Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Sintering Driven Void Formation in PS@WO3 Core-Shell Composites: A Photodegradation Enhancement Strategy

Author(s): Min Yen Yeh*, Ruei Ying You, Po Wen Cheng, Shih-Syuan Hwang, Gui-Cheng Hu and Shun Hsyung Chang

Volume 20, Issue 8, 2024

Published on: 19 April, 2024

Page: [557 - 568] Pages: 12

DOI: 10.2174/0115734110301664240409055056

Price: $65

Abstract

Background: Polystyrene nanospheres are used as a substrate for the hydrothermal coating of tungsten trioxide (WO3 ) to form a core-shell composite of PS@WO3 . The core-shell structure is used for the next sintering step. This produces porous WO3 . The focus of this study is on the role of porous WO3 in enhancing photocatalytic performance.

Methods: The hydrothermal method was employed for coating, and the surface morphology, as well as the structural properties of WO3 -coated PS spheres, were systematically investigated using SEM and XRD analyses. Additionally, the sintering process was introduced to enhance the material by inducing rupture in the PS sphere core, creating voids that significantly increased the material's surface area.

Results: The evaluation of the effect of sintering temperature on photodegradation efficiency highlighted the crucial role of sintering temperature. Un-sintered and 300°C sintered WO3 , both having a hexagonal crystalline structure, exhibited superior degradation efficiencies compared to samples sintered at higher temperatures (400°C and 500°C). In particular, the 300°C sintered WO3 outperformed its un-sintered counterpart despite identical crystalline structures. The performance of the PS@WO3 composite was assessed to determine the enhanced role of porous WO3 . The porous WO3 obtained, in particular by the sintering of the core-shell PS@WO3 composites at 300°C, showed a remarkable improvement in the degradation efficiency. These composite demonstrated over 95% efficiency within 10 minutes and achieved near complete (100%) degradation for a further 10 minutes, surpassing the performance of pure WO3 . It is important to clarify that while the final product was predominantly WO3 after the sintering process, the inclusion of PS served a critical purpose in creating voids during sintering. The PS@WO3 composite structure used as a resource for the preparation of porous WO3 , even with a potentially reduced PS composition, has been found to play a significant role in influencing the surface area of the material, and consequently the photocatalytic performance.

Conclusion: The study has highlighted the importance of crystalline structure and sintering conditions in optimizing the efficiency of photocatalytic materials. The porous WO3 obtained, in particular by the sintering of the core-shell PS@WO3 composites at 300°C, showed promising potential for applications under UV and visible LED light irradiation. These results provide valuable insights for the development of advanced photocatalytic materials with improved performance, highlighting WO3 as the key contributor to the observed improvements.

Graphical Abstract

[1]
Rajan, M.S.; John, A.; Thomas, J. Nanophotocatalysis for the removal of pharmaceutical residues from water bodies: State of art and recent trends. Curr. Anal. Chem., 2021, 18(3), 288-308.
[http://dx.doi.org/10.2174/1573411017666210412095354]
[2]
Hakimi-Tehrani, M.J.; Hassanzadeh-Tabrizi, S.A.; Koupaei, N.; Saffar, A.; Rafiei, M. Synthesis of Z-scheme g-C3N4/WO3 nano-photocatalyst with superior antibacterial characteristics for wastewater treatment. J. Sol-Gel Sci. Technol., 2023, 105(1), 212-219.
[http://dx.doi.org/10.1007/s10971-022-05985-9]
[3]
Meng, X.; Zhang, Z. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance. Appl. Surf. Sci., 2017, 392, 169-180.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.113]
[4]
Chen, C.C.; Jaihindh, D.; Hu, S.H.; Fu, Y.P. Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO2@TiO2@Ag and their photocatalytic activities. J. Photochem. Photobiol. Chem., 2017, 334, 74-85.
[http://dx.doi.org/10.1016/j.jphotochem.2016.11.005]
[5]
Vaiano, V.; Iervolino, G. Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater. J. Colloid Interface Sci., 2018, 518, 192-199.
[http://dx.doi.org/10.1016/j.jcis.2018.02.033] [PMID: 29455103]
[6]
Koohestani, H. Synthesis and characterisation of TiO 2 nanoparticles/Fe2O3 waste chips composite. Micro & Nano Lett., 2019, 14(6), 678-682.
[http://dx.doi.org/10.1049/mnl.2018.5583]
[7]
Iervolino, G.; Zammit, I.; Vaiano, V.; Rizzo, L. Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: A critical review. Top. Curr. Chem., 2019, 378(1), 7.
[http://dx.doi.org/10.1007/s41061-019-0272-1] [PMID: 31840195]
[8]
Rueda-Marquez, J.J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod., 2020, 258, 120694.
[http://dx.doi.org/10.1016/j.jclepro.2020.120694]
[9]
Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq., 2020, 309, 113094.
[http://dx.doi.org/10.1016/j.molliq.2020.113094]
[10]
Kusmierek, E. A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review. Catalysts, 2020, 10(12), 1435.
[http://dx.doi.org/10.3390/catal10121435]
[11]
Yang, C.; Zhang, X.; Zhou, Y.; Hao, S. Well-designed MOF-derived hollow octahedral structure TiO2 coupled with ultra-thin porous g-C3N4 to enhance the degradation of real liquor brewing wastewater. Appl. Surf. Sci., 2023, 616, 156471.
[http://dx.doi.org/10.1016/j.apsusc.2023.156471]
[12]
Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; Meili, L.; Selvasembian, R.; Nindi, M.M.; Sillanpaa, M.; Gwenzi, W.; Chaukura, N. Pharmaceuticals in wastewater and their photocatalytic degradation using nano-enabled photocatalysts. J. Water Process Eng., 2023, 54, 103880.
[http://dx.doi.org/10.1016/j.jwpe.2023.103880]
[13]
Kumari, H.; Sonia, S.; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; Kumar, A.; Parmar, R. A review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut., 2023, 234(6), 349.
[http://dx.doi.org/10.1007/s11270-023-06359-9] [PMID: 37275322]
[14]
Domingues, E.; Jesus, F.; Alvim, M.; Cotas, C.; Mazierski, P.; Pereira, J.L.; Gomes, J. PPCPs abatement using TiO2-based catalysts by photocatalytic oxidation and ozonation: The effect of nitrogen and cerium loads on the degradation performance and toxicity impact. Sci. Total Environ., 2023, 887, 164000.
[http://dx.doi.org/10.1016/j.scitotenv.2023.164000] [PMID: 37169186]
[15]
Zhou, B.; Tan, P.; Yang, L.; Zhang, Y.; Tan, X.; Pan, J. Assembly of direct Z-scheme ZnIn2S4/BiVO4 composite for enhanced photodegradation of tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp., 2022, 651, 129784.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129784]
[16]
Sagir, M.; Tahir, M.B. Role of nanocatalyst (photocatalysts) for waste water treatment. Curr. Anal. Chem., 2021, 17(2), 138-149.
[http://dx.doi.org/10.2174/1573411016666200226091404]
[17]
Liu, X.; Yang, X.; Cui, J.; Wu, C.; Sun, Y.; Du, X.; Chen, J.; Ye, J.; Liu, L. Ni coated with N-doped graphene layer as active and stable H2 evolution cocatalysts for photocatalytic overall water splitting. ACS Catal., 2023, 13(21), 14314-14323.
[http://dx.doi.org/10.1021/acscatal.3c03405]
[18]
Rahman, T.U.; Roy, H.; Shoronika, A.Z.; Fariha, A.; Hasan, M.; Islam, M.S.; Marwani, H.M.; Islam, A.; Hasan, M.M.; Alsukaibi, A.K.D.; Rahman, M.M.; Awual, M.R. Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J. Mol. Liq., 2023, 388, 122764.
[http://dx.doi.org/10.1016/j.molliq.2023.122764]
[19]
Zhu, Z.; Xuan, Y.; Liu, X.; Zhu, Q. Revealing the stochastic kinetics evolution of photocatalytic CO2 reduction. Nanoscale, 2023, 15(2), 730-741.
[http://dx.doi.org/10.1039/D2NR05413B] [PMID: 36520137]
[20]
Yang, L.; Fu, Q.; Wang, L.; Yu, J.; Xu, X. Liberating photocarriers in mesoporous single-crystalline SrTaO2N for efficient solar water splitting. Appl. Catal. B, 2022, 304, 120934.
[http://dx.doi.org/10.1016/j.apcatb.2021.120934]
[21]
Zhang, L.; Zhao, Q.; Shen, L.; Li, Q.; Liu, T.; Hou, L.; Yang, J. Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catal. Sci. Technol., 2022, 12(2), 509-518.
[http://dx.doi.org/10.1039/D1CY01606G]
[22]
Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J. Hazard. Mater., 2022, 428, 128218.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128218] [PMID: 35030486]
[23]
Lu, Y.; Liu, G.; Zhang, J.; Feng, Z.; Li, C.; Li, Z. Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B. Chin. J. Catal., 2016, 37(3), 349-358.
[http://dx.doi.org/10.1016/S1872-2067(15)61023-3]
[24]
Palharim, P.H.; Caira, M.C.D.A.; de Araújo Gusmão, C.; Ramos, B.; dos Santos, G.T.; Rodrigues, O., Jr; Teixeira, A.C.S.C. Effect of temperature and time on the hydrothermal synthesis of WO3-AgCl photocatalysts regarding photocatalytic activity. Chem. Eng. Res. Des., 2022, 188, 935-953.
[http://dx.doi.org/10.1016/j.cherd.2022.10.045]
[25]
Xu, Y.; Yan, H.; Chen, T. Application of ZnO/WO3 composite nanofiber photocatalysts in textile wastewater treatment. Separations, 2023, 10(6), 339.
[http://dx.doi.org/10.3390/separations10060339]
[26]
Nurmaulia Entifar, S.A.; Han, J.W.; Kim, J.H.; Wibowo, A.F.; Park, J.; Prameswati, A.; Park, S.B.; Kim, M.S.; Kim, Y.H. Photocatalytic degradation of methylene blue with carbon coated tungsten trioxide nanoparticles. Opt. Mater., 2022, 133, 113032.
[http://dx.doi.org/10.1016/j.optmat.2022.113032]
[27]
Zhao, R.; Wei, D.; Li, X.; Gao, J.; Xiong, C.; Yu, M. Construction of WO3@In2S3 heterojunction and its photocatalytic performance for NO removal. Mater. Lett., 2022, 327, 133003.
[http://dx.doi.org/10.1016/j.matlet.2022.133003]
[28]
Aravindraj, K.; Mohana Roopan, S. WO3 -based materials as heterogeneous catalysts for diverse organic transformations: A mini-review. Synth. Commun., 2022, 52(13-14), 1457-1476.
[http://dx.doi.org/10.1080/00397911.2022.2089588]
[29]
Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Sinsamphanh, O.; Abdullah, H.; Puteh, M.H.; Kurniawan, T.A. WO3–based photocatalysts: A review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int., 2022, 48(5), 5845-5875.
[http://dx.doi.org/10.1016/j.ceramint.2021.11.158]
[30]
Zhang, X.; He, Y.; Wei, Y.; Yu, R. Carving the shell thickness of tungsten trioxide hollow multi-shelled structures for enhanced photocatalytic performance. Mater. Chem. Front., 2021, 5(22), 8010-8017.
[http://dx.doi.org/10.1039/D1QM01124C]
[31]
Yin, X.; Liu, L.; Ai, F. Enhanced photocatalytic degradation of methylene blue by WO3 nanoparticles under NIR light irradiation. Front Chem., 2021, 9, 683765.
[http://dx.doi.org/10.3389/fchem.2021.683765] [PMID: 34277567]
[32]
Liao, M.; Su, L.; Deng, Y.; Xiong, S.; Tang, R.; Wu, Z.; Ding, C.; Yang, L.; Gong, D. Strategies to improve WO3-based photocatalysts for wastewater treatment: A review. J. Mater. Sci., 2021, 56(26), 14416-14447.
[http://dx.doi.org/10.1007/s10853-021-06202-8]
[33]
Mohd Razali, N.A.; Wan Salleh, W.N.; Aziz, F.; Jye, L.W.; Yusof, N.; Ismail, A.F.; Ismail, A.F. Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. J. Clean. Prod., 2021, 309, 127438.
[http://dx.doi.org/10.1016/j.jclepro.2021.127438]
[34]
Kaplan, S.S.; Sonmez, M.S. Single step solution combustion synthesis of hexagonal WO3 powders as visible light photocatalysts. Mater. Chem. Phys., 2020, 240, 122152.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122152]
[35]
Szilágyi, I.M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K.; Tóth, A.L.; Baranyai, P.; Leskelä, M. WO3 photocatalysts: Influence of structure and composition. J. Catal., 2012, 294, 119-127.
[http://dx.doi.org/10.1016/j.jcat.2012.07.013]
[36]
Singh, A.K.; Pandey, S.K.; Vishwakarma, P.K.; Pratap, R.; Verma, R.; Pandey, A.; Giri, R.; Srivastava, A. Catalyst-free biphasic orthorhombic/hexagonal tungsten oxide system with enhanced photocatalytic response under visible light. Oxford Open Materials Science, 2023, 3(1), itad009.
[http://dx.doi.org/10.1093/oxfmat/itad009]
[37]
Gaurav, K.; Samdarshi, S.K.; Kumari, N.; Bhattacharyya, A.S.; Paul, S.; Deshpande, U. Distinct role of hexagonal tungsten in tungsten/ceria heterojunction in efficient utilization of visible flux. Sol. Energy Mater. Sol. Cells, 2022, 234, 111405.
[http://dx.doi.org/10.1016/j.solmat.2021.111405]
[38]
Nguyen, C.T.; Pham, N.L.; Nguyen, T.T.; Do, D.T.; Luu, T.L.A. Effect of reaction time on the phase transformation and photocatalytic activity under solar irradiation of tungsten oxide nanocuboids prepared via facile hydrothermal method. Phase Transit., 2021, 94(9), 651-666.
[http://dx.doi.org/10.1080/01411594.2021.1954646]
[39]
Jun Park, Y.; Kang, K.M.; Ho Kang, J.; Ho Han, S.; Seong Jang, H.; Yeon Lee, J.; Yoon, T.S.; Nah, Y.C.; Kim, D.H. Enhancement of electrochromic response and cyclic durability of WO3 thin films by stacking Nb2O5 layers. Appl. Surf. Sci., 2022, 582, 152431.
[http://dx.doi.org/10.1016/j.apsusc.2022.152431]
[40]
Badour, Y.; Danto, S.; Albakour, S.; Mornet, S.; Penin, N.; Hirsch, L.; Gaudon, M. Low-cost WO3 nanoparticles/PVA smart photochromic glass windows for sustainable building energy savings. Sol. Energy Mater. Sol. Cells, 2023, 255, 112291.
[http://dx.doi.org/10.1016/j.solmat.2023.112291]
[41]
Lee, J.T.; Das, D.; Davis, G.A., Jr; Hati, S.; Ramana, C.V.; Sardar, R. Inorganic–organic interfacial electronic effects in ligand-passivated WO3–x nanoplatelets induce tunable plasmonic properties for smart windows. ACS Appl. Nano Mater., 2022, 5(7), 9970-9980.
[http://dx.doi.org/10.1021/acsanm.2c02218]
[42]
Shendage, S.S.; Patil, V.L.; Vanalakar, S.A.; Patil, S.P.; Harale, N.S.; Bhosale, J.L.; Kim, J.H.; Patil, P.S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem., 2017, 240, 426-433.
[http://dx.doi.org/10.1016/j.snb.2016.08.177]
[43]
Sriram, S.R.; Parne, S.; Vaddadi, V.S.C.S.; Edla, D. P, N.; Avala, R.R.; Yelsani, V.; Sontu, U.B. Nanostructured WO3 based gas sensors: A short review. Sens. Rev., 2021, 41(4), 406-424.
[http://dx.doi.org/10.1108/SR-05-2021-0153]
[44]
Gu, S.; Mogi, T.; Konno, M. Preparation of monodisperse, micron-sized polystyrene particles with single-stage polymerization in aqueous media. J. Colloid Interface Sci., 1998, 207(1), 113-118.
[http://dx.doi.org/10.1006/jcis.1998.5768] [PMID: 9778397]
[45]
Demirors, Mehmet Styrene polymers and copolymers. Appl. Polym. Sci: 21st Century , 2007, 93-106.
[http://dx.doi.org/10.1016/B978-008043417-9/50009-X]
[46]
Vu, K.B.; Phung, T.K.; Tran, T.T.T.; Mugemana, C.; Giang, H.N.; Nhi, T.L.P. Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. J. Ind. Eng. Chem., 2021, 97, 307-315.
[http://dx.doi.org/10.1016/j.jiec.2021.02.010]
[47]
Hérault, N.; Fromm, K.M. Influence of the sacrificial polystyrene removal pathway on the TiO2 nanocapsule structure. Helv. Chim. Acta, 2017, 100(6), e1700014.
[http://dx.doi.org/10.1002/hlca.201700014]
[48]
Zheng, X. Application of nano-TiO2 photocatalyst in marine pollution control. Desalination Water Treat., 2022, 268, 303-312.
[http://dx.doi.org/10.5004/dwt.2022.28703]
[49]
Li, Y.; Zhang, M.Q.; Liu, Y.F.; Sun, Y.X.; Zhao, Q.H.; Chen, T.L.; Chen, Y.F.; Wang, S.F. In situ construction of bronze/anatase TiO2 homogeneous heterojunctions and their photocatalytic performances. Nanomaterials, 2022, 12(7), 1122.
[http://dx.doi.org/10.3390/nano12071122] [PMID: 35407240]
[50]
Zhang, M.; Han, N.; Fei, Y.; Liu, J.; Xing, L.; Núñez-Delgado, A.; Jiang, M.; Liu, S. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. J. Environ. Manage., 2021, 297, 113311.
[http://dx.doi.org/10.1016/j.jenvman.2021.113311] [PMID: 34280862]
[51]
Kubiak, A.; Grzegórska, A.; Zembrzuska, J.; Zielińska-Jurek, A.; Siwińska-Ciesielczyk, K.; Janczarek, M.; Krawczyk, P.; Jesionowski, T. Design and Microwave-Assisted Synthesis of TiO2-Lanthanides Systems and Evaluation of Photocatalytic Activity under UV-LED Light Irradiation. Catalysts, 2021, 12(1), 8.
[http://dx.doi.org/10.3390/catal12010008]
[52]
Zhang, Y.; Xing, Z.; Liu, X.; Li, Z.; Wu, X.; Jiang, J.; Li, M.; Zhu, Q.; Zhou, W. Ti3+ self-doped blue TiO2(B) single-crystalline nanorods for efficient solar-driven photocatalytic performance. ACS Appl. Mater. Interfaces, 2016, 8(40), 26851-26859.
[http://dx.doi.org/10.1021/acsami.6b09061] [PMID: 27652448]
[53]
Liu, Z.; Yin, H.; Liu, H.; Zhang, N.; Zhang, X.; Xu, Q. Antibacterial and photocatalytic degradation properties of TiO2-based composite. Int. J. Environ. Anal. Chem., 2022, 1-8.
[http://dx.doi.org/10.1080/03067319.2022.2081080]
[54]
Qi, F.; Yang, Z.; Qiu, Q.; Wang, Y.; Li, H. Defective TiO2 with increased photocatalytic activity synthesized by the TiO2/Ti interfacial reaction method. Surf. Interfaces, 2022, 30, 101828.
[http://dx.doi.org/10.1016/j.surfin.2022.101828]
[55]
Yeh, M.Y.; Yang, T.Y.; Wu, T.C.; Lee, S.Y.; Chang, S.H. Visiblelight photocatalytic activity of Fe@TiO2 core–shell composite synthesized by sol–gel method. Int. J. Mod. Phys. B, 2020, 34(22n24), 2040127.
[http://dx.doi.org/10.1142/S021797922040127X]
[56]
Lu, L.; Zhou, L. Enhanced photocatalytic properties of ZnO/Al2O3 nanorod heterostructure. Mater. Res. Express, 2021, 8, 045505.
[http://dx.doi.org/10.1088/2053-1591/abf391]
[57]
Ben Elkamel, I.; Hamdaoui, N.; Mezni, A.; Ajjel, R.; Beji, L. Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current. J. Mater. Sci. Mater. Electron., 2019, 30(10), 9444-9454.
[http://dx.doi.org/10.1007/s10854-019-01276-2]
[58]
Agustina, T.E.; Melwita, E.; Bahrin, D.; Gayatri, R.; Purwaningtyas, I.F. Synthesis of nano-photocatalyst zno-natural zeolite to degrade procion red. Int. J. Technol., 2020, 11(3), 472-481.
[http://dx.doi.org/10.14716/ijtech.v11i3.3800]
[59]
Deepthi, V.; Vidhya, B.; Allwin Mathew, T.; Sebastian, A. Investigation on ZnO nanorod array based ZnO/SnSe and ZnO/CdSe thin film heterostructures for photocatalytic degradation of methylene blue. Mater. Lett., 2023, 331, 133370.
[http://dx.doi.org/10.1016/j.matlet.2022.133370]
[60]
Hamdy, M.S.; Abd-Rabboh, H.S.M.; Benaissa, M.; Al-Metwaly, M.G.; Galal, A.H.; Ahmed, M.A. Fabrication of novel polyaniline/ZnO heterojunction for exceptional photocatalytic hydrogen production and degradation of fluorescein dye through direct Z-scheme mechanism. Opt. Mater., 2021, 117, 111198.
[http://dx.doi.org/10.1016/j.optmat.2021.111198]
[61]
Parvathiraja, C.; Shailajha, S. High-performance visible light photocatalyst antibacterial applications of ZnO and plasmonic-decorated ZnO nanoparticles. Appl. Nanosci., 2023, 13(6), 3659-3675.
[http://dx.doi.org/10.1007/s13204-022-02488-5]
[62]
Giahi, M.; Rahbar, A.; Mehdizadeh, K. Photochemical degradation of an environmental pollutant by pure ZnO and MgO doped ZnO nanocatalysts. Iran. J. Chem. Chem. Eng., 2021, 40(1), 83-91.
[http://dx.doi.org/10.30492/ijcce.2019.36825]
[63]
Chouchene, B.; Ben Chaabane, T.; Balan, L.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol., 2016, 7, 1338-1349.
[http://dx.doi.org/10.3762/bjnano.7.125] [PMID: 27826508]
[64]
Shahid, S.; Fatima, U.; Rasheed, M.Z.; Asghar, M.N.; Zaman, S.; Sarwar, M.N. Enhanced sunlight-driven photocatalytic performance of Ag–ZnO hybrid nanoflowers. Appl. Nanosci., 2020, 10(1), 187-197.
[http://dx.doi.org/10.1007/s13204-019-01076-4]
[65]
Yeh, M.Y.; Li, J.H.; Chang, S.H.; Lee, S.Y.; Huang, H. Facile hydrothermal synthesis of NaTaO 3 with high photocatalytic activity. Mod. Phys. Lett. B, 2019, 33(14n15), 1940046.
[http://dx.doi.org/10.1142/S0217984919400463]
[66]
Yeh, M.Y.; Lin, C.; Vu, C.T.; Hsu, K.F.; Lee, S.Y.; Li, W.R.; Yen, C-F. Post-calcination effects of sodium tantalate synthesized by microwave-assisted hydrothermal method and its photocatalytic performance under UV and visible light. Mater. Res. Bull., 2017, 90, 182-187.
[http://dx.doi.org/10.1016/j.materresbull.2017.02.024]
[67]
Min Yen, Y. Hydrothermal preparation of crystalline lithium niobate photocatalysts for efective degradation of dye containing contaminated wastewater by ultraviolet to visible light irradiation. J. Iran. Chem. Soc, 2024.
[http://dx.doi.org/10.1007/s13738-024-02966-3]
[68]
Ettahiri, Y.; Akhsassi, B.; El Fazdoune, M.; Bouddouch, A.; Bouna, L.; Benlhachemi, A.; Pérez-Villarejo, L.; de Fátima Peralta Muniz Moreira, R. From synthesis to applications: A comprehensive review of geopolymer materials for photocatalytic degradation of organic pollutants. Separ. Purif. Tech., 2024, 330(C), 125396.
[http://dx.doi.org/10.1016/j.seppur.2023.125396]
[69]
Chen, Y.; Lu, J.; Chen, Z. Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives. Microelectron. Eng., 2011, 88(2), 200-205.
[http://dx.doi.org/10.1016/j.mee.2010.10.019]
[70]
Yokoyama, S.; Umemoto, Y.; Motomiya, K.; Itoh, T.; Takahashi, H. Control of galvanic replacement reaction between Cu nanowires and Ag species under vacuum filtration for transparent conductive films with long-term durability. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125809.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125809]
[71]
Zhang, Y.; Zhao, Y.; Guo, R.; Zhang, Z.; Liu, D.; Xue, C. Effect of L-ascorbic acid solution concentration on the thermoelectric properties of silver selenide flexible films prepared by vacuum-assisted filtration. Nanomaterials, 2022, 12(4), 624.
[http://dx.doi.org/10.3390/nano12040624] [PMID: 35214950]
[72]
Liu, Y.; Cao, S.; Wu, H.; Zhang, L.; Jia, B.; Qin, M.; Qu, X. Synthesis of hollow spherical WO3 powder by spray solution combustion and its photocatalytic properties. Ceram. Int., 2023, 49(13), 21175-21184.
[http://dx.doi.org/10.1016/j.ceramint.2023.03.248]
[73]
Radice, S.; Dietsch, H.; Mischler, S.; Michler, J. Electrophoretic deposition of functionalized polystyrene particles for TiO2 multi-scale structured surfaces. Surf. Coat. Tech., 2010, 204(11), 1749-1754.
[http://dx.doi.org/10.1016/j.surfcoat.2009.11.001]
[74]
Kang, M.; Liang, J.; Wang, F.; Chen, X.; Lu, Y.; Zhang, J. Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation. Mater. Res. Bull., 2020, 121, 110614.
[http://dx.doi.org/10.1016/j.materresbull.2019.110614]
[75]
Yao, S.; Qu, F.; Wang, G.; Wu, X. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J. Alloys Compd., 2017, 724, 695-702.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.123]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy