Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Determination of Ketamine and Palmatine in Rat Plasma by UHPLC-MS/MS and their Pharmacokinetic Interaction

Author(s): Xueli Huang, Yizhe Ma, Ziyue Wang, Wanhang Wang, Congcong Wen, Xianqin Wang* and Meiling Zhang*

Volume 20, Issue 3, 2024

Published on: 15 April, 2024

Page: [224 - 229] Pages: 6

DOI: 10.2174/0115734129304769240403075839

Price: $65

conference banner
Abstract

Objective: Ketamine, commonly known as “K-powder,” is increasingly being abused as a “prom drug.” Palmatine, a typical isoquinoline alkaloid, is mainly found in the roots and stems of natural Chinese herbal medicine plants such as Phellodendron chinense, Coptis chinensis, Sankezhen and Nantianzhu. Herein, we aim to establish a UHPLC-MS/MS method to determine ketamine and palmatine concentrations in rat plasma and investigate the pharmacokinetic interaction of ketamine and palmatine.

Methods: Three groups of eighteen rats each were assigned to ketamine, palmatine, ketamine and palmatine. The pharmacokinetic interaction between ketamine and palmatine was demonstrated using UHPLC-MS/MS.

Results: When ketamine was combined with palmatine, the mean residence time (MRT) was significantly different from that of the ketamine group. MRT decreased after combined use. The interaction showed that palmatine can influence the mean residence time of ketamine; no significant differences were observed for other pharmacokinetic parameters between the ketamine or palmatine group and the ketamine-palmatine group.

Conclusion: Palmatine may influence the mean residence time of ketamine.

« Previous
Graphical Abstract

[1]
Chaves, T.V.; Wilffert, B.; Sanchez, Z.M. Overdoses and deaths related to the use of ketamine and its analogues: A systematic review. Am. J. Drug Alcohol Abuse, 2023, 49(2), 141-150.
[http://dx.doi.org/10.1080/00952990.2022.2132506] [PMID: 36410032]
[2]
Apeldoorn, S.S.Y.; Veraart, J.K.E.; Spijker, J.; Kamphuis, J.; Schoevers, R.A. Maintenance ketamine treatment for depression: A systematic review of efficacy, safety, and tolerability. Lancet Psychiatry, 2022, 9(11), 907-921.
[http://dx.doi.org/10.1016/S2215-0366(22)00317-0] [PMID: 36244360]
[3]
Oliveira, D.R.J.; Carvalho, F.; Duarte, J.A.; Dias, R.; Magalhães, T.; Santos, A. Suicide by hanging under the influence of ketamine and ethanol. Forensic Sci. Int., 2010, 202(1-3), e23-e27.
[http://dx.doi.org/10.1016/j.forsciint.2010.04.047] [PMID: 20537829]
[4]
Morris, J.A. Modified cobalt thiocyanate presumptive color test for ketamine hydrochloride. J. Forensic Sci., 2007, 52(1), 84-87.
[http://dx.doi.org/10.1111/j.1556-4029.2006.00331.x] [PMID: 17209915]
[5]
Liu, C.M.; Hua, Z.D.; Jia, W.; Liu, P.P.; Xu, Y. Characterization of 17 unknown ketamine manufacturing by-product impurities by UHPLC-QTOF-MS. Drug Test. Anal., 2022, dta.3336.
[http://dx.doi.org/10.1002/dta.3336] [PMID: 35716363]
[6]
Lam Yung, K.K.; Mo, Z.; Guo, Y.; Luo, C.; Tu, G.; Li, C.; Liu, Y.; Liu, W. Rhynchophylline downregulates phosphorylated camp response element binding protein, nuclear receptor-related-1, and brain-derived neurotrophic factor expression in the hippocampus of ketamine-induced conditioned place preference rats. Pharmacogn. Mag., 2018, 14(53), 81-86.
[http://dx.doi.org/10.4103/pm.pm_90_17] [PMID: 29576706]
[7]
Zhou, J.Y.; Chen, J.; Zhou, S.W.; Mo, Z.X. Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells. Fitoterapia, 2013, 85, 125-129.
[8]
Li, C.; Tu, G.; Luo, C.; Guo, Y.; Fang, M.; Zhu, C.; Li, H.; Ou, J.; Zhou, Y.; Liu, W.; Yung, K.K.L.; Mo, Z. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog Neuropsychopharm. Biol Psychiatr., 2018, 86, 379-389.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.009]
[9]
Miliano, C.; Serpelloni, G.; Rimondo, C.; Mereu, M.; Marti, M.; De Luca, M.A. Neuropharmacology of new psychoactive substances (NPS): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Front Neurosci, 2016, 10, 153.
[10]
Ganaway, A.; Tatsuta, K.; Castillo, V.C.G.; Okada, R.; Sunaga, Y.; Ohta, Y.; Ohta, J.; Ohsawa, M.; Akay, M.; Akay, Y.M. Investigating the influence of morphine and cocaine on the mesolimbic pathway using a novel microimaging platform. Int. J. Mol. Sci., 2023, 24(22), 16303.
[http://dx.doi.org/10.3390/ijms242216303] [PMID: 38003493]
[11]
Dan, I.; Watanabe, N.M.; Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol., 2001, 11(5), 220-230.
[http://dx.doi.org/10.1016/S0962-8924(01)01980-8] [PMID: 11316611]
[12]
Xi, Z.X.; Yang, Z.; Li, S.J.; Li, X.; Dillon, C.; Peng, X.Q.; Spiller, K.; Gardner, E.L. Levo-tetrahydropalmatine inhibits cocaine’s rewarding effects: Experiments with self-administration and brain-stimulation reward in rats. Neuropharmacology, 2007, 53(6), 771-782.
[http://dx.doi.org/10.1016/j.neuropharm.2007.08.004] [PMID: 17888459]
[13]
Mantsch, J.R.; Wisniewski, S.; Vranjkovic, O.; Peters, C.; Becker, A.; Valentine, A.; Li, S.J.; Baker, D.A.; Yang, Z. Levo-tetrahydropalmatine attenuates cocaine self-administration under a progressive-ratio schedule and cocaine discrimination in rats. Pharmacol. Biochem. Behav., 2010, 97(2), 310-316.
[http://dx.doi.org/10.1016/j.pbb.2010.08.016] [PMID: 20816889]
[14]
Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. Palmatine as an agent against metabolic syndrome and its related complications: A review. Drug Des Devel Ther, 2020, 14, 4963-4974.
[http://dx.doi.org/10.2147/DDDT.S280520]
[15]
Tarabasz, D.; Kukula-Koch, W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother. Res., 2020, 34(1), 33-50.
[http://dx.doi.org/10.1002/ptr.6504] [PMID: 31496018]
[16]
Campbell, M.; Janis, G.; Horne, H.; Ketha, H. Analysis of barbiturates in urine by LC-MS/MS. Methods Mol Biol, 2024, 2737, 79-90.
[17]
Sanusi, I.O.; Olutona, G.O.; Wawata, I.G.; Onohuean, H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: A critical review. Environ. Sci. Pollut. Res. Int., 2023, 30(39), 90595-90614.
[http://dx.doi.org/10.1007/s11356-023-28802-4] [PMID: 37488386]
[18]
Chen, F.; Wang, Z.; Luo, L.; He, Y.; Ma, Y.; Wen, C.; Wang, X.; Shen, X. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of crassicauline A, fuziline, karacoline, and songorine in rat plasma and application in their pharmacokinetics. Biomed. Chromatogr., 2024, 38(4), e5821.
[http://dx.doi.org/10.1002/bmc.5821] [PMID: 38217347]
[19]
Huang, X.; Jiang, H.; Liang, Q.; Ma, Y.; Wang, X. Determination of isoscoparin in mouse blood using UPLC–MS/MS and its pharmacokinetics. Biomed. Chromatogr., 2022, 36(9), e5419.
[http://dx.doi.org/10.1002/bmc.5419] [PMID: 35638105]
[20]
Yu, X.; Liu, H.; Xu, X.; Hu, Y.; Wang, X.; Wen, C. Pharmacokinetics of yunaconitine and indaconitine in mouse blood by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1179, 122840.
[21]
[22]
Chen, L.; You, W.; Chen, D.; Cai, Y.; Wang, X.; Wen, C.; Wu, B. Pharmacokinetic interaction study of ketamine and rhynchophylline in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry. Biomed Res Int, 2018, 2018, 6562309.
[http://dx.doi.org/10.1155/2018/6562309]
[23]
Du, J.; Ma, Z.; Zhang, Y.; Wang, T.; Chen, X.; Zhong, D. Simultaneous determination of ornidazole and its main metabolites in human plasma by LC–MS/MS: Application to a pharmacokinetic study. Bioanalysis, 2014, 6(18), 2343-2356.
[http://dx.doi.org/10.4155/bio.14.117] [PMID: 25384588]
[24]
Liu, J.; Wang, L.; Hu, W.; Chen, X.; Zhong, D. Development of a UHPLC-MS/MS method for the determination of plasma histamine in various mammalian species. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 971, 35-42.
[25]
Du, Y.; Wang, H.; Su, H.; Cao, J.; Wang, Y. Effect of Levo-tetrahydropalmatine on expression of GFAP in hippocampus and ERK phosphorylation in nucleus accumbens in ketamine-dependent rat. Chin. J. Forensic Med., 2018, 33(3), 258-262.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy