Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Indispensable Roles of GMDS and GMDS-AS1 in the Advancement of Cancer: Fucosylation, Signal Pathway and Molecular Pathogenesis

Author(s): Ziyan Zhang, Zhuowei Wang, Hong Fan, Jiayi Li, Jiaqi Ding, Gang Zhou* and Chengfu Yuan*

Volume 24, Issue 19, 2024

Published on: 05 April, 2024

Page: [1712 - 1722] Pages: 11

DOI: 10.2174/0113895575285276240324080234

Price: $65

Abstract

Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.

Graphical Abstract

[1]
Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; Tavakkoly-Bazzaz, J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther., 2017, 24(6), 233-243.
[http://dx.doi.org/10.1038/cgt.2017.16] [PMID: 28574057]
[2]
Li, Q.; Ming, R.; Huang, L.; Zhang, R. Versatile peptide-based nanosystems for photodynamic therapy. Pharmaceutics, 2024, 16(2), 218.
[http://dx.doi.org/10.3390/pharmaceutics16020218] [PMID: 38399272]
[3]
Miyoshi, E.; Moriwaki, K.; Terao, N.; Tan, C.C.; Terao, M.; Nakagawa, T.; Matsumoto, H.; Shinzaki, S.; Kamada, Y. Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules, 2012, 2(1), 34-45.
[http://dx.doi.org/10.3390/biom2010034] [PMID: 24970126]
[4]
Esposito, R.; Bosch, N.; Lanzós, A.; Polidori, T.; Pulido-Quetglas, C.; Johnson, R. Hacking the cancer genome: Profiling therapeutically actionable long non-coding RNAs Using CRISPR-Cas9 screening. Cancer Cell, 2019, 35(4), 545-557.
[http://dx.doi.org/10.1016/j.ccell.2019.01.019] [PMID: 30827888]
[5]
Kim, J.; Piao, H.L.; Kim, B.J.; Yao, F.; Han, Z.; Wang, Y.; Xiao, Z.; Siverly, A.N.; Lawhon, S.E.; Ton, B.N.; Lee, H.; Zhou, Z.; Gan, B.; Nakagawa, S.; Ellis, M.J.; Liang, H.; Hung, M.C.; You, M.J.; Sun, Y.; Ma, L. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 2018, 50(12), 1705-1715.
[http://dx.doi.org/10.1038/s41588-018-0252-3] [PMID: 30349115]
[6]
Edbrooke, L.; Aranda, S.; Granger, C.L.; McDonald, C.F.; Krishnasamy, M.; Mileshkin, L.; Clark, R.A.; Gordon, I.; Irving, L.; Denehy, L. Multidisciplinary home-based rehabilitation in inoperable lung cancer: A randomised controlled trial. Thorax, 2019, 74(8), 787-796.
[http://dx.doi.org/10.1136/thoraxjnl-2018-212996] [PMID: 31048509]
[7]
Hong, Q.Y.; Wu, G.M.; Qian, G.S.; Hu, C.P.; Zhou, J.Y.; Chen, L.A.; Li, W.M.; Li, S.Y.; Wang, K.; Wang, Q.; Zhang, X.J.; Li, J.; Gong, X.; Bai, C.X. Prevention and management of lung cancer in China. Cancer, 2015, 121(Suppl. 17), 3080-3088.
[http://dx.doi.org/10.1002/cncr.29584] [PMID: 26331814]
[8]
Mori, V.; Roy, G.S.; Bates, J.H.T.; Kinsey, C.M. Cisplatin pharmacodynamics following endobronchial ultrasound-guided transbronchial needle injection into lung tumors. Sci. Rep., 2019, 9(1), 6819.
[http://dx.doi.org/10.1038/s41598-019-43270-y] [PMID: 31048709]
[9]
Bai, Y.; Zhang, G.; Chu, H.; Li, P.; Li, J. The positive feedback loop of lncRNA DANCR/miR-138/Sox4 facilitates malignancy in non-small cell lung cancer. Am. J. Cancer Res., 2019, 9(2), 270-284.
[PMID: 30906628]
[10]
Zhao, M.; Xin, X.F.; Zhang, J.Y.; Dai, W.; Lv, T.F.; Song, Y. LncRNA GMDS‐AS1 inhibits lung adenocarcinoma development by regulating miR‐96‐5p/CYLD signaling. Cancer Med., 2020, 9(3), 1196-1208.
[http://dx.doi.org/10.1002/cam4.2776] [PMID: 31860169]
[11]
Wang, S.; Han, C.; Liu, T.; Ma, Z.; Qiu, M.; Wang, J.; You, Q.; Zheng, X.; Xu, W.; Xia, W.; Xu, Y.; Hu, J.; Xu, L.; Yin, R. FAM83H‐AS1 is a noncoding oncogenic driver and therapeutic target of lung adenocarcinoma. Clin. Transl. Med., 2021, 11(2), e316.
[http://dx.doi.org/10.1002/ctm2.316] [PMID: 33634993]
[12]
Zhang, L.; Niu, H.; Ma, J.; Yuan, B.Y.; Chen, Y.H.; Zhuang, Y.; Chen, G.W.; Zeng, Z.C.; Xiang, Z.L. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol. Cancer, 2019, 18(1), 120.
[http://dx.doi.org/10.1186/s12943-019-1044-9] [PMID: 31349837]
[13]
Li, H.; Tian, X.; Wang, P.; Hu, J.; Qin, R.; Xu, R.; Liu, K.; Hao, J.; Tian, N. LINC01128 resisted acute myeloid leukemia through regulating miR-4260/NR3C2. Cancer Biol. Ther., 2020, 21(7), 615-622.
[http://dx.doi.org/10.1080/15384047.2020.1740054] [PMID: 32338183]
[14]
Yao, Q.; Chen, T. LINC01128 regulates the development of osteosarcoma by sponging miR‐299‐3p to mediate MMP2 expression and activating Wnt/β‐catenin signalling pathway. J. Cell. Mol. Med., 2020, 24(24), 14293-14305.
[http://dx.doi.org/10.1111/jcmm.16046] [PMID: 33108067]
[15]
Bi, G.; Liang, J.; Zhao, M.; Zhang, H.; Jin, X.; Lu, T.; Zheng, Y.; Bian, Y.; Chen, Z.; Huang, Y.; Besskaya, V.; Zhan, C.; Wang, Q.; Tan, L. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol. Ther. Nucleic Acids, 2022, 28, 366-386.
[http://dx.doi.org/10.1016/j.omtn.2022.03.020] [PMID: 35505963]
[16]
Lin, Z.; Fang, D. The roles of SIRT1 in cancer. Genes Cancer, 2013, 4(3-4), 97-104.
[http://dx.doi.org/10.1177/1947601912475079] [PMID: 24020000]
[17]
Li, X.; Jiang, Z.; Li, X.; Zhang, X. SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling. OncoTargets Ther., 2018, 11, 1157-1171.
[http://dx.doi.org/10.2147/OTT.S137146] [PMID: 29535539]
[18]
Lin, C.Y.; Tsai, P.H.; Kandaswami, C.C.; Lee, P.P.; Huang, C.J.; Hwang, J.J.; Lee, M.T. Matrix metalloproteinase‐9 cooperates with transcription factor Snail to induce epithelial–mesenchymal transition. Cancer Sci., 2011, 102(4), 815-827.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01861.x] [PMID: 21219539]
[19]
Wang, A.J.; Wang, S.; Wang, B.J.; Xiao, M.; Guo, Y.; Tang, Y.; Zhang, J.; Gu, J. Epigenetic regulation associated with sirtuin 1 in complications of diabetes mellitus. Front. Endocrinol., 2021, 11, 598012.
[http://dx.doi.org/10.3389/fendo.2020.598012] [PMID: 33537003]
[20]
Peng, W.; Jiang, J.; Fu, J.; Duan, H.; Wang, J.; Duan, C. lncRNA GMDS-AS1 restrains lung adenocarcinoma progression via recruiting TAF15 protein to stabilize SIRT1 mRNA. Epigenomics, 2023, 15(7), 417-434.
[http://dx.doi.org/10.2217/epi-2022-0432] [PMID: 37309595]
[21]
Luo, Y.; Chen, D.; Xing, X.L. Comprehensive analyses revealed eight immune related signatures correlated with aberrant methylations as prognosis and diagnosis biomarkers for kidney renal papillary cell carcinoma. Clin. Genitourin. Cancer, 2023, 21(5), 537-545.
[http://dx.doi.org/10.1016/j.clgc.2023.06.011] [PMID: 37455213]
[22]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[23]
Li, H. Microcirculation of liver cancer, microenvironment of liver regeneration, and the strategy of Chinese medicine. Chin. J. Integr. Med., 2016, 22(3), 163-167.
[http://dx.doi.org/10.1007/s11655-016-2460-y] [PMID: 26919996]
[24]
Li, H.; Ye, Z. Microenvironment of liver regeneration in liver cancer. Chin. J. Integr. Med., 2017, 23(7), 555-560.
[http://dx.doi.org/10.1007/s11655-017-2806-0] [PMID: 28523536]
[25]
Bruix, J.; Han, K.H.; Gores, G.; Llovet, J.M.; Mazzaferro, V. Liver cancer: Approaching a personalized care. J. Hepatol., 2015, 62(1)(Suppl.), S144-S156.
[http://dx.doi.org/10.1016/j.jhep.2015.02.007] [PMID: 25920083]
[26]
Lazaro-Camp, V.J.; Salari, K.; Meng, X.; Yang, S. SETDB1 in cancer: Overexpression and its therapeutic implications. Am. J. Cancer Res., 2021, 11(5), 1803-1827.
[PMID: 34094655]
[27]
Wong, C.M.; Wei, L.; Law, C.T.; Ho, D.W.H.; Tsang, F.H.C.; Au, S.L.K.; Sze, K.M.F.; Lee, J.M.F.; Wong, C.C.L.; Ng, I.O.L. Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology, 2016, 63(2), 474-487.
[http://dx.doi.org/10.1002/hep.28304] [PMID: 26481868]
[28]
Zhang, Y.; Huang, J.; Li, Q.; Chen, K.; Liang, Y.; Zhan, Z.; Ye, F.; Ni, W.; Chen, L.; Ding, Y. Histone methyltransferase SETDB1 promotes cells proliferation and migration by interacting withTiam1 in hepatocellular carcinoma. BMC Cancer, 2018, 18(1), 539.
[http://dx.doi.org/10.1186/s12885-018-4464-9] [PMID: 29739365]
[29]
Huang, J.; Zhong, T.; Li, G.; Wang, S.; Qin, R. Epigenetic inhibition of lncRNA GMDS-AS1 by methyltransferase ESET promoted cell viability and metastasis of hepatocellular carcinoma. Clin. Transl. Oncol., 2023, 25(6), 1793-1804.
[30]
Lou, Z.; Gong, Y.Q.; Zhou, X.; Hu, G.H. Low expression of miR 199 in hepatocellular carcinoma contributes to tumor cell hyper proliferation by negatively suppressing XBP1. Oncol. Lett., 2018, 16(5), 6531-6539.
[http://dx.doi.org/10.3892/ol.2018.9476] [PMID: 30405792]
[31]
Xiong, T.; Li, Z.; Huang, X.; Lu, K.; Xie, W.; Zhou, Z.; Tu, J. TO901317 inhibits the development of hepatocellular carcinoma by LXRα/Glut1 decreasing glycometabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 316(5), G598-G607.
[http://dx.doi.org/10.1152/ajpgi.00061.2018] [PMID: 30817182]
[32]
Zhou, L.; Zhang, Q.; Deng, H.; Ou, S.; Liang, T.; Zhou, J. The SNHG1-centered ceRNA network regulates cell cycle and is a potential prognostic biomarker for hepatocellular carcinoma. Tohoku J. Exp. Med., 2022, 258(4), 265-276.
[http://dx.doi.org/10.1620/tjem.2022.J083] [PMID: 36244757]
[33]
Gao, T.H.; Liao, W.; Lin, L.T.; Zhu, Z.P.; Lu, M.G.; Fu, C.M.; Xie, T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine, 2022, 102, 154090.
[http://dx.doi.org/10.1016/j.phymed.2022.154090] [PMID: 35580439]
[34]
Chen, Y.; Zhu, Z.; Chen, J.; Zheng, Y.; Limsila, B.; Lu, M.; Gao, T.; Yang, Q.; Fu, C.; Liao, W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother., 2021, 138, 111350.
[35]
Zhao, J.; Liu, Y.; Zhu, L.; Li, J.; Liu, Y.; Luo, J.; Xie, T.; Chen, D. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. J. Pharm. Anal., 2023, 13(6), 673-682.
[http://dx.doi.org/10.1016/j.jpha.2023.04.015] [PMID: 37440905]
[36]
Song, Y.; Yuan, Y.; Shi, X.; Che, Y. Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids Surf. B Biointerfaces, 2020, 190, 110966.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110966] [PMID: 32199263]
[37]
Wu, S.; Zhang, K.; Liang, Y.; Wei, Y.; An, J.; Wang, Y.; Yang, J.; Zhang, H.; Zhang, Z.; Liu, J.; Shi, J. Nano‐enabled tumor systematic energy exhaustion via Zinc (II) interference mediated glycolysis inhibition and specific GLUT1 depletion. Adv. Sci., 2022, 9(7), 2103534.
[http://dx.doi.org/10.1002/advs.202103534] [PMID: 34913610]
[38]
Zaritski, A.; Castillo-Ecija, H.; Kumarasamy, M.; Peled, E.; Sverdlov Arzi, R.; Carcaboso, Á.M.; Sosnik, A. Selective accumulation of galactomannan amphiphilic nanomaterials in pediatric solid tumor xenografts correlates with GLUT1 gene expression. ACS Appl. Mater. Interfaces, 2019, 11(42), 38483-38496.
[http://dx.doi.org/10.1021/acsami.9b12682] [PMID: 31537060]
[39]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[40]
Kang, B.M.; Park, Y.K.; Park, S.J.; Lee, K.Y.; Kim, C.W.; Lee, S.H. Does circumferential tumor location affect the circumferential resection margin status in mid and low rectal cancer? Asian J. Surg., 2018, 41(3), 257-263.
[http://dx.doi.org/10.1016/j.asjsur.2016.12.001] [PMID: 28118954]
[41]
Wang, X.; Chen, G.; Zhang, Y.; Ghareeb, W.M.; Yu, Q.; Zhu, H.; Lu, X.; Huang, Y.; Huang, S.; Hou, D.; Chi, P. The impact of circumferential tumour location on the clinical outcome of rectal cancer patients managed with neoadjuvant chemoradiotherapy followed by total mesorectal excision. Eur. J. Surg. Oncol., 2020, 46(6), 1118-1123.
[42]
Wang, X.; Zheng, Z.; Zhu, H.; Yu, Q.; Huang, S.; Lu, X.; Huang, Y.; Chi, P. Timing to achieve the best recurrence-free survival after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: Experience in a large-volume center in China. Int. J. Colorectal Dis., 2021, 36(5), 1007-1016.
[http://dx.doi.org/10.1007/s00384-020-03829-y] [PMID: 33398511]
[43]
Bollrath, J.; Phesse, T.J.; von Burstin, V.A.; Putoczki, T.; Bennecke, M.; Bateman, T.; Nebelsiek, T.; Lundgren-May, T.; Canli, Ö.; Schwitalla, S.; Matthews, V.; Schmid, R.M.; Kirchner, T.; Arkan, M.C.; Ernst, M.; Greten, F.R. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 2009, 15(2), 91-102.
[http://dx.doi.org/10.1016/j.ccr.2009.01.002] [PMID: 19185844]
[44]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[45]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[46]
Ye, D.; Liu, H.; Zhao, G.; Chen, A.; Jiang, Y.; Hu, Y.; Liu, D.; Xie, N.; Liang, W.; Chen, X.; Zhang, H.; Li, C.; Wang, J.; Sun, D.; Chen, W.; Tan, D.; Wang, Q.; Wang, H.; Yu, D.; Wu, B.; Wang, M.; Cui, S.; Liu, S.; Zhang, X. LncGMDS-AS1 promotes the tumorigenesis of colorectal cancer through HuR-STAT3/Wnt axis. Cell Death Dis., 2023, 14(2), 165.
[http://dx.doi.org/10.1038/s41419-023-05700-8] [PMID: 36849492]
[47]
Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In vivo, 2013, 27(6), 669-684.
[PMID: 24292568]
[48]
Parrillo, J.E.; Parker, M.M.; Natanson, C.; Suffredini, A.F.; Danner, R.L.; Cunnion, R.E.; Ognibene, F.P. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann. Intern. Med., 1990, 113(3), 227-242.
[http://dx.doi.org/10.7326/0003-4819-113-3-227] [PMID: 2197912]
[49]
Becker, K.L.; Snider, R.; Nylen, E.S. Procalcitonin in sepsis and systemic inflammation: A harmful biomarker and a therapeutic target. Br. J. Pharmacol., 2010, 159(2), 253-264.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00433.x] [PMID: 20002097]
[50]
Jiang, L.; Li, J. lncRNA GMDS AS1 upregulates IL 6, TNF α and IL 1β, and induces apoptosis in human monocytic THP 1 cells via miR 96 5p/caspase 2 signaling. Mol. Med. Rep., 2022, 25(2), 67.
[http://dx.doi.org/10.3892/mmr.2022.12583] [PMID: 34981821]
[51]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[52]
Bruix, J.; Gores, G.J.; Mazzaferro, V. Hepatocellular carcinoma: Clinical frontiers and perspectives. Gut, 2014, 63(5), 844-855.
[http://dx.doi.org/10.1136/gutjnl-2013-306627] [PMID: 24531850]
[53]
Wang, D.; Du, X.; Bai, T.; Chen, M.; Chen, J.; Liu, J.; Li, L.; Li, H.; Zhang, C. Decreased expression of long non-coding RNA GMDS divergent transcript (GMDS-DT) is a potential biomarker for poor prognosis of hepatocellular carcinoma. Med. Sci. Monit., 2019, 25, 6221-6229.
[http://dx.doi.org/10.12659/MSM.917663] [PMID: 31423008]
[54]
Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15009.
[http://dx.doi.org/10.1038/nrdp.2015.9] [PMID: 27188576]
[55]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[56]
Christiansen, M.N.; Chik, J.; Lee, L.; Anugraham, M.; Abrahams, J.L.; Packer, N.H. Cell surface protein glycosylation in cancer. Proteomics, 2014, 14(4-5), 525-546.
[http://dx.doi.org/10.1002/pmic.201300387] [PMID: 24339177]
[57]
Stupack, D.G. Caspase-8 as a therapeutic target in cancer. Cancer Lett., 2013, 332(2), 133-140.
[http://dx.doi.org/10.1016/j.canlet.2010.07.022] [PMID: 20817393]
[58]
Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer, 2009, 9(6), 400-414.
[http://dx.doi.org/10.1038/nrc2657] [PMID: 19440234]
[59]
Dotto, G.P. p21(WAF1/Cip1): More than a break to the cell cycle? Biochim. Biophys. Acta, 2000, 1471(1), M43-M56.
[PMID: 10967424]
[60]
Roninson, I.B. Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: Association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett., 2002, 179(1), 1-14.
[http://dx.doi.org/10.1016/S0304-3835(01)00847-3] [PMID: 11880176]
[61]
Wei, X.; Zhang, K.; Qin, H.; Zhu, J.; Qin, Q.; Yu, Y.; Wang, H. GMDS knockdown impairs cell proliferation and survival in human lung adenocarcinoma. BMC Cancer, 2018, 18(1), 600.
[http://dx.doi.org/10.1186/s12885-018-4524-1] [PMID: 29843634]
[62]
Virtamo, J. Vitamins and lung cancer. Proc. Nutr. Soc., 1999, 58(2), 329-333.
[http://dx.doi.org/10.1017/S0029665199000440] [PMID: 10466174]
[63]
Kordiak, J.; Bielec, F.; Jabłoński, S.; Pastuszak-Lewandoska, D. Role of beta-carotene in lung cancer primary chemoprevention: A systematic review with meta-analysis and meta-regression. Nutrients, 2022, 14(7), 1361.
[http://dx.doi.org/10.3390/nu14071361] [PMID: 35405977]
[64]
Liang, Y.; Zhang, X.; Peng, J.; Liu, J.; Chen, H.; Guo, S. Vitamin D-mediated tsRNA-07804 triggers mitochondrial dysfunction and suppresses non-small cell lung cancer progression by targeting CRKL. J. Cancer Res. Clin. Oncol., 2024, 150(2), 51.
[http://dx.doi.org/10.1007/s00432-023-05586-1] [PMID: 38289488]
[65]
Weitz, J.; Koch, M.; Debus, J.; Höhler, T.; Galle, P.R.; Büchler, M.W. Colorectal cancer. Lancet, 2005, 365(9454), 153-165.
[http://dx.doi.org/10.1016/S0140-6736(05)17706-X] [PMID: 15639298]
[66]
Wang, Y.; Huang, D.; Chen, K.Y.; Cui, M.; Wang, W.; Huang, X.; Awadellah, A.; Li, Q.; Friedman, A.; Xin, W.W.; Di Martino, L.; Cominelli, F.; Miron, A.; Chan, R.; Fox, J.G.; Xu, Y.; Shen, X.; Kalady, M.F.; Markowitz, S.; Maillard, I.; Lowe, J.B.; Xin, W.; Zhou, L. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology, 2017, 152(1), 193-205.e10.
[http://dx.doi.org/10.1053/j.gastro.2016.09.004] [PMID: 27639802]
[67]
Nakayama, K.; Moriwaki, K.; Imai, T.; Shinzaki, S.; Kamada, Y.; Murata, K.; Miyoshi, E. Mutation of GDP-mannose-4,6-dehydratase in colorectal cancer metastasis. PLoS One, 2013, 8(7), e70298.
[http://dx.doi.org/10.1371/journal.pone.0070298] [PMID: 23922970]
[68]
Moriwaki, K.; Shinzaki, S.; Miyoshi, E. GDP-mannose-4,6-dehydratase (GMDS) deficiency renders colon cancer cells resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor- and CD95-mediated apoptosis by inhibiting complex II formation. J. Biol. Chem., 2011, 286(50), 43123-43133.
[http://dx.doi.org/10.1074/jbc.M111.262741] [PMID: 22027835]
[69]
Yan, J.; Liu, D.; Wang, J.; You, W.; Yang, W.; Yan, S.; He, W. Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance. Drug Resist. Updat., 2023, 73, 101037.
[70]
Wang, L.; Yu, S.; Chan, E.R.; Chen, K.Y.; Liu, C.; Che, D.; Awadallah, A.; Myers, J.; Askew, D.; Huang, A.Y.; Maillard, I.; Huang, D.; Xin, W.; Zhou, L. Notch-regulated dendritic cells restrain inflammation-associated colorectal carcinogenesis. Cancer Immunol. Res., 2021, 9(3), 348-361.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-0428] [PMID: 33441309]
[71]
Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin., 2019, 69(4), 280-304.
[http://dx.doi.org/10.3322/caac.21559] [PMID: 31099893]
[72]
Saldova, R.; Dempsey, E.; Pérez-Garay, M.; Mariño, K.; Watson, J.A.; Blanco-Fernández, A.; Struwe, W.B.; Harvey, D.J.; Madden, S.F.; Peracaula, R.; McCann, A.; Rudd, P.M. 5-AZA-2′-deoxycytidine induced demethylation influences N -glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics, 2011, 6(11), 1362-1372.
[http://dx.doi.org/10.4161/epi.6.11.17977] [PMID: 22086115]
[73]
Sakalihasan, N.; Michel, J.B.; Katsargyris, A.; Kuivaniemi, H.; Defraigne, J.O.; Nchimi, A.; Powell, J.T.; Yoshimura, K.; Hultgren, R. Abdominal aortic aneurysms. Nat. Rev. Dis. Primers, 2018, 4(1), 34.
[http://dx.doi.org/10.1038/s41572-018-0030-7] [PMID: 30337540]
[74]
Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol., 2011, 8(2), 92-102.
[http://dx.doi.org/10.1038/nrcardio.2010.180] [PMID: 21079638]
[75]
Chen, S.; Yang, D.; Lei, C.; Li, Y.; Sun, X.; Chen, M.; Wu, X.; Zheng, Y. Identification of crucial genes in abdominal aortic aneurysm by WGCNA. PeerJ, 2019, 7, e7873.
[http://dx.doi.org/10.7717/peerj.7873] [PMID: 31608184]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy