Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data

Author(s): Jiayi Li, Feiyang Sun, Kunyang He, Lin Zhang, Jia Meng, Daiyun Huang and Yuxin Zhang*

Volume 25, Issue 3, 2024

Published on: 16 April, 2024

Page: [212 - 225] Pages: 14

DOI: 10.2174/0113892029288843240402042529

Price: $65

Abstract

Background: Chemically modified therapeutic mRNAs have gained momentum recently. In addition to commonly used modifications (e.g., pseudouridine), 5moU is considered a promising substitution for uridine in therapeutic mRNAs. Accurate identification of 5-methoxyuridine (5moU) would be crucial for the study and quality control of relevant in vitro-transcribed (IVT) mRNAs. However, current methods exhibit deficiencies in providing quantitative methodologies for detecting such modification. Utilizing the capabilities of Oxford nanopore direct RNA sequencing, in this study, we present NanoML-5moU, a machine-learning framework designed specifically for the read-level detection and quantification of 5moU modification for IVT data.

Materials and Methods: Nanopore direct RNA sequencing data from both 5moU-modified and unmodified control samples were collected. Subsequently, a comprehensive analysis and modeling of signal event characteristics (mean, median current intensities, standard deviations, and dwell times) were performed. Furthermore, classical machine learning algorithms, notably the Support Vector Machine (SVM), Random Forest (RF), and XGBoost were employed to discern 5moU modifications within NNUNN (where N represents A, C, U, or G) 5-mers.

Results: Notably, the signal event attributes pertaining to each constituent base of the NNUNN 5- mers, in conjunction with the utilization of the XGBoost algorithm, exhibited remarkable performance levels (with a maximum AUROC of 0.9567 in the "AGTTC" reference 5-mer dataset and a minimum AUROC of 0.8113 in the "TGTGC" reference 5-mer dataset). This accomplishment markedly exceeded the efficacy of the prevailing background error comparison model (ELIGOs AUC 0.751 for sitelevel prediction). The model's performance was further validated through a series of curated datasets, which featured customized modification ratios designed to emulate broader data patterns, demonstrating its general applicability in quality control of IVT mRNA vaccines. The NanoML-5moU framework is publicly available on GitHub (https://github.com/JiayiLi21/NanoML-5moU).

Conclusion: NanoML-5moU enables accurate read-level profiling of 5moU modification with nanopore direct RNA-sequencing, which is a powerful tool specialized in unveiling signal patterns in in vitro-transcribed (IVT) mRNAs.

Graphical Abstract

[1]
Shi, H.; Chai, P.; Jia, R.; Fan, X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol. Cancer, 2020, 19(1), 78.
[http://dx.doi.org/10.1186/s12943-020-01194-6] [PMID: 32303268]
[2]
Roy, B. Effects of mRNA modifications on translation: An overview. Methods Mol Biol; Springer US, 2021, 2298, pp. 327-356.
[3]
Hamar, R.; Varga, M. The role of post-transcriptional modifications during development. Biologia Futura, 2023, 74(1-2), 45-59.
[http://dx.doi.org/10.1007/s42977-022-00142-3] [PMID: 36481986]
[4]
Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell, 2017, 169(7), 1187-1200.
[http://dx.doi.org/10.1016/j.cell.2017.05.045] [PMID: 28622506]
[5]
Li, S.; Mason, C.E. The pivotal regulatory landscape of RNA modifications. Annu. Rev. Genomics Hum. Genet., 2014, 15(1), 127-150.
[http://dx.doi.org/10.1146/annurev-genom-090413-025405] [PMID: 24898039]
[6]
Boo, S.H.; Kim, Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med., 2020, 52(3), 400-408.
[http://dx.doi.org/10.1038/s12276-020-0407-z] [PMID: 32210357]
[7]
Arzumanian, V.A.; Dolgalev, G.V.; Kurbatov, I.Y.; Kiseleva, O.I.; Poverennaya, E.V. Epitranscriptome: Review of top 25 most-studied RNA modifications. Int. J. Mol. Sci., 2022, 23(22), 13851.
[http://dx.doi.org/10.3390/ijms232213851] [PMID: 36430347]
[8]
Gilbert, W.V.; Nachtergaele, S. mRNA regulation by RNA modifications. Annu. Rev. Biochem., 2023, 92(1), 175-198.
[http://dx.doi.org/10.1146/annurev-biochem-052521-035949] [PMID: 37018844]
[9]
Schaefer, M.; Kapoor, U.; Jantsch, M.F. Understanding RNA modifications: The promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol., 2017, 7(5), 170077.
[http://dx.doi.org/10.1098/rsob.170077] [PMID: 28566301]
[10]
Cui, L.; Ma, R.; Cai, J.; Guo, C.; Chen, Z.; Yao, L.; Wang, Y.; Fan, R.; Wang, X.; Shi, Y. RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct. Target. Ther., 2022, 7(1), 334.
[http://dx.doi.org/10.1038/s41392-022-01175-9] [PMID: 36138023]
[11]
Mateos, A.P.; Zhou, Y.; Zarnack, K.; Eyras, E. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning. Brief. Bioinform., 2023, 24(3), bbad163.
[http://dx.doi.org/10.1093/bib/bbad163] [PMID: 37139545]
[12]
Vaidyanathan, S.; Azizian, K.T.; Haque, A.K.M.A.; Henderson, J.M.; Hendel, A.; Shore, S.; Antony, J.S.; Hogrefe, R.I.; Kormann, M.S.D.; Porteus, M.H.; McCaffrey, A.P. Uridine depletion and chemical modification increase cas9 mrna activity and reduce immunogenicity without hplc purification. Mol. Ther. Nucleic Acids, 2018, 12, 530-542.
[http://dx.doi.org/10.1016/j.omtn.2018.06.010] [PMID: 30195789]
[13]
Helm, M.; Motorin, Y. Detecting RNA modifications in the epitranscriptome: Predict and validate. Nat. Rev. Genet., 2017, 18(5), 275-291.
[http://dx.doi.org/10.1038/nrg.2016.169] [PMID: 28216634]
[14]
Fang, Y.; Chen, G.; Chen, F.; Hu, E.; Dong, X.; Li, Z.; He, L.; Sun, Y.; Qiu, L.; Xu, H.; Cai, Z.; Liu, X. Accurate transcriptome assembly by Nanopore RNA sequencing reveals novel functional transcripts in hepatocellular carcinoma. Cancer Sci., 2021, 112(9), 3555-3568.
[http://dx.doi.org/10.1111/cas.15058] [PMID: 34255396]
[15]
Delaunay, S.; Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol., 2019, 21(5), 552-559.
[http://dx.doi.org/10.1038/s41556-019-0319-0] [PMID: 31048770]
[16]
Qin, S.; Tang, X.; Chen, Y.; Chen, K.; Fan, N.; Xiao, W.; Zheng, Q.; Li, G.; Teng, Y.; Wu, M.; Song, X. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther., 2022, 7(1), 166.
[http://dx.doi.org/10.1038/s41392-022-01007-w] [PMID: 35597779]
[17]
Foster, J.B.; Barrett, D.M.; Karikó, K. The Emerging Role of In Vitro-Transcribed mRNA in Adoptive T Cell Immunotherapy. Mol. Ther., 2019, 27(4), 747-756.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.018] [PMID: 30819612]
[18]
Wang, Y.S.; Kumari, M.; Chen, G.H.; Hong, M.H.; Yuan, J.P.Y.; Tsai, J.L.; Wu, H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci., 2023, 30(1), 84.
[http://dx.doi.org/10.1186/s12929-023-00977-5] [PMID: 37805495]
[19]
Rouf, N.Z.; Biswas, S.; Tarannum, N.; Oishee, L.M.; Muna, M.M. Demystifying mRNA vaccines: An emerging platform at the forefront of cryptic diseases. RNA Biol., 2022, 19(1), 386-410.
[http://dx.doi.org/10.1080/15476286.2022.2055923] [PMID: 35354425]
[20]
Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci., 2023, 24(3), 2700.
[http://dx.doi.org/10.3390/ijms24032700] [PMID: 36769023]
[21]
Miliotou, A.N.; Siafis, G.S.K.; Ntenti, C.; Pappas, I.S.; Papadopoulou, L.C. Recruiting in vitro transcribed mRNA against cancer immunotherapy: A contemporary appraisal of the current landscape. Curr. Issues Mol. Biol., 2023, 45(11), 9181-9214.
[http://dx.doi.org/10.3390/cimb45110576] [PMID: 37998753]
[22]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[23]
Huang, X.; Kong, N.; Zhang, X.; Cao, Y.; Langer, R.; Tao, W. The landscape of mRNA nanomedicine. Nat. Med., 2022, 28(11), 2273-2287.
[http://dx.doi.org/10.1038/s41591-022-02061-1] [PMID: 36357682]
[24]
Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther., 2022, 7(1), 94.
[http://dx.doi.org/10.1038/s41392-022-00950-y] [PMID: 35322018]
[25]
Zhang, J.; Liu, Y.; Li, C.; Xiao, Q.; Zhang, D.; Chen, Y.; Rosenecker, J.; Ding, X.; Guan, S. Recent advances and innovations in the preparation and purification of in vitro-transcribed-mRNA-based molecules. Pharmaceutics, 2023, 15(9), 2182.
[http://dx.doi.org/10.3390/pharmaceutics15092182] [PMID: 37765153]
[26]
Cerneckis, J.; Cui, Q.; He, C.; Yi, C.; Shi, Y. Decoding pseudouridine: An emerging target for therapeutic development. Trends Pharmacol. Sci., 2022, 43(6), 522-535.
[http://dx.doi.org/10.1016/j.tips.2022.03.008] [PMID: 35461717]
[27]
Nance, K.D.; Meier, J.L. Modifications in an emergency: The role of N1-methylpseudouridine in covid-19 vaccines. ACS Cent. Sci., 2021, 7(5), 748-756.
[http://dx.doi.org/10.1021/acscentsci.1c00197] [PMID: 34075344]
[28]
Moradian, H.; Roch, T.; Anthofer, L.; Lendlein, A.; Gossen, M. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. Mol. Ther. Nucleic Acids, 2022, 27, 854-869.
[http://dx.doi.org/10.1016/j.omtn.2022.01.004] [PMID: 35141046]
[29]
Kim, S.C.; Sekhon, S.S.; Shin, W.R.; Ahn, G.; Cho, B.K.; Ahn, J.Y.; Kim, Y.H. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol., 2022, 18(1), 1-8.
[http://dx.doi.org/10.1007/s13273-021-00171-4] [PMID: 34567201]
[30]
Boccaletto, P.; Stefaniak, F.; Ray, A.; Cappannini, A.; Mukherjee, S.; Purta, E.; Kurkowska, M.; Shirvanizadeh, N.; Destefanis, E.; Groza, P.; Avşar, G.; Romitelli, A.; Pir, P.; Dassi, E.; Conticello, S.G.; Aguilo, F.; Bujnicki, J.M. MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Res., 2022, 50(D1), D231-D235.
[http://dx.doi.org/10.1093/nar/gkab1083] [PMID: 34893873]
[31]
Liu, A.; Wang, X. The pivotal role of chemical modifications in mRNA therapeutics. Front. Cell Dev. Biol., 2022, 10, 901510.
[http://dx.doi.org/10.3389/fcell.2022.901510] [PMID: 35912117]
[32]
Laszlo, A.H.; Derrington, I.M.; Brinkerhoff, H.; Langford, K.W.; Nova, I.C.; Samson, J.M.; Bartlett, J.J.; Pavlenok, M.; Gundlach, J.H. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 18904-18909.
[http://dx.doi.org/10.1073/pnas.1310240110] [PMID: 24167255]
[33]
Liu, H.; Begik, O.; Lucas, M.C.; Ramirez, J.M.; Mason, C.E.; Wiener, D.; Schwartz, S.; Mattick, J.S.; Smith, M.A.; Novoa, E.M. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun., 2019, 10(1), 4079.
[http://dx.doi.org/10.1038/s41467-019-11713-9] [PMID: 31501426]
[34]
Linder, B.; Grozhik, A.V.; George, O.A.O.; Meydan, C.; Mason, C.E.; Jaffrey, S.R. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods, 2015, 12(8), 767-772.
[http://dx.doi.org/10.1038/nmeth.3453] [PMID: 26121403]
[35]
Mathur, L.; Jung, S.; Jang, C.; Lee, G. Quantitative analysis of m6A RNA modification by LC-MS. STAR Protocols, 2021, 2(3), 100724.
[http://dx.doi.org/10.1016/j.xpro.2021.100724] [PMID: 34401789]
[36]
Thüring, K.; Schmid, K.; Keller, P.; Helm, M. Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry. Methods, 2016, 107, 48-56.
[http://dx.doi.org/10.1016/j.ymeth.2016.03.019] [PMID: 27020891]
[37]
Vanhinsbergh, C.J.; Criscuola, A.; Sutton, J.; Murphy, K.; Williamson, A.J.K.; Cook, K. Characterisation and sequence mapping of large RNA and mRNA therapeutics using mass spectrometry. Anal. Chem., 2022, 94(20), 7339-7349.
[http://dx.doi.org/10.1101/2022.02.14.480356]
[38]
Zhao, X.; Zhang, Y.; Hang, D.; Meng, J.; Wei, Z. Detecting RNA modification using direct RNA sequencing: A systematic review. Comput. Struct. Biotechnol. J., 2022, 20, 5740-5749.
[http://dx.doi.org/10.1016/j.csbj.2022.10.023] [PMID: 36382183]
[39]
Zhang, Y.; Lu, L.; Li, X. Detection technologies for RNA modifications. Exp. Mol. Med., 2022, 54(10), 1601-1616.
[http://dx.doi.org/10.1038/s12276-022-00821-0] [PMID: 36266445]
[40]
Wan, Y.K.; Hendra, C.; Pratanwanich, P.N.; Göke, J. Beyond sequencing: Machine learning algorithms extract biology hidden in Nanopore signal data. Trends Genet., 2022, 38(3), 246-257.
[http://dx.doi.org/10.1016/j.tig.2021.09.001] [PMID: 34711425]
[41]
Chen, X; Liu, Y; Lv, K; Wang, M; Liu, X; Li, B. FASTdRNA: A workflow for the analysis of ONT direct RNA sequencing. Bioinforma Adv, 2023, 3(1), vbad099.
[http://dx.doi.org/10.1093/bioadv/vbad099]
[42]
Zhang, Y.; Jiang, J.; Ma, J.; Wei, Z.; Wang, Y.; Song, B.; Meng, J.; Jia, G.; de Magalhães, J.P.; Rigden, D.J.; Hang, D.; Chen, K. DirectRMDB: A database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Res., 2023, 51(D1), D106-D116.
[http://dx.doi.org/10.1093/nar/gkac1061] [PMID: 36382409]
[43]
Jain, M.; Shumays, A.R.; Olsen, H.E.; Akeson, M. Advances in nanopore direct RNA sequencing. Nat. Methods, 2022, 19(10), 1160-1164.
[http://dx.doi.org/10.1038/s41592-022-01633-w] [PMID: 36203024]
[44]
Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol., 2021, 39(11), 1348-1365.
[http://dx.doi.org/10.1038/s41587-021-01108-x] [PMID: 34750572]
[45]
Begik, O.; Lucas, M.C.; Pryszcz, L.P.; Ramirez, J.M.; Medina, R.; Milenkovic, I.; Cruciani, S.; Liu, H.; Vieira, H.G.S.; Chen, S.A.; Mattick, J.S.; Schwartz, S.; Novoa, E.M. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol., 2021, 39(10), 1278-1291.
[http://dx.doi.org/10.1038/s41587-021-00915-6] [PMID: 33986546]
[46]
Tavakoli, S.; Nabizadeh, M.; Makhamreh, A.; Gamper, H.; McCormick, C.A.; Rezapour, N.K.; Hou, Y.M.; Wanunu, M.; Rouhanifard, S.H. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing. Nat. Commun., 2023, 14(1), 334.
[http://dx.doi.org/10.1038/s41467-023-35858-w] [PMID: 36658122]
[47]
Begik, O.; Mattick, J.S.; Novoa, E.M. Exploring the epitranscriptome by native RNA sequencing. RNA, 2022, 28(11), 1430-1439.
[http://dx.doi.org/10.1261/rna.079404.122] [PMID: 36104106]
[48]
Pratanwanich, P.N.; Yao, F.; Chen, Y.; Koh, C.W.Q.; Wan, Y.K.; Hendra, C.; Poon, P.; Goh, Y.T.; Yap, P.M.L.; Chooi, J.Y.; Chng, W.J.; Ng, S.B.; Thiery, A.; Goh, W.S.S.; Göke, J. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol., 2021, 39(11), 1394-1402.
[http://dx.doi.org/10.1038/s41587-021-00949-w] [PMID: 34282325]
[49]
Leger, A.; Amaral, P.P.; Pandolfini, L.; Capitanchik, C.; Capraro, F.; Miano, V.; Migliori, V.; Kerr, T.P.; Sideri, T.; Enright, A.J.; Tzelepis, K.; Werven, V.F.J.; Luscombe, N.M.; Barbieri, I.; Ule, J.; Fitzgerald, T.; Birney, E.; Leonardi, T.; Kouzarides, T. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun., 2021, 12(1), 7198.
[http://dx.doi.org/10.1038/s41467-021-27393-3] [PMID: 34893601]
[50]
Mulroney, L.; Birney, E.; Leonardi, T.; Nicassio, F. Using Nanocompore to identify rna modifications from direct RNA nanopore sequencing data. Curr. Protoc., 2023, 3(2), e683.
[http://dx.doi.org/10.1002/cpz1.683] [PMID: 36840709]
[51]
Furlan, M.; Tejedor, D.A.; Mulroney, L.; Pelizzola, M.; Novoa, E.M. Leonardi, T Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biol., 2021, 18(S1), 31-40.
[http://dx.doi.org/10.1080/15476286.2021.1978215]
[52]
Abebe, J.S.; Price, A.M.; Hayer, K.E.; Mohr, I.; Weitzman, M.D.; Wilson, A.C.; Depledge, D.P. DRUMMER—rapid detection of RNA modifications through comparative nanopore sequencing. Bioinfor., 2022, 38(11), 3113-3115.
[http://dx.doi.org/10.1093/bioinformatics/btac274] [PMID: 35426900]
[53]
Jenjaroenpun, P.; Wongsurawat, T.; Wadley, T.D.; Wassenaar, T.M.; Liu, J.; Dai, Q.; Wanchai, V.; Akel, N.S.; Parsian, J.A.; Franco, A.T.; Boysen, G.; Jennings, M.L.; Ussery, D.W.; He, C.; Nookaew, I. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res., 2021, 49(2), e7.
[http://dx.doi.org/10.1093/nar/gkaa620] [PMID: 32710622]
[54]
Perešíni, P.; Boža, V.; Brejová, B.; Vinař, T. Nanopore base calling on the edge. Bioinform., 2021, 37(24), 4661-4667.
[http://dx.doi.org/10.1093/bioinformatics/btab528] [PMID: 34314502]
[55]
Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol., 2019, 20(1), 129.
[http://dx.doi.org/10.1186/s13059-019-1727-y] [PMID: 31234903]
[56]
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinfor., 2021, 37(23), 4572-4574.
[http://dx.doi.org/10.1093/bioinformatics/btab705] [PMID: 34623391]
[57]
Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; Li, H. Twelve years of SAMtools and BCFtools. Gigascience, 2021, 10(2), giab008.
[http://dx.doi.org/10.1093/gigascience/giab008] [PMID: 33590861]
[58]
Stoiber, M.; Quick, J.; Egan, R.; Lee, E.J.; Celniker, S.; Neely, R.K. De novo identification of DNA modifications enabled by genome-guided Nanopore. Signal Processing, 2017, bioRxiv.
[59]
Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol., 2018, 19(1), 90.
[http://dx.doi.org/10.1186/s13059-018-1462-9] [PMID: 30005597]
[60]
Gao, Y.; Liu, X.; Wu, B.; Wang, H.; Xi, F.; Kohnen, M.V.; Reddy, A.S.N.; Gu, L. Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol., 2021, 22(1), 22.
[http://dx.doi.org/10.1186/s13059-020-02241-7]
[61]
Teng, H.; Cao, M.D.; Hall, M.B.; Duarte, T.; Wang, S.; Coin, L.J.M. Chiron: Translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience, 2018, 7(5), giy037.
[http://dx.doi.org/10.1093/gigascience/giy037] [PMID: 29648610]
[62]
Xie, J.; Priebe, C.E. Generalizing the mann-whitney-wilcoxon statistic. J. Nonparametr. Stat., 2000, 12(5), 661-682.
[http://dx.doi.org/10.1080/10485250008832827]
[63]
Chen, S.X.; Qin, J.; Tang, C.Y. Mann–whitney test with adjustments to pretreatment variables for missing values and observational study. J. R. Stat. Soc. Series B Stat. Methodol., 2013, 75(1), 81-102.
[http://dx.doi.org/10.1111/j.1467-9868.2012.01036.x]
[64]
Dai, M.; Shen, W.; Stern, H.S. Sensitivity analysis for the adjusted mann-whitney test with observational studies. Observational Studies, 2022, 8(1), 1-29.
[http://dx.doi.org/10.1353/obs.2022.0002]
[65]
Evgeniou, T.; Pontil, M. Support vector machines: theory and applications. In: Machine Learning and Its Applications; Springer: Berlin, Heidelberg, 2001; pp. 249-257.
[66]
Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng., 2014, 2(1), 602-609.
[http://dx.doi.org/10.1080/21642583.2014.956265]
[67]
Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16). Association for Computing Machinery, New York, NY, USA2016, pp. 785-794.
[http://dx.doi.org/10.1145/2939672.2939785]
[68]
Bentéjac, C.; Csörgő, A.; Muñoz, M.G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev., 2021, 54(3), 1937-1967.
[http://dx.doi.org/10.1007/s10462-020-09896-5]
[69]
Ali, Z.A.; Abduljabbar, Z.H.; Tahir, H.A.; Sallow, A.B.; SM., A. Extreme gradient boosting algorithm with machine learning: A review Acad. J. Nawroz. U., 2023.
[70]
Zhang, P.; Jia, Y.; Shang, Y. Research and application of xgboost in imbalanced data. Int. J. Distrib. Sens. Netw., 2022, 18(6)
[http://dx.doi.org/10.1177/15501329221106935]
[71]
Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep., 2022, 12(1), 5979.
[http://dx.doi.org/10.1038/s41598-022-09954-8] [PMID: 35395867]
[72]
Canbek, G.; Temizel, T.T.; Sagiroglu, S. PToPI: A comprehensive review, analysis, and knowledge representation of binary classification performance measures/metrics. SN Comput Sci., 2023, 4(1), 13.
[73]
Hossin, M.; M.N, Sulaiman A review on evaluation metrics for data classification evaluations. Int. J. Data Mining & Knowl. Manag. Process, 2015, 5(2), 1-11.
[http://dx.doi.org/10.5121/ijdkp.2015.5201]
[74]
Lundberg, S.; Lee, S.I. A unified approach to interpreting model predictions. arXiv, 2017, 2017, 07874.
[http://dx.doi.org/10.48550/arXiv.1705.07874]
[75]
Chen, H.; Covert, I.C.; Lundberg, S.M.; Lee, S-I. Algorithms to estimate Shapley value feature attributions. Nat. Mach. Intell., 2023, 5(6), 590-601.
[http://dx.doi.org/10.1038/s42256-023-00657-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy