Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Green Synthesis of Au-Ag Alloy Nanoparticles using Polydopamine Chemistry: Evaluation of their Anticancer Potency Towards Both MCF-7 Cells and their Cancer Stem Cells Subgroup

Author(s): Honglei Zhan*, Shiyu Ding, Ruiyu Shen, Yulong Lv, Xinran Tian, Guie Liu, Chaoyue Li and Jihui Wang

Volume 24, Issue 13, 2024

Published on: 09 April, 2024

Page: [969 - 981] Pages: 13

DOI: 10.2174/0118715206296123240331050206

Price: $65

conference banner
Abstract

Background: Limited chemotherapy efficacy and cancer stem cells (CSCs)-induced therapeutic resistance are major difficulties for tumour treatment. Adopting more efficient therapies to eliminate bulk-sensitive cancer cells and resistant CSCs is urgently needed.

Methods: Based on the potential and functional complementarity of gold and silver nanoparticles (AuNPs or AgNPs) on tumour treatment, bimetallic NPs (alloy) have been synthesized to obtain improved or even newly emerging bioactivity from a combination effect. This study reported a facile, green and economical preparation of Au-Ag alloy NPs using biocompatible polydopamine (PDA) as a reductant, capping, stabilizing and hydrophilic agent.

Results: These alloy NPs were quasi-spherical with rough surfaces and recorded in diameters of 80 nm. In addition, these alloy NPs showed good water dispersity, stability and photothermal effect. Compared with monometallic counterparts, these alloy NPs demonstrated a dramatically enhanced cytotoxic/pro-apoptotic/necrotic effect towards bulk-sensitive MCF-7 and MDA-MB-231 cells. The underlying mechanism regarding the apoptotic action was associated with a mitochondria-mediated pathway, as evidenced by Au3+/Ag+ mediated Mitochondria damage, ROS generation, DNA fragmentation and upregulation of certain apoptotic-related genes (Bax, P53 and Caspase 3). Attractively, these Au-Ag alloy NPs showed a remarkably improved inhibitory effect on the mammosphere formation capacity of MCF-7 CSCs.

Conclusion: All the positive results were attributed to incorporated properties from Au, Ag and PDA, the combination effect of chemotherapy and photothermal therapy and the nano-scaled structure of Au-Ag alloy NPs. In addition, the high biocompatibility of Au-Ag alloy NPs supported them as a good candidate in cancer therapy.

Graphical Abstract

[1]
Wu, W.; Duan, G. Clinical research progress of double primary cancers of breast and lung with breast cancer as the first primary cancer. Cancer Res. Treat., 2021, 48(04), 400-405.
[2]
Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; Soerjomataram, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022, 66, 15-23.
[http://dx.doi.org/10.1016/j.breast.2022.08.010] [PMID: 36084384]
[3]
Wmga, B. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv. Cancer Res., 2021, 151, 425-468.
[http://dx.doi.org/10.1016/bs.acr.2021.02.006] [PMID: 34148620]
[4]
Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[5]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[6]
Yan, H.; You, Y.; Li, X.; Liu, L.; Guo, F.; Zhang, Q.; Liu, D.; Tong, Y.; Ding, S.; Wang, J. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front. Pharmacol., 2020, 11, 898.
[http://dx.doi.org/10.3389/fphar.2020.00898] [PMID: 32612532]
[7]
Khutale, G.V.; Casey, A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, 372-380.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.009] [PMID: 28736333]
[8]
Minko, T.; Dharap, S.S.; Fabbricatore, A.T. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect. Prev., 2003, 27(3), 193-202.
[http://dx.doi.org/10.1016/S0361-090X(03)00067-9] [PMID: 12787726]
[9]
Satapathy, S.R.; Siddharth, S.; Das, D.; Nayak, A.; Kundu, C.N. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol. Pharmaceutics., 2015, 12(11), 4011-4025.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00461] [PMID: 26448277]
[10]
Meldolesi, J. Cancer stem cells and their vesicles, together with other stem and non-stem cells, govern critical cancer processes: perspectives for medical development. Int. J. Mol. Sci., 2022, 23(2), 625.
[http://dx.doi.org/10.3390/ijms23020625] [PMID: 35054811]
[11]
Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev., 2018, 69, 152-163.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
[12]
Suo, X.; Zhang, J.; Zhang, Y.; Liang, X.J.; Zhang, J.; Liu, D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(18), 3985-4001.
[http://dx.doi.org/10.1039/D0TB00311E] [PMID: 32239013]
[13]
Ho, Y.J.; Chiang, Y.J.; Kang, S.T.; Fan, C.H.; Yeh, C.K. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J. Control. Release, 2018, 278, 100-109.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.001] [PMID: 29630986]
[14]
Yun-Jung, C.; Sangiliyandi, G.; Jin-Hoi, K. Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. Int. J. Mol. Sci., 2018, 19(3), 710.
[http://dx.doi.org/10.3390/ijms19030710] [PMID: 29494563]
[15]
Motohara, T.; Yoshida, G.J.; Katabuchi, H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin. Cancer Biol., 2021, 77, 182-193.
[http://dx.doi.org/10.1016/j.semcancer.2021.03.038] [PMID: 33812986]
[16]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[17]
Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[18]
Nawara, H.M.; Afify, S.M.; Hassan, G.; Zahra, M.H.; Seno, A.; Seno, M. Paclitaxel-based chemotherapy targeting cancer stem cells from mono- to combination therapy. Biomedicines, 2021, 9(5), 500.
[http://dx.doi.org/10.3390/biomedicines9050500] [PMID: 34063205]
[19]
Aztopal, N.; Erkisa, M.; Erturk, E.; Ulukaya, E.; Tokullugil, A.H.; Ari, F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem. Biol. Interact., 2018, 280, 51-58.
[http://dx.doi.org/10.1016/j.cbi.2017.12.003] [PMID: 29225137]
[20]
Pan, Y.; Ma, X.; Liu, C.; Xing, J.; Zhou, S.; Parshad, B.; Schwerdtle, T.; Li, W.; Wu, A.; Haag, R. Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells. ACS Nano, 2021, 15(9), 15069-15084.
[http://dx.doi.org/10.1021/acsnano.1c05452] [PMID: 34420298]
[21]
Yadav, A.S.; Radharani, N.N.V.; Gorain, M.; Bulbule, A.; Shetti, D.; Roy, G.; Baby, T.; Kundu, G.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale, 2020, 12(19), 10664-10684.
[http://dx.doi.org/10.1039/C9NR10673A] [PMID: 32374338]
[22]
Nayak, D.; Minz, A.P.; Ashe, S.; Rauta, P.R.; Kumari, M.; Chopra, P.; Nayak, B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J. Colloid Interface Sci., 2016, 470, 142-152.
[http://dx.doi.org/10.1016/j.jcis.2016.02.043] [PMID: 26939078]
[23]
Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824.
[http://dx.doi.org/10.3390/app10113824]
[24]
Javad, B.; Farideh, N.; Marzieh, M.; Ramezani, T.; Mohamad, R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized Using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 2014, 19(9), 13498-13508.
[http://dx.doi.org/10.3390/molecules190913498] [PMID: 25255752]
[25]
Castro-Aceituno, V.; Abbai, R.; Moon, S.S.; Ahn, S.; Mathiyalagan, R.; Kim, Y.J.; Kim, Y.J.; Yang, D.C. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomed. Pharmacother., 2017, 93, 995-1003.
[http://dx.doi.org/10.1016/j.biopha.2017.07.040] [PMID: 28724260]
[26]
Chung, Y.; Fung, S.K.; Tong, K.C.; Wan, P.K.; Lok, C.N.; Huang, Y.; Chen, T.; Che, C.M. A multi-functional PEGylated gold iii compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem. Sci., 2016, 8(3), 1942-1953.
[http://dx.doi.org/10.1039/C6SC03210A] [PMID: 28451309]
[27]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[28]
Hu, Y.; Wen, C.; Song, L.; Zhao, N.; Xu, F.J. Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J. Control. Release, 2017, 255, 154-163.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.001] [PMID: 28385675]
[29]
Hu, X.; Xu, X.; Fu, F.; Yang, B.; Zhang, J.; Zhang, Y.; Binte Touhid, S.S.; Liu, L.; Dong, Y.; Liu, X.; Yao, J. Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. Carbohydr. Polym., 2020, 248, 116777.
[http://dx.doi.org/10.1016/j.carbpol.2020.116777] [PMID: 32919567]
[30]
Jiang, Y.; Guo, Z.; Fang, J.; Wang, B.; Lin, Z.; Chen, Z.S.; Chen, Y.; Zhang, N.; Yang, X.; Gao, W. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Biomater. Adv., 2020, 107, 110224.
[http://dx.doi.org/10.1016/j.msec.2019.110224] [PMID: 31761194]
[31]
Ahmad, T.; Sarwar, R.; Iqbal, A.; Bashir, U.; Farooq, U.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine, 2020, 15(5), 1221-1237.
[http://dx.doi.org/10.2217/nnm-2020-0051] [PMID: 32370608]
[32]
Zhu, F.; Tan, G.; Zhong, Y.; Jiang, Y.; Cai, L.; Yu, Z.; Liu, S.; Ren, F. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J. Nanobiotechnology, 2019, 17(1), 44.
[http://dx.doi.org/10.1186/s12951-019-0473-3] [PMID: 30917812]
[33]
Ban, Q.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci., 2017, 5(2), 190-210.
[http://dx.doi.org/10.1039/C6BM00600K] [PMID: 27990534]
[34]
Yang, Y.; Chen, M.; Wu, Y.; Wang, P.; Zhao, Y.; Zhu, W.; Song, Z.; Zhang, X.B. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Advances, 2019, 9(49), 28541-28547.
[http://dx.doi.org/10.1039/C9RA04286E] [PMID: 35529621]
[35]
Ismail, E.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R. Successful green synthesis of gold nanoparticles using acorchorus olitorius extract and their antiproliferative effect in cancer cells. Int. J. Mol. Sci., 2018, 19(9), 2612.
[http://dx.doi.org/10.3390/ijms19092612] [PMID: 30177647]
[36]
Chen, C.W.; Chan, Y.C.; Hsiao, M.; Liu, R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces, 2016, 8(47), 32108-32119.
[http://dx.doi.org/10.1021/acsami.6b07770] [PMID: 27933825]
[37]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[38]
Jiang, T.; Song, J.; Zhang, W.; Wang, H.; Li, X.; Xia, R.; Zhu, L.; Xu, X. Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment. ACS Appl. Mater. Interfaces, 2015, 7(39), 21985-21994.
[http://dx.doi.org/10.1021/acsami.5b08305] [PMID: 26371629]
[39]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Josefa Rodríguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6), 065103.
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[40]
Rao, W.; Wang, H.; Zhong, A.; Yu, J.; Lu, X.; He, X. Nanodrug-mediated thermotherapy of cancer stem-like cells. J. Nanosci. Nanotechnol., 2016, 16(3), 2134-2142.
[http://dx.doi.org/10.1166/jnn.2016.10942] [PMID: 27455612]
[41]
Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S.K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev., 2019, 387, 299-324.
[http://dx.doi.org/10.1016/j.ccr.2019.02.025]
[42]
Liu, D.; Hong, Y.; Li, Y.; Hu, C.; Yip, T.C.; Yu, W.K.; Zhu, Y.; Fong, C.C.; Wang, W.; Au, S.K.; Wang, S.; Yang, M. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 2020, 10(3), 1181-1196.
[http://dx.doi.org/10.7150/thno.38989] [PMID: 31938059]
[43]
Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.S.; Choi, Y.J.; Kwon, D.N.; Kim, J.H. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int. J. Nanomedicine, 2015, 10, 6257-6276.
[http://dx.doi.org/10.2147/IJN.S92449] [PMID: 26491296]
[44]
Kim, C.G.; Castro-Aceituno, V.; Abbai, R.; Lee, H.A.; Simu, S.Y.; Han, Y.; Hurh, J.; Kim, Y.J.; Yang, D.C. Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed. Pharmacother., 2018, 99, 128-133.
[http://dx.doi.org/10.1016/j.biopha.2018.01.050] [PMID: 29331758]
[45]
AbuMousa, R.A.; Baig, U.; Gondal, M.A.; AlSalhi, M.S.; Alqahtani, F.Y.; Akhtar, S.; Aleanizy, F.S.; Dastageer, M.A. Photo-catalytic killing of HeLa cancer cells using facile synthesized pure and Ag loaded WO3 nanoparticles. Sci. Rep., 2018, 8(1), 15224.
[http://dx.doi.org/10.1038/s41598-018-33434-7] [PMID: 30323306]
[46]
Raja, G.; Jang, Y.K.; Suh, J.S.; Kim, H.S.; Ahn, S.H.; Kim, T.J. Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers (Basel), 2020, 12(3), 664.
[http://dx.doi.org/10.3390/cancers12030664] [PMID: 32178476]
[47]
Gopisetty, M.K.; Kovács, D.; Igaz, N.; Rónavári, A.; Bélteky, P.; Rázga, Z.; Venglovecz, V.; Csoboz, B.; Boros, I.M.; Kónya, Z.; Kiricsi, M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J. Nanobiotechnology, 2019, 17, 9.
[http://dx.doi.org/10.1186/s12951-019-0448-4] [PMID: 30670028]
[48]
Han, J.W.; Gurunathan, S.; Choi, Y.J.; Kim, J.H. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int. J. Nanomedicine, 2017, 12, 7529-7549.
[http://dx.doi.org/10.2147/IJN.S145147] [PMID: 29066898]
[49]
Kovacs, D.; Szoke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine, 2016, 12(3), 601-610.
[http://dx.doi.org/10.1016/j.nano.2015.10.015] [PMID: 26656631]
[50]
Wen, Y.; Wang, Y. Liu, Xet; Wei, Z.; Xinhe, X.; Zhongxiao, H.; Xingjie, L. Camptothecin-based nanodrug delivery systems. Cancer Biol. Med., 2017, 14(4), 363-370.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0099] [PMID: 29372102]
[51]
Sharma, C.; Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Srivastava, M.M. Single-step green route synthesis of Au/Ag bimetallic nanoparticles using clove buds extract: Enhancement in antioxidant bio-efficacy and catalytic activity. Biomater. Adv., 2020, 116, 111153.
[http://dx.doi.org/10.1016/j.msec.2020.111153] [PMID: 32806256]
[52]
Huynh, K.H.; Pham, X.H.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W.Y.; Jun, B.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int. J. Mol. Sci., 2020, 21(14), 5174.
[http://dx.doi.org/10.3390/ijms21145174] [PMID: 32708351]
[53]
Lomelí-Marroquín, D.; Cruz, D.M.; Nieto-Argüello, A.; Vernet Crua, A.; Chen, J.; Torres-Castro, A.; Webster, T.J.; Cholula-Díaz, J.L. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomedicine, 2019, 14, 2171-2190.
[http://dx.doi.org/10.2147/IJN.S192757] [PMID: 30988615]
[54]
Pal, A.; Shah, S.; Devi, S. Preparation of silver, gold and silver–gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids Surf. A Physicochem. Eng. Asp., 2007, 302(1-3), 483-487.
[http://dx.doi.org/10.1016/j.colsurfa.2007.03.032]
[55]
Seo, J.M.; Kim, E.B.; Hyun, M.S.; Kim, B.B.; Park, T.J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces, 2015, 135, 27-34.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.022] [PMID: 26241913]
[56]
Wang, W.; Liu, J.; Feng, W.; Du, S.; Ge, R.; Li, J.; Liu, Y.; Sun, H.; Zhang, D.; Zhang, H.; Yang, B. Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomater. Sci., 2019, 7(3), 1052-1063.
[http://dx.doi.org/10.1039/C8BM01414K] [PMID: 30628592]
[57]
Sun, W.; Cai, X.; Wang, Z.; Zhao, H.; Lan, M. A novel modification method via in-situ reduction of AuAg bimetallic nanoparticles by polydopamine on carbon fiber microelectrode for H2O2 detection. Microchem. J., 2020, 154, 104595.
[http://dx.doi.org/10.1016/j.microc.2020.104595]
[58]
Mrowczynski, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(9), 7541-7561.
[http://dx.doi.org/10.1021/acsami.7b08392] [PMID: 28786657]
[59]
Li, X.R.; Yin, B.; Gao, L.; Li, X.; Huang, H.; Song, G.; Zhou, Y-G. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res., 2022, 15(9), 8291-8303.
[http://dx.doi.org/10.1007/s12274-022-4474-4] [PMID: 35855867]
[60]
Muhammad, N.; Zhao, H.; Song, W.; Gu, M.; Li, Q.; Liu, Y.; Li, C.; Wang, J.; Zhan, H. Silver nanoparticles functionalized Paclitaxel nanocrystals enhance overall anti-cancer effect on human cancer cells. Nanotechnology, 2021, 32(8), 085105.
[http://dx.doi.org/10.1088/1361-6528/abcacb] [PMID: 33197899]
[61]
Zuppolini, S.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Optimization of polydopamine coatings onto poly-epsilon-caprolactone electrospun fibers for the fabrication of bio-electroconductive interfaces. J. Funct. Biomater., 2020, 11(1), 19.
[http://dx.doi.org/10.3390/jfb11010019] [PMID: 32192126]
[62]
Cui, J.; Yan, Y.; Such, G.K.; Liang, K.; Ochs, C.J.; Postma, A.; Caruso, F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 2012, 13(8), 2225-2228.
[http://dx.doi.org/10.1021/bm300835r] [PMID: 22792863]
[63]
Liang, S.; Li, C.; Zhang, C.; Chen, Y.; Xu, L.; Bao, C.; Wang, X. liu, G.; zhang, F.; Cui, D. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics, 2015, 5(9), 970-984.
[http://dx.doi.org/10.7150/thno.11632] [PMID: 26155313]
[64]
Wang, J.; Liu, N.; Su, Q.; Lv, Y.; Yang, C.; Zhan, H. Green synthesis of gold nanoparticles and study of their inhibitory effect on bulk cancer cells and cancer stem cells in breast carcinoma. Nanomaterials, 2022, 12(19), 3324.
[http://dx.doi.org/10.3390/nano12193324] [PMID: 36234451]
[65]
Wang, J.; Muhammad, N.; Li, T.; Wang, H.; Liu, Y.; Liu, B.; Zhan, H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol. Pharm., 2020, 17(7), 2411-2425.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00161] [PMID: 32437163]
[66]
Chang, T.L.; Sun, P.K.; Zhou, X.; Besser, R.S.; Liang, J. Preparation and electrochemical performances of silver (alloy) nanoparticles decorated on reduced graphene oxide, using self-polymerization of dopamine in an acidic environment. Mater. Today Chem., 2020, 17, 100312.
[http://dx.doi.org/10.1016/j.mtchem.2020.100312]
[67]
Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00150] [PMID: 35549267]
[68]
Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975.
[http://dx.doi.org/10.1166/jbn.2022.3309] [PMID: 35854456]
[69]
Li, J.L.; Gu, M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron., 2010, 16(4), 989-996.
[http://dx.doi.org/10.1109/JSTQE.2009.2030340]
[70]
Cheng, Y.; Meyers, J.D.; Broome, A.M.; Kenney, M.E.; Basilion, J.P.; Burda, C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J. Am. Chem. Soc., 2011, 133(8), 2583-2591.
[http://dx.doi.org/10.1021/ja108846h] [PMID: 21294543]
[71]
Chugh, H; Sood, D; Chandra, I Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 1210-1220.
[http://dx.doi.org/10.1080/21691401.2018.1449118]
[72]
Tawagi, E.; Massmann, C.; Chibli, H.; Nadeau, J.L. Differential toxicity of gold-doxorubicin in cancer cells vs. cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst, 2015, 140(16), 5732-5741.
[http://dx.doi.org/10.1039/C5AN00446B] [PMID: 26161455]
[73]
Ou, Y.; Xu, S.; Zhu, D.; Yang, X. Molecular mechanisms of exopolysaccharide from aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One, 2014, 9(1), e87223.
[http://dx.doi.org/10.1371/journal.pone.0087223] [PMID: 24466342]
[74]
Luo, M.; Wicha, M.S. Targeting cancer stem cell redox metabolism to enhance therapy responses. Semin. Radiat. Oncol., 2019, 29(1), 42-54.
[http://dx.doi.org/10.1016/j.semradonc.2018.10.003] [PMID: 30573183]
[75]
Ahmed, S.; Baijal, G.; Somashekar, R.; Iyer, S.; Nayak, V. One pot synthesis of PEGylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int. J. Nanomedicine, 2021, 16, 7103-7121.
[http://dx.doi.org/10.2147/IJN.S329762] [PMID: 34712044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy