1528-1535.
[http://dx.doi.org/10.14202/vetworld.2020.1528-1535] [PMID: 33061223]
[196]
Ogunyinka, B.; Oyinloye, B.; Osunsanmi, F.; Opoku, A.; Kappo, A. Protective effects of parkia biglobosa protein isolate on streptozotocin-induced hepatic damage and oxidative stress in diabetic male rats. Molecules, 2017, 22(10), 1654.
[http://dx.doi.org/10.3390/molecules22101654] [PMID: 28974040]
[197]
Oyenihi, A.B.; Chegou, N.N.; Oguntibeju, O.O.; Masola, B. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats. Pharm. Biol., 2017, 55(1), 1671-1678.
[http://dx.doi.org/10.1080/13880209.2017.1318293] [PMID: 28447512]
[198]
Ray, M.; Indu, R.; Bhattacharya, S.; Adhikari, A. Protective effect of rhizophora mucronata leaves on hepatic oxidative stress, serum cytokines and insulin resistance in type 2 diabetic rats. Indian. Indian Journal of Pharmaceutical Education and Research, 2020, 54(3s), s562-s569.
[http://dx.doi.org/10.5530/ijper.54.3s.155]
[199]
Roshankhah, S.; Shabanizadeh, A.; Abdolmaleki, A.; Gholami, M.R.; Salahshoor, M.R. Evaluation of biomarkers in liver following Solanum melongena green calyx administration in diabetic rats. J. Diabetes Metab. Disord., 2020, 19(2), 1115-1127.
[http://dx.doi.org/10.1007/s40200-020-00613-1] [PMID: 33520829]
[200]
Rotaru, L.T.; Văruţ, R.M.; Amzoiu, E.; Mormoe, M.; Oana, N.; Amzoiu, M.O.; Udrescu, L. Determination of the antioxidant capacity of tragopogon pratensis species and testing their pancreatic and hepatic regenerative activity. Pharm. Chem. J., 2020, 53(10), 964-970.
[http://dx.doi.org/10.1007/s11094-020-02106-0]
[201]
Syed, A.A.; Reza, M.I.; Husain, A.; Singh, P.; Gayen, J.R. Inhibition of NOX4 by Cissus quadrangularis extract protects from Type 2 diabetes induced-steatohepatitis. Phytomedicine. Plus, 2021, 1, 100021.
[202]
Tang, X.; Olatunji, O.J.; Zhou, Y.; Hou, X. Allium tuberosum : Antidiabetic and hepatoprotective activities. Food Res. Int., 2017, 102, 681-689.
[http://dx.doi.org/10.1016/j.foodres.2017.08.034] [PMID: 29196001]
[203]
Noussi Djouwoug, C.; Ngueguim, F.T.; Kamkumo Gounoue, R.; Donfack Gouni, C.; Kandeda, A.K.; Philippe Djientcheu, J.; Fifen, R.; Djomeni Dzeufiet, D.P.; Ngouela, S.; Sewald, N.; Lenta, B.N.; Dimo, T. Hydroethanolic extract from Bridelia atroviridis Müll. Arg. Bark improves haematological and biochemical parameters in nicotinamide-/streptozotocin-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3160834] [PMID: 33293987]
[204]
Santos, K.C.; Bueno, B.G.; Pereira, L.F.; Francisqueti, F.V.; Braz, M.G.; Bincoleto, L.F.; Silva, L.X.; Ferreira, A.L.A.; Nakamune, A.C.M.S.; Chen, C.Y.O.; Blumberg, J.B.; Corrêa, C.R. Yacon ( Smallanthus sonchifolius ) leaf extract attenuates hyperglycemia and skeletal muscle oxidative stress and inflammation in diabetic rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/6418048] [PMID: 28808475]
[205]
Gautam, M.; Gangwar, M.; Singh, S.; Goel, R. Effects of azardirachta indica on vascular endothelial growth factor and cytokines in diabetic deep wound. Planta Med., 2015, 81(9), 713-721.
[http://dx.doi.org/10.1055/s-0035-1545917] [PMID: 26069952]
[206]
Liu, C.; Zhu, R.; Liu, H.; Li, L.; Chen, B.; Jia, Q.; Wang, L.; Ma, R.; Tian, S.; Wang, M.; Fu, M.; Niu, J.; Orekhov, A.N.; Gao, S.; Zhang, D.; Zhao, B. Aqueous extract of mori folium exerts bone protective effect through regulation of calcium and redox homeostasis via PTH/VDR/CaBP and AGEs/RAGE/Nox4/NF-κB signaling in diabetic rats. Front. Pharmacol., 2018, 9, 1239.
[http://dx.doi.org/10.3389/fphar.2018.01239] [PMID: 30459613]
[207]
Oliveira, A.S.; Nascimento, J.R.; Trovão, L.O.; Alves, P.C.S.; Maciel, M.C.G.; Silva, L.D.M.; Marques, A.A.; Santos, A.P.S.A.; Silva, L.A.; Nascimento, F.R.F.; Guerra, R.N.M. The anti-inflammatory activity of Anacardium occidentale L. increases the lifespan of diabetic mice with lethal sepsis. J. Ethnopharmacol., 2019, 236, 345-353.
[http://dx.doi.org/10.1016/j.jep.2019.03.014] [PMID: 30872173]
[208]
Pengzong, Z.; Yuanmin, L.; Xiaoming, X.; Shang, D.; Wei, X.; Zhigang, L.; Dongzhou, D.; Wenjing, Y.; Jianbiao, Y.; Yang, X.; Xia, L. Wound healing potential of the standardized extract of boswellia serrata on experimental diabetic foot ulcer via inhibition of inflammatory, angiogenetic and apoptotic markers. Planta Med., 2019, 85(8), 657-669.
[http://dx.doi.org/10.1055/a-0881-3000] [PMID: 30909313]
[209]
Jagtap, A.G.; Damle, A.; Vador, N. Vulnerability of gastric mucosa in diabetic rats, its pathogenesis and amelioration by Cuminum cyminum. Indian J. Pharm. Sci., 2012, 74(5), 387-396.
[http://dx.doi.org/10.4103/0250-474X.108413] [PMID: 23716866]
[210]
Yadav, A.; Singh, A.; Phogat, J.; Dahuja, A.; Dabur, R. Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2021, 267, 113510.
[http://dx.doi.org/10.1016/j.jep.2020.113510] [PMID: 33141056]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy