Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

N-Methyl-D-Aspartate (NMDA) Receptor Antagonists and their Pharmacological Implication: A Medicinal Chemistry-oriented Perspective Outline

Author(s): Vikas Rana, Shayantan Ghosh, Akanksha Bhatt, Damini Bisht, Gaurav Joshi and Priyank Purohit*

Volume 31, Issue 29, 2024

Published on: 17 April, 2024

Page: [4725 - 4744] Pages: 20

DOI: 10.2174/0109298673288031240405061759

Price: $65

Abstract

N-methyl-D-aspartate (NMDA) receptors, i.e., inotropic glutamate receptors, are important in synaptic plasticity, brain growth, memory, and learning. The activation of NMDA is done by neurotransmitter glutamate and co-agonist (glycine or D-serine) binding. However, the over-activation of NMDA elevates the intracellular calcium influx, which causes various neurological diseases and disorders. Therefore, to prevent excitotoxicity and neuronal death, inhibition of NMDA must be done using its antagonist. This review delineates the structure of subunits of NMDA and the conformational changes induced after the binding of agonists (glycine and D-serine) and antagonists (ifenprodil, etc.). Additionally, reported NMDA antagonists from different sources, such as synthetic, semisynthetic, and natural resources, are explained by their mechanism of action and pharmacological role. The comprehensive report also addresses the chemical spacing of NMDA inhibitors and in-vivo and in-vitro models to test NMDA antagonists. Since the Blood-Brain Barrier (BBB) is the primary membrane that prevents the penetration of a wide variety of drug molecules, we also elaborate on the medicinal chemistry approach to improve the effectiveness of their antagonists.

[1]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[2]
Chen, K.; Yang, L.N.; Lai, C.; Liu, D.; Zhu, L.Q. Role of Grina/Nmdara1 in the central nervous system diseases. Curr. Neuropharmacol., 2020, 18(9), 861-867.
[http://dx.doi.org/10.2174/1570159X18666200303104235] [PMID: 32124700]
[3]
Wang, J.X.; Furukawa, H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol., 2019, 54, 34-42.
[http://dx.doi.org/10.1016/j.sbi.2018.12.009] [PMID: 30703613]
[4]
Mayor, D.; Tymianski, M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology, 2018, 134(Pt B), 178-188.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.050] [PMID: 29203179]
[5]
Sachana, M.; Rolaki, A.; Price, B.A. Development of the adverse outcome pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol. Appl. Pharmacol., 2018, 354, 153-175.
[http://dx.doi.org/10.1016/j.taap.2018.02.024] [PMID: 29524501]
[6]
Ugale, V; Dhote, A; Narwade, R; Khadse, S; Reddy, PN; Shirkhedkar, A GluN2B/N-methyl-d-aspartate receptor antagonists: Advances in design, synthesis, and pharmacological evaluation studies. CNS Neurol. Disord. Drug Targets, 2021, 20(9), 822-862.
[7]
Rajani, V.; Sengar, A.S.; Salter, M.W. Tripartite signalling by NMDA receptors. Mol. Brain, 2020, 13(1), 23.
[http://dx.doi.org/10.1186/s13041-020-0563-z] [PMID: 32070387]
[8]
Vieira, M.; Yong, X.L.H.; Roche, K.W.; Anggono, V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem., 2020, 154(2), 121-143.
[http://dx.doi.org/10.1111/jnc.14970] [PMID: 31978252]
[9]
Regan, M.C.; Hernandez, R.A.; Furukawa, H. A structural biology perspective on NMDA receptor pharmacology and function. Curr. Opin. Struct. Biol., 2015, 33, 68-75.
[http://dx.doi.org/10.1016/j.sbi.2015.07.012] [PMID: 26282925]
[10]
Grand, T.; Abi Gerges, S.; David, M.; Diana, M.A.; Paoletti, P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun., 2018, 9(1), 4769.
[http://dx.doi.org/10.1038/s41467-018-07236-4] [PMID: 30425244]
[11]
Romero-Hernandez, A.; Simorowski, N.; Karakas, E.; Furukawa, H. Molecular basis for subtype specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino-terminal domain. Neuron, 2016, 92(6), 1324-1336.
[http://dx.doi.org/10.1016/j.neuron.2016.11.006] [PMID: 27916457]
[12]
Stroebel, D.; Mony, L.; Paoletti, P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology, 2021, 193, 108631.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108631] [PMID: 34058193]
[13]
Tian, M.; Ye, S. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Sci. Rep., 2016, 6(1), 34751.
[http://dx.doi.org/10.1038/srep34751] [PMID: 27713495]
[14]
Chou, T.H.; Epstein, M.; Michalski, K.; Fine, E.; Biggin, P.C.; Furukawa, H. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol., 2022, 29(6), 507-518.
[http://dx.doi.org/10.1038/s41594-022-00772-0] [PMID: 35637422]
[15]
Painuli, S.; Semwal, P.; Zam, W.; Taheri, Y.; Ezzat, S.M.; Zuo, P.; Li, L.; Kumar, D.; Rad, S.J.; Martins, C.N. NMDA inhibitors: A potential contrivance to assist in management of Alzheimer’s disease. Comb. Chem. High Throughput Screen., 2023, 26(12), 2099-2112.
[http://dx.doi.org/10.2174/1386207325666220428112541] [PMID: 36476432]
[16]
Zhu, S.; Paoletti, P. Allosteric modulators of NMDA receptors: Multiple sites and mechanisms. Curr. Opin. Pharmacol., 2015, 20, 14-23.
[http://dx.doi.org/10.1016/j.coph.2014.10.009] [PMID: 25462287]
[17]
Warnet, X.L.; Krog, B.H.; Quispe, S.O.G.; Poulsen, H.; Kjaergaard, M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur. J. Neurosci., 2021, 54(8), 6713-6739.
[http://dx.doi.org/10.1111/ejn.14842] [PMID: 32464691]
[18]
Haddow, K.; Kind, P.C.; Hardingham, G.E. NMDA receptor C-terminal domain signalling in development, maturity, and disease. Int. J. Mol. Sci., 2022, 23(19), 11392.
[http://dx.doi.org/10.3390/ijms231911392] [PMID: 36232696]
[19]
Wilbek, T.S.; Skovgaard, T.; Sorrell, F.J.; Knapp, S.; Berthelsen, J.; Strømgaard, K. Identification and characterization of a small-molecule inhibitor of death-associated protein kinase 1. ChemBioChem, 2015, 16(1), 59-63.
[http://dx.doi.org/10.1002/cbic.201402512] [PMID: 25382253]
[20]
Sapkota, K.; Dore, K.; Tang, K.; Irvine, M.; Fang, G.; Burnell, E.S.; Malinow, R.; Jane, D.E.; Monaghan, D.T. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochem. Pharmacol., 2019, 159, 140-153.
[http://dx.doi.org/10.1016/j.bcp.2018.11.018] [PMID: 30503374]
[21]
Paoletti, P.; Neyton, J. NMDA receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol., 2007, 7(1), 39-47.
[http://dx.doi.org/10.1016/j.coph.2006.08.011] [PMID: 17088105]
[22]
Gonda, X. Basic pharmacology of NMDA receptors. Curr. Pharm. Des., 2012, 18(12), 1558-1567.
[http://dx.doi.org/10.2174/138161212799958521] [PMID: 22280436]
[23]
Zhu, S.; Stein, R.A.; Yoshioka, C.; Lee, C.H.; Goehring, A.; Mchaourab, H.S.; Gouaux, E. Mechanism of NMDA receptor inhibition and activation. Cell, 2016, 165(3), 704-714.
[http://dx.doi.org/10.1016/j.cell.2016.03.028] [PMID: 27062927]
[24]
Ferreira, I.L.; Bajouco, L.M.; Mota, S.I.; Auberson, Y.P.; Oliveira, C.R.; Rego, A.C. Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium, 2012, 51(2), 95-106.
[http://dx.doi.org/10.1016/j.ceca.2011.11.008] [PMID: 22177709]
[25]
Saura, CA; Valero, J. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev Neurosci, 2011, 22(2), 153-169.
[http://dx.doi.org/10.1515/rns.2011.018]
[26]
Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev., 2009, 89(1), 121-145.
[http://dx.doi.org/10.1152/physrev.00017.2008] [PMID: 19126756]
[27]
Du, H.; Guo, L.; Wu, X.; Sosunov, A.A.; McKhann, G.M.; Chen, J.X.; Yan, S.S. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(12), 2517-2527.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.004] [PMID: 23507145]
[28]
Zhang, Y.; Li, P.; Feng, J.; Wu, M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci., 2016, 37(7), 1039-1047.
[http://dx.doi.org/10.1007/s10072-016-2546-5] [PMID: 26971324]
[29]
Sonsalla, P.K.; Albers, D.S.; Zeevalk, G.D. Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids, 1998, 14(1-3), 69-74.
[http://dx.doi.org/10.1007/BF01345245] [PMID: 9871444]
[30]
Meredith, G.E.; Totterdell, S.; Beales, M.; Meshul, C.K. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson’s disease. Exp. Neurol., 2009, 219(1), 334-340.
[http://dx.doi.org/10.1016/j.expneurol.2009.06.005] [PMID: 19523952]
[31]
Erickson, C.A.; Posey, D.J.; Stigler, K.A.; Mullett, J.; Katschke, A.R.; McDougle, C.J. A retrospective study of memantine in children and adolescents with pervasive developmental disorders. Psychopharmacology, 2007, 191(1), 141-147.
[http://dx.doi.org/10.1007/s00213-006-0518-9] [PMID: 17016714]
[32]
Reiff, M. Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder. J. Dev. Behav. Pediatr., 2001, 22(5), 339.
[http://dx.doi.org/10.1097/00004703-200110000-00018]
[33]
Harris, B.R.; Prendergast, M.A.; Gibson, D.A.; Rogers, D.T.; Blanchard, J.A.; Holley, R.C.; Fu, M.C.; Hart, S.R.; Pedigo, N.W.; Littleton, J.M. Acamprosate inhibits the binding and neurotoxic effects of trans-ACPD, suggesting a novel site of action at metabotropic glutamate receptors. Alcohol. Clin. Exp. Res., 2002, 26(12), 1779-1793.
[http://dx.doi.org/10.1111/j.1530-0277.2002.tb02484.x] [PMID: 12500101]
[34]
Altinoz, M.A.; Ozpinar, A.; Hacker, E.; Ozpinar, A. A hypothetical proposal to employ meperidine and tamoxifen in treatment of glioblastoma. Role of P-glycoprotein, ceramide and metabolic pathways. Clin. Neurol. Neurosurg., 2022, 215, 107208.
[http://dx.doi.org/10.1016/j.clineuro.2022.107208] [PMID: 35316699]
[35]
Fogaça, M.V.; Fukumoto, K.; Franklin, T.; Liu, R.J.; Duman, C.H.; Vitolo, O.V.; Duman, R.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology, 2019, 44(13), 2230-2238.
[http://dx.doi.org/10.1038/s41386-019-0501-x] [PMID: 31454827]
[36]
Antoniu, S.A.; Apostu, M.; Alexinschi, O.; Mosoiu, D. Dextromethorphan for chronic neuropathic pain in palliative care. Expert Rev. Qual. Life Cancer Care, 2017, 2(1), 5-12.
[http://dx.doi.org/10.1080/23809000.2017.1264259]
[37]
Ostadhadi, S.; Javidan, N.A.; Chamanara, M.; Akbarian, R.; Imran-Khan, M.; Ghasemi, M.; Dehpour, A.R. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test. Brain Res. Bull., 2017, 134, 136-141.
[http://dx.doi.org/10.1016/j.brainresbull.2017.07.016] [PMID: 28754288]
[38]
Thigpen, J.C.; Odle, B.L.; Harirforoosh, S. Opioids: A review of pharmacokinetics and pharmacodynamics in neonates, infants, and children. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(5), 591-609.
[http://dx.doi.org/10.1007/s13318-019-00552-0] [PMID: 31006834]
[39]
Tetteh, H.; Lee, M.; Lau, C.G.; Yang, S.; Yang, S. Tinnitus: Prospects for pharmacological interventions with a seesaw model. Neuroscientist, 2018, 24(4), 353-367.
[http://dx.doi.org/10.1177/1073858417733415] [PMID: 29283017]
[40]
Gatius, T.M.; Hill, L.X.; Rio, M.L.; Castarlenas, L.; Fabius, S.; Santana, N.; Vilaró, M.T.; Artigas, F.; Scorza, M.C.; Castañé, A. Discrimination of motor and sensorimotor effects of phencyclidine and MK-801: Involvement of GluN2C-containing NMDA receptors in psychosis-like models. Neuropharmacology, 2022, 213, 109079.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109079] [PMID: 35561792]
[41]
Novakov, I.A.; Sheikin, D.S.; Navrotskii, M.B.; Mkrtchyan, A.S.; Brunilina, L.L.; Balakin, K.V. Dexoxadrol and its bioisosteres: Structure, synthesis, and pharmacological activity. Russ. Chem. Bull., 2020, 69(9), 1625-1671.
[http://dx.doi.org/10.1007/s11172-020-2946-9]
[42]
Farber, N.B.; Jiang, X-P.; Heinkel, C.; Nemmers, B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol. Psychiatry, 2002, 7(7), 726-733.
[http://dx.doi.org/10.1038/sj.mp.4001087] [PMID: 12192617]
[43]
Turner, E.H. Esketamine for treatment-resistant depression: Seven concerns about efficacy and FDA approval. Lancet Psychiatry, 2019, 6(12), 977-979.
[http://dx.doi.org/10.1016/S2215-0366(19)30394-3] [PMID: 31680014]
[44]
Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol. Ther., 2016, 164, 170-182.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.010] [PMID: 27139517]
[45]
Shaibani, A.I.; Pope, L.E.; Thisted, R.; Hepner, A. Efficacy and safety of dextromethorphan/quinidine at two dosage levels for diabetic neuropathic pain: A double-blind, placebo-controlled, multicenter study. Pain Med., 2012, 13(2), 243-254.
[http://dx.doi.org/10.1111/j.1526-4637.2011.01316.x] [PMID: 22314263]
[46]
Cummings, J.L.; Lyketsos, C.G.; Peskind, E.R.; Porsteinsson, A.P.; Mintzer, J.E.; Scharre, D.W.; De La Gandara, J.E.; Agronin, M.; Davis, C.S.; Nguyen, U.; Shin, P.; Tariot, P.N.; Siffert, J. Effect of dextromethorphan-quinidine on agitation in patients with Alzheimer disease dementia: A randomized clinical trial. JAMA, 2015, 314(12), 1242-1254.
[http://dx.doi.org/10.1001/jama.2015.10214] [PMID: 26393847]
[47]
Kawai, N.; Niwa, A.; Abe, T. Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res., 1982, 247(1), 169-171.
[http://dx.doi.org/10.1016/0006-8993(82)91044-7] [PMID: 6127145]
[48]
Takeuchi, A.; Onodera, K. Effects of kainic acid on the glutamate receptors of the crayfish muscle. Neuropharmacology, 1975, 14(9), 619-625.
[http://dx.doi.org/10.1016/0028-3908(75)90084-2] [PMID: 1178118]
[49]
Shinozaki, H.; Shibuya, I. Potentiation of glutamate-induced depolarization by kainic acid in the crayfish opener muscle. Neuropharmacology, 1974, 13(10-11), 1057-1065.
[http://dx.doi.org/10.1016/0028-3908(74)90096-3] [PMID: 4437724]
[50]
Serefko, A.; Szopa, A.; Wlaź, A.; Wośko, S.; Wlaź, P.; Poleszak, E. Synergistic antidepressant-like effect of the joint administration of caffeine and NMDA receptor ligands in the forced swim test in mice. J. Neural Transm., 2016, 123(4), 463-472.
[http://dx.doi.org/10.1007/s00702-015-1467-4] [PMID: 26510772]
[51]
Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J., 2020, 28(4), 445-451.
[http://dx.doi.org/10.1016/j.jsps.2020.02.005] [PMID: 32273803]
[52]
Chindo, B.A.; Howes, M.J.R.; Abuhamdah, S.; Yakubu, M.I.; Ayuba, G.I.; Battison, A.; Chazot, P.L. New insights into the anticonvulsant effects of essential oil from Melissa officinalis L. (Lemon Balm). Front. Pharmacol., 2021, 12, 760674.
[http://dx.doi.org/10.3389/fphar.2021.760674] [PMID: 34721045]
[53]
Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci., 2007, 104(33), 13501-13506.
[http://dx.doi.org/10.1073/pnas.0704391104] [PMID: 17675408]
[54]
Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol., 2014, 49(1), 512-528.
[http://dx.doi.org/10.1007/s12035-013-8535-2] [PMID: 24030726]
[55]
Kang, J.; Kim, E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front. Mol. Neurosci., 2015, 8, 17.
[http://dx.doi.org/10.3389/fnmol.2015.00017] [PMID: 26074764]
[56]
Lenart, J.; Augustyniak, J.; Lazarewicz, J.W.; Zieminska, E. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: A screening test. Toxicology, 2020, 440, 152500.
[http://dx.doi.org/10.1016/j.tox.2020.152500] [PMID: 32428529]
[57]
Kumar, H.; Sharma, B. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res. Bull., 2016, 124, 27-39.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.013] [PMID: 27034117]
[58]
Burket, J.A.; Deutsch, S.I. Metabotropic functions of the NMDA receptor and an evolving rationale for exploring NR2A-selective positive allosteric modulators for the treatment of autism spectrum disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 142-160.
[http://dx.doi.org/10.1016/j.pnpbp.2018.11.017] [PMID: 30481555]
[59]
Zhan, Y.; Xia, J.; Wang, X. Effects of glutamate-related drugs on anxiety and compulsive behavior in rats with obsessive-compulsive disorder. Int. J. Neurosci., 2020, 130(6), 551-560.
[http://dx.doi.org/10.1080/00207454.2019.1684276] [PMID: 31680595]
[60]
Su, L.D.; Wang, N.; Han, J.; Shen, Y. Group 1 metabotropic glutamate receptors in neurological and psychiatric diseases: Mechanisms and prospective. Neuroscientist, 2022, 28(5), 453-468.
[http://dx.doi.org/10.1177/10738584211021018] [PMID: 34088252]
[61]
Maksymetz, J.; Moran, S.P.; Conn, P.J. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol. Brain, 2017, 10(1), 15.
[http://dx.doi.org/10.1186/s13041-017-0293-z] [PMID: 28446243]
[62]
Varnamkhasti, B.S.; Jafari, S.; Taghavi, F.; Alaei, L.; Izadi, Z.; Lotfabadi, A.; Dehghanian, M.; Jaymand, M.; Derakhshankhah, H.; Saboury, A.A. Cell-penetrating peptides: As a promising theranostics strategy to circumvent the blood-brain barrier for CNS diseases. Curr. Drug Deliv., 2020, 17(5), 375-386.
[http://dx.doi.org/10.2174/1567201817666200415111755] [PMID: 32294035]
[63]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[64]
Krizbai, I.; Nyúl-Tóth, Á.; Bauer, H.C.; Farkas, A.; Traweger, A.; Haskó, J.; Bauer, H.; Wilhelm, I. Pharmaceutical targeting of the brain. Curr. Pharm. Des., 2016, 22(35), 5442-5462.
[http://dx.doi.org/10.2174/1381612822666160726144203] [PMID: 27464716]
[65]
Botti, G.; Dalpiaz, A.; Pavan, B. Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics, 2021, 13(8), 1144.
[http://dx.doi.org/10.3390/pharmaceutics13081144] [PMID: 34452105]
[66]
Grabrucker, A.M.; Chhabra, R.; Belletti, D.; Forni, F.; Vandelli, M.A.; Ruozi, B.; Tosi, G. Nanoparticles as blood-brain barrier permeable CNS targeted drug delivery systems. In: The Blood Brain Barrier (BBB); Springer, 2014; pp. 71-89.
[67]
Vilella, A.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Galliani, M.; Semeghini, V.; Forni, F.; Zoli, M.; Vandelli, M.; Tosi, G. Endocytosis of nanomedicines: The case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics, 2015, 7(2), 74-89.
[http://dx.doi.org/10.3390/pharmaceutics7020074] [PMID: 26102358]
[68]
Begley, DJ; Bellettato, CM; Scarpa, M Central nervous system aspects, neurodegeneration, and the blood-brain barrier. In: Lysosomal Storage Disorders: A Practical Guide, 2nd ed.; Wiley, 2022.
[69]
Wang, T.; Wu, M.B.; Zhang, R.H.; Chen, Z.J.; Hua, C.; Lin, J.P.; Yang, L.R. Advances in computational structure-based drug design and application in drug discovery. Curr. Top. Med. Chem., 2015, 16(9), 901-916.
[http://dx.doi.org/10.2174/1568026615666150825142002] [PMID: 26303430]
[70]
Tajima, N.; Simorowski, N.; Yovanno, R.A.; Regan, M.C.; Michalski, K.; Gómez, R.; Lau, A.Y.; Furukawa, H. Development and characterization of functional antibodies targeting NMDA receptors. Nat. Commun., 2022, 13(1), 923.
[http://dx.doi.org/10.1038/s41467-022-28559-3] [PMID: 35177668]
[71]
Stępnicki, P.; Kondej, M.; Koszła, O.; Żuk, J.; Kaczor, A.A. Multi-targeted drug design strategies for the treatment of schizophrenia. Expert Opin. Drug Discov., 2021, 16(1), 101-114.
[http://dx.doi.org/10.1080/17460441.2020.1816962] [PMID: 32915109]
[72]
Rosini, M.; Simoni, E.; Minarini, A.; Melchiorre, C. Multi- target design strategies in the context of Alzheimer’s disease: Acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res., 2014, 39(10), 1914-1923.
[http://dx.doi.org/10.1007/s11064-014-1250-1] [PMID: 24493627]
[73]
Pardridge, W.M. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin. Drug Deliv., 2015, 12(2), 207-222.
[http://dx.doi.org/10.1517/17425247.2014.952627] [PMID: 25138991]
[74]
Chang, R.; Knox, J.; Chang, J.; Derbedrossian, A.; Vasilevko, V.; Cribbs, D.; Boado, R.J.; Pardridge, W.M.; Sumbria, R.K. Blood–brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s disease. Mol. Pharm., 2017, 14(7), 2340-2349.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00200] [PMID: 28514851]
[75]
Timothy, J. Combination of a NMDA receptor antagonist and a MAO-inhibitor or a GADPH-inhibitor for the treatment of central nervous system-related conditions. EP Patent 1715843A1, 2011.
[76]
Guitton, M.; Puel, J.L.; Pujol, R. Use of an NMDA receptor antagonist for the treatment of tinnitus induced by cochlear excitotoxicity. KR Patent 101429735B1, 2005.
[77]
R. U. S. A. Data, S. Gupta, and G. Samoriski, “(12) Patent Application Publication (10) Pub. No.: US 2010 / 0076073 A1,” vol. 1, no. 19, 2010.
[78]
Buratti, S.; Giacheri, E.; Palmieri, A.; Tibaldi, J.; Brisca, G.; Riva, A.; Striano, P.; Mancardi, M.M.; Nobili, L.; Moscatelli, A. Ketamine as advanced second-line treatment in benzodiazepine-refractory convulsive status epilepticus in children. Epilepsia, 2023, 64(4), 797-810.
[http://dx.doi.org/10.1111/epi.17550] [PMID: 36792542]
[79]
Vasquez, A.; Gaínza-Lein, M.; Sánchez Fernández, I.; Abend, N.S.; Anderson, A.; Brenton, J.N.; Carpenter, J.L.; Chapman, K.; Clark, J.; Gaillard, W.D.; Glauser, T.; Goldstein, J.; Goodkin, H.P.; Lai, Y.C.; Loddenkemper, T.; McDonough, T.L.; Mikati, M.A.; Nayak, A.; Payne, E.; Riviello, J.; Tchapyjnikov, D.; Topjian, A.A.; Wainwright, M.S.; Tasker, R.C. Hospital emergency treatment of convulsive status epilepticus: Comparison of pathways from ten pediatric research centers. Pediatr. Neurol., 2018, 86, 33-41.
[http://dx.doi.org/10.1016/j.pediatrneurol.2018.06.004] [PMID: 30075875]
[80]
Singh, A.; Stredny, C.M.; Loddenkemper, T. Pharmacotherapy for pediatric convulsive status epilepticus. CNS Drugs, 2020, 34(1), 47-63.
[http://dx.doi.org/10.1007/s40263-019-00690-8] [PMID: 31879852]
[81]
Alkhachroum, A.; Der-Nigoghossian, C.A.; Mathews, E.; Massad, N.; Letchinger, R.; Doyle, K.; Chiu, W.T.; Kromm, J.; Rubinos, C.; Velazquez, A.; Roh, D.; Agarwal, S.; Park, S.; Connolly, E.S.; Claassen, J. Ketamine to treat super-refractory status epilepticus. Neurology, 2020, 95(16), e2286-e2294.
[http://dx.doi.org/10.1212/WNL.0000000000010611] [PMID: 32873691]
[82]
Jacobwitz, M.; Mulvihill, C.; Kaufman, M.C.; Gonzalez, A.K.; Resendiz, K.; MacDonald, J.M.; Francoeur, C.; Helbig, I.; Topjian, A.A.; Abend, N.S. Ketamine for management of neonatal and pediatric refractory status epilepticus. Neurology, 2022, 99(12), e1227-e1238.
[http://dx.doi.org/10.1212/WNL.0000000000200889] [PMID: 35817569]
[83]
Rosati, A.; L’Erario, M.; Bianchi, R.; Olivotto, S.; Battaglia, D.I.; Darra, F.; Biban, P.; Biggeri, A.; Catelan, D.; Danieli, G.; Mondardini, M.C.; Cordelli, D.M.; Amigoni, A.; Cesaroni, E.; Conio, A.; Costa, P.; Lombardini, M.; Meleleo, R.; Pugi, A.; Tornaboni, E.E.; Santarone, M.E.; Vittorini, R.; Sartori, S.; Marini, C.; Vigevano, F.; Mastrangelo, M.; Pulitanò, S.M.; Izzo, F.; Fusco, L. KETASER01 protocol: What went right and what went wrong. Epilepsia Open, 2022, 7(3), 532-540.
[http://dx.doi.org/10.1002/epi4.12627] [PMID: 35833327]
[84]
Sampietro, A.; Pérez-Areales, F.J.; Martínez, P.; Arce, E.M.; Galdeano, C.; Torrero, M.D. Unveiling the multitarget anti-Alzheimer drug discovery landscape: A bibliometric analysis. Pharmaceuticals, 2022, 15(5), 545.
[http://dx.doi.org/10.3390/ph15050545] [PMID: 35631371]
[85]
Potasiewicz, A.; Krawczyk, M.; Gzielo, K.; Popik, P.; Nikiforuk, A. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors enhance procognitive effects of conventional anti-Alzheimer drugs in scopolamine-treated rats. Behav. Brain Res., 2020, 385, 112547.
[http://dx.doi.org/10.1016/j.bbr.2020.112547] [PMID: 32087183]
[86]
Albertini, C.; Salerno, A.; de Pinheiro, S.M.P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev., 2021, 41(5), 2606-2633.
[http://dx.doi.org/10.1002/med.21699] [PMID: 32557696]
[87]
Lista, S.; Vergallo, A.; Teipel, S.J.; Lemercier, P.; Giorgi, F.S.; Gabelle, A.; Garaci, F.; Mercuri, N.B.; Babiloni, C.; Gaire, B.P.; Koronyo, Y.; Hamaoui, K.M.; Hampel, H.; Nisticò, R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer’s disease: Relevance for precision medicine in neurodegenerative diseases. Ageing Res. Rev., 2023, 84, 101819.
[http://dx.doi.org/10.1016/j.arr.2022.101819] [PMID: 36526257]
[88]
McClure, E.W.; Daniels, R.N. Classics in chemical neuroscience: Dextromethorphan (DXM). ACS Chem. Neurosci., 2023, 14(12), 2256-2270.
[http://dx.doi.org/10.1021/acschemneuro.3c00088] [PMID: 37290117]
[89]
Silva, A.R.; Oliveira, D.R.J. Pharmacokinetics and pharmacodynamics of dextromethorphan: Clinical and forensic aspects. Drug Metab. Rev., 2020, 52(2), 258-282.
[http://dx.doi.org/10.1080/03602532.2020.1758712] [PMID: 32393072]
[90]
Campos-Mañas, M.C.; Cuevas, S.M.; Ferrer, I.; Thurman, E.M.; Pérez, S.J.A.; Agüera, A. Determination of dextromethorphan and dextrorphan solar photo-transformation products by LC/Q-TOF-MS: Laboratory scale experiments and real water samples analysis. Environ. Pollut., 2020, 265(Pt A), 114722.
[http://dx.doi.org/10.1016/j.envpol.2020.114722] [PMID: 32454378]
[91]
Chia, J.S.M.; Izham, N.A.M.; Farouk, A.A.O.; Sulaiman, M.R.; Mustafa, S.; Hutchinson, M.R.; Perimal, E.K. Zerumbone modulates α2A-adrenergic, TRPV1, and NMDA NR2B receptors plasticity in CCI-induced neuropathic pain in vivo and LPS-induced SH-SY5Y neuroblastoma in vitro models. Front. Pharmacol., 2020, 11, 92.
[http://dx.doi.org/10.3389/fphar.2020.00092] [PMID: 32194397]
[92]
Halliwell, R.F.; Peters, J.A.; Lambert, J.J. The mechanism of action and pharmacological specificity of the anticonvulsant NMDA antagonist MK-801: A voltage clamp study on neuronal cells in culture. Br. J. Pharmacol., 1989, 96(2), 480-494.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb11841.x] [PMID: 2647206]
[93]
Övey, İ.S.; Nazıroğlu, M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. J. Recept. Signal Transduct. Res., 2021, 41(3), 273-283.
[http://dx.doi.org/10.1080/10799893.2020.1806321] [PMID: 32781866]
[94]
Guo, H.; Camargo, L.M.; Yeboah, F.; Digan, M.E.; Niu, H.; Pan, Y.; Reiling, S.; Llavina, S.G.; Weihofen, W.A.; Wang, H.R.; Shanker, Y.G.; Stams, T.; Bill, A. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci. Rep., 2017, 7(1), 11608.
[http://dx.doi.org/10.1038/s41598-017-11947-x] [PMID: 28912557]
[95]
Dingle, Y.T.L.; Liaudanskaya, V.; Finnegan, L.T.; Berlind, K.C.; Mizzoni, C.; Georgakoudi, I.; Nieland, T.J.F.; Kaplan, D.L. Functional characterization of three-dimensional cortical cultures for in vitro modeling of brain networks. iScience, 2020, 23(8), 101434.
[http://dx.doi.org/10.1016/j.isci.2020.101434] [PMID: 32805649]
[96]
Lv, S.; Yao, K.; Zhang, Y.; Zhu, S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology, 2023, 225, 109378.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109378] [PMID: 36539011]
[97]
Zhou, Q.; Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology, 2013, 74, 69-75.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.030] [PMID: 23583930]
[98]
Rodriguez, C.M.; Rodríguez, G.C.; Villalobos, C.; Núñez, L. Role of toll like receptor 4 in Alzheimer’s disease. Front. Immunol., 2020, 11, 1588.
[http://dx.doi.org/10.3389/fimmu.2020.01588] [PMID: 32983082]
[99]
Özgün, A.; Marote, A.; Behie, L.A.; Salgado, A.; Garipcan, B. Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation. J. Neural Transm., 2019, 126(10), 1281-1290.
[http://dx.doi.org/10.1007/s00702-019-02045-5] [PMID: 31317262]
[100]
Groth, R.D.; Dunbar, R.L.; Mermelstein, P.G. Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun., 2003, 311(4), 1159-1171.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.002] [PMID: 14623302]
[101]
Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci., 2013, 14(9), 593-608.
[http://dx.doi.org/10.1038/nrn3531] [PMID: 23942469]
[102]
Matta, C.; Juhász, T.; Fodor, J.; Hajdú, T.; Katona, É.; Somogyi, S.C.; Takács, R.; Vágó, J.; Oláh, T.; Bartók, Á.; Varga, Z.; Panyi, G.; Csernoch, L.; Zákány, R. N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Commun. Signal., 2019, 17(1), 166.
[http://dx.doi.org/10.1186/s12964-019-0487-3] [PMID: 31842918]
[103]
Garcia-Durillo, M.; Frenguelli, B.G. Antagonism of P2X7 receptors enhances lorazepam action in delaying seizure onset in an in vitro model of status epilepticus. Neuropharmacology, 2023, 239, 109647.
[http://dx.doi.org/10.1016/j.neuropharm.2023.109647] [PMID: 37459909]
[104]
Companys-Alemany, J.; Turcu, A.L.; Bellver-Sanchis, A.; Loza, M.I.; Brea, J.M.; Canudas, A.M.; Leiva, R.; Vázquez, S.; Pallàs, M.; Ferré, G.C. A novel NMDA receptor antagonist protects against cognitive decline presented by senescent mice. Pharmaceutics, 2020, 12(3), 284.
[http://dx.doi.org/10.3390/pharmaceutics12030284] [PMID: 32235699]
[105]
Gattuso, J.J.; Wilson, C.; Hannan, A.J.; Renoir, T. Acute administration of the NMDA receptor antagonists ketamine and MK-801 reveals dysregulation of glutamatergic signalling and sensorimotor gating in the Sapap3 knockout mouse model of compulsive-like behaviour. Neuropharmacology, 2023, 239, 109689.
[http://dx.doi.org/10.1016/j.neuropharm.2023.109689] [PMID: 37597609]
[106]
Mony, L.; Kew, J.N.C.; Gunthorpe, M.J.; Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. Br. J. Pharmacol., 2009, 157(8), 1301-1317.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00304.x] [PMID: 19594762]
[107]
Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: Disease models and outcome measures. J. Pain, 2013, 14(11), 1255-1269.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[108]
Bouali-Benazzouz, R.; Landry, M.; Benazzouz, A.; Fossat, P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog. Neurobiol., 2021, 201, 102030.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102030] [PMID: 33711402]
[109]
Thouaye, M.; Yalcin, I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol. Ther., 2023, 251, 108546.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108546] [PMID: 37832728]
[110]
Huang, J.C.; Salt, T.E.; Voaden, M.J.; Marshall, J. Non- competitive NMDA-receptor antagonists and anoxic degeneration of the ERG B-wave in vitro. Eye, 1991, 5(4), 476-480.
[http://dx.doi.org/10.1038/eye.1991.77] [PMID: 1660413]
[111]
Siu, A.; Drachtman, R. Dextromethorphan: A review of N-methyl-d-aspartate receptor antagonist in the management of pain. CNS Drug Rev., 2007, 13(1), 96-106.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00006.x] [PMID: 17461892]
[112]
Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther., 2016, 159, 1-22.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.016] [PMID: 26826604]
[113]
Welch, L.; Sovner, R. The treatment of a chronic organic mental disorder with dextromethorphan in a man with severe mental retardation. Br. J. Psychiatry, 1992, 161(1), 118-120.
[http://dx.doi.org/10.1192/bjp.161.1.118] [PMID: 1638308]
[114]
Woodard, C.; Groden, J.; Goodwin, M.; Shanower, C.; Bianco, J. The treatment of the behavioral sequelae of autism with dextromethorphan: A case report. J. Autism Dev. Disord., 2005, 35(4), 515-518.
[http://dx.doi.org/10.1007/s10803-005-5041-z] [PMID: 16134036]
[115]
Chez, M.; Kile, S.; Lepage, C.; Parise, C.; Benabides, B.; Hankins, A. A randomized, placebo-controlled, blinded, crossover, pilot study of the effects of dextromethorphan/quinidine for the treatment of neurobehavioral symptoms in adults with autism. J. Autism Dev. Disord., 2020, 50(5), 1532-1538.
[http://dx.doi.org/10.1007/s10803-018-3703-x] [PMID: 30109474]
[116]
Pioro, E.P. Review of dextromethorphan 20 mg/quinidine 10 mg (NUEDEXTA®) for pseudobulbar affect. Neurol. Ther., 2014, 3(1), 15-28.
[http://dx.doi.org/10.1007/s40120-014-0018-5] [PMID: 26000221]
[117]
Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol., 2015, 24(4), 285-300.
[http://dx.doi.org/10.5607/en.2015.24.4.285] [PMID: 26713077]
[118]
Long, X.Y.; Wang, S.; Luo, Z.W.; Zhang, X.; Xu, H. Comparison of three administration modes for establishing a zebrafish seizure model induced by N-Methyl-D-aspartic acid. World J. Psychiatry, 2020, 10(7), 150-161.
[http://dx.doi.org/10.5498/wjp.v10.i7.150] [PMID: 32844092]
[119]
Lanznaster, D.; Dal-Cim, T.; Piermartiri, T.C.B.; Tasca, C.I. Guanosine: A neuromodulator with therapeutic potential in brain disorders. Aging Dis., 2016, 7(5), 657-679.
[http://dx.doi.org/10.14336/AD.2016.0208] [PMID: 27699087]
[120]
Kapur, J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open, 2018, 3(S2), 165-168.
[http://dx.doi.org/10.1002/epi4.12270] [PMID: 30564775]
[121]
Elmorsy, S.A.; Soliman, G.F.; Rashed, L.A.; Elgendy, H. Dexmedetomidine and propofol sedation requirements in an autistic rat model. Korean J. Anesthesiol., 2019, 72(2), 169-177.
[http://dx.doi.org/10.4097/kja.d.18.00005] [PMID: 29843508]
[122]
Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; Osredkar, J.; Urbina, M.A.; Fabjan, T.; El-Houfey, A.A.; Czaplińska, K.J.; Gątarek, P.; Chirumbolo, S. Oxidative stress in autism spectrum disorder. Mol. Neurobiol., 2020, 57(5), 2314-2332.
[http://dx.doi.org/10.1007/s12035-019-01742-2] [PMID: 32026227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy