Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Syntheses and Spectroscopic Characterization of Selected Methyl Quinolinylphosphonic and Quinolinylphosphinic Acids; Rationalized based on DFT Calculation

Author(s): Jacek E. Nycz*, Nataliya Karaush-Karmazin*, Boris Minaev, Valentina Minaeva, Jan G. Małecki, Maria Książek, Daniel Swoboda and Joachim Kusz

Volume 28, Issue 7, 2024

Published on: 05 April, 2024

Page: [545 - 557] Pages: 13

DOI: 10.2174/0113852728292818240301052024

Price: $65

conference banner
Abstract

The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, quinolinylphosphonic and -phosphinic acids and aminophenylphosphonic and -phosphinic acids, possess potent bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic or - phosphinic acids with phosphonic or phosphinic functional groups connected directly to the benzene ring in quinoline constitution. The selected quinoline derivatives have been synthesized by adopting the Skraup-Doebner-Von Miller reaction. To this end, the syntheses of aminophenylphosphonic and -phosphinic acids were conducted and afforded the target products with high yield. All structures have been proven by the combination of NMR, IR, MS, and HRMS techniques and were rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements. The Hirshfeld surface analyses for 1c, 1d and 2c were performed to analyze the intermolecular interactions in their crystal structures. According to our findings, the presence of numerous intermolecular PO•••H, NO•••H, and CH•••O contacts stabilizes the crystal structures. The NO•••H interactions manifest in the IR spectrum of 2c crystal as a narrow band with a maximum at 3088 cm-1. The PO•••H intermolecular interactions are attributed to a weak experimental band at 1288 cm-1.

Graphical Abstract

[1]
Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug Discov. Today, 2013, 18(7-8), 389-398.
[http://dx.doi.org/10.1016/j.drudis.2012.11.003] [PMID: 23159484]
[2]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawłowski, M.; Wesołowska, A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[http://dx.doi.org/10.4155/fmc.13.158] [PMID: 24358948]
[3]
Püsküllü, O.M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[PMID: 23190035]
[4]
Musioł, R.; Serda, M.; Bielowka, H.S.; Polański, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[5]
Ahmed, N.; Brahmbhatt, K.G.; Sabde, S.; Mitra, D.; Singh, I.P.; Bhutani, K.K. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg. Med. Chem., 2010, 18(8), 2872-2879.
[http://dx.doi.org/10.1016/j.bmc.2010.03.015] [PMID: 20350812]
[6]
Kraszewski, A.; Stawinski, J. H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds. Pure Appl. Chem., 2007, 79(12), 2217-2227.
[http://dx.doi.org/10.1351/pac200779122217]
[7]
Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980.
[http://dx.doi.org/10.1021/jm200587f] [PMID: 21780776]
[8]
Metcalf, W.W.; van der Donk, W.A. Biosynthesis of phosphonic and phosphinic acid natural products. Annu. Rev. Biochem., 2009, 78(1), 65-94.
[http://dx.doi.org/10.1146/annurev.biochem.78.091707.100215] [PMID: 19489722]
[9]
Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev., 2009, 109(6), 2672-2702.
[http://dx.doi.org/10.1021/cr800315j] [PMID: 19449857]
[10]
Horiguchi, M.; Kandatstu, M. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature, 1959, 184(4690), 901-902.
[http://dx.doi.org/10.1038/184901b0] [PMID: 14403103]
[11]
Machura, B.; Milek, J.; Kusz, J.; Nycz, J.; Tabak, D. Reactivity of oxorhenium(V) complexes towards quinoline carboxylic acids. X-ray structure of [ReOCl2(hquin-7-COOH)(PPh3)]center dot OPPh3, [ReOBr2(hquin-7-COOH)(PPh3)] and [ReOX2(hmquin-7-COOH)(PPh3)]. DFT and TD-DFT calculations for. Polyhedron, 2008, 27, 1121-1130.
[http://dx.doi.org/10.1016/j.poly.2007.12.006]
[12]
Hitchcock, P.B.; Lappert, M.F.; Nycz, J.E. Synthesis, structure and reductive dechlorination of the C-centered phosphorus(III) β-diketiminate PCl(Ph). L. Chem. Commun., 2003, 10, 1142-1143.
[http://dx.doi.org/10.1039/b301294h]
[13]
Kukhar, V.P.; Hudson, H.R. Aminophosphonic and aminophosphinic acids; Chemistry and Biological Activity, 2000.
[14]
Kosolapoff, G. Notes - preparation of 6-quinolyl- and 6-Quinolylmethyl-phosphonic acids. J. Org. Chem., 1956, 21(9), 1046.
[http://dx.doi.org/10.1021/jo01115a615]
[15]
Chmielewska, E.; Miszczyk, P.; Kozłowska, J.; Prokopowicz, M.; Młynarz, P.; Kafarski, P. Reaction of benzolactams with triethyl phosphite prompted by phosphoryl chloride affords benzoannulated monophosphonates instead of expected bisphoshonates. J. Organomet. Chem., 2015, 785, 84-91.
[http://dx.doi.org/10.1016/j.jorganchem.2015.03.005]
[16]
Skraup, Z.H. Eine synthese des chinolins. Monatsh. Chem., 1880, 1(1), 316-318.
[http://dx.doi.org/10.1007/BF01517073]
[17]
Skraup, Z.H. Synthetische versuche in der chinolinreihe. Monatsh. Chem., 1881, 2(1), 139-170.
[http://dx.doi.org/10.1007/BF01516502]
[18]
Skraup, Z.H. Uber chinin und chinidin. Monatsh. Chem., 1881, 2(1), 587-609.
[http://dx.doi.org/10.1007/BF01516541]
[19]
Schlosser, A.; Skraup, Z.H. Synthetische versuche in der chinolinreihe. Ber. Chem, 1881, 2, 518-538.
[20]
Matsugi, M.; Tabusa, F.; Minamikawa, J. Doebner-Miller synthesis in a two-phase system: Practical preparation of quinolines. Tetrahedron Lett., 2000, 41(44), 8523-8525.
[http://dx.doi.org/10.1016/S0040-4039(00)01542-2]
[21]
Nycz, J.E.; Malecki, G.J. Synthesis, spectroscopy and computational studies of selected hydroxyquinoline carboxylic acids and their selected fluoro-, thio-, and dithioanalogues. J. Mol. Struct., 2013, 1032, 159-168.
[http://dx.doi.org/10.1016/j.molstruc.2012.08.009]
[22]
De, K.; Legros, J.; Crousse, B.; Delpon, B.D. Solvent-promoted and -controlled aza-Michael reaction with aromatic amines. J. Org. Chem., 2009, 74(16), 6260-6265.
[http://dx.doi.org/10.1021/jo9012699] [PMID: 19621888]
[23]
Ritchie, C.D. Nucleophilic reactivities toward cations. Acc. Chem. Res., 1972, 5(10), 348-354.
[http://dx.doi.org/10.1021/ar50058a005]
[24]
Ritchie, C.D. Cation-anion combination reactions. 26. A review. Can. J. Chem., 1986, 64(12), 2239-2250.
[http://dx.doi.org/10.1139/v86-370]
[25]
Nycz, J.E.; Szala, M.; Malecki, G.J.; Nowak, M.; Kusz, J. Synthesis, spectroscopy and computational studies of selected hydroxyquinolines and their analogues. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 351-359.
[http://dx.doi.org/10.1016/j.saa.2013.08.031] [PMID: 24001976]
[26]
Malecki, G.; Nycz, J.E.; Ryrych, E.; Ponikiewski, L.; Nowak, M.; Kusz, J.; Pikies, J. Synthesis, spectroscopy and computational studies of some biologically important hydroxyhaloquinolines and their novel derivatives. J. Mol. Struct., 2010, 969(1-3), 130-138.
[http://dx.doi.org/10.1016/j.molstruc.2010.01.054]
[27]
Szala, M.; Nycz, J.E.; Malecki, G.J. New approaches to the synthesis of selected hydroxyquinolines and their hydroxyquinoline carboxylic acid analogues. J. Mol. Struct., 2014, 1071, 34-40.
[http://dx.doi.org/10.1016/j.molstruc.2014.04.052]
[28]
Gudat, D.; Nycz, J.E.; Polanski, J. A solid state and solution NMR study of the tautomerism in hydroxyquinoline carboxylic acids. Magn. Reson. Chem., 2008, 46(S1), S115-S119.
[http://dx.doi.org/10.1002/mrc.2320] [PMID: 18855329]
[29]
Gao, W.; Shi, B. Crystal structure of diphenylphosphinic acid. Mol. Cryst. Liq. Cryst., 2015, 623(1), 305-309.
[http://dx.doi.org/10.1080/15421406.2015.1011483]
[30]
Lyssenko, K.A.; Knyazev, G.G.V.; Antipin, M.Y. Nature of the PO bond in diphenylphosphonic acid: Experimental charge density and electron localization function analysis. Mendeleev Commun., 2002, 12(4), 128-130.
[http://dx.doi.org/10.1070/MC2002v012n04ABEH001604]
[31]
The weak hydrogen bond. In: Desiraju, G.R.; Steiner, T., Eds.; Structural Chemistry and Biology; Oxford University Press: New York, 1999.
[32]
Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. B, 1990, 46(2), 256-262.
[http://dx.doi.org/10.1107/S0108768189012929] [PMID: 2344397]
[33]
Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, 2009.
[34]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[35]
Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[36]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15), 154104.
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[37]
Glendening, E.D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1; , 2001.
[38]
Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 1977, 44(2), 129-138.
[http://dx.doi.org/10.1007/BF00549096]
[39]
Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32.
[http://dx.doi.org/10.1039/B818330A]
[40]
Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst., 2021, 54(3), 1006-1011.
[http://dx.doi.org/10.1107/S1600576721002910] [PMID: 34188619]
[41]
Rigaku Oxford Diffraction. CrysAlisPro Software system, version 1.171.38.41q; Rigaku Corporation: Wroclaw, Poland, 2015.
[42]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., 2015, 71(1), 3-8.
[43]
Oxford Diffraction. CrysAlis CCD & CrysAlis RED, version 1.171.32.29; Oxford Diffraction Ltd: Abingdon, Oxfordshire, England, 2008.
[44]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[45]
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2., https://www.scirp.org/reference/ReferencesPapers?ReferenceID=17223212012.
[46]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42(2), 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[47]
Nycz, J.E.; Malecki, G.; Chikkali, S.; Hajdok, I.; Singh, P. Reaction of quinoline-5,8-diones with selected charged phosphorus nucleophiles. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187(5), 564-572.
[http://dx.doi.org/10.1080/10426507.2011.626472]
[48]
Stankevič, M.; Pietrusiewicz, K.M.; Siek, M. Reactivity of allyl anions of allylphosphine-boranes towards electrophiles. ARKIVOC, 2011, 2011(5), 102-126.
[http://dx.doi.org/10.3998/ark.5550190.0012.511]
[49]
Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: A microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron, 2009, 65(50), 10406-10412.
[http://dx.doi.org/10.1016/j.tet.2009.10.028]
[50]
Lukeš, I.; Borbaruah, M.; Quin, L.D. Direct reaction of phosphorus-acids with hydroxy of a silanol and on the silica-gel surface. J. Am. Chem. Soc., 1994, 116(5), 1737-1741.
[http://dx.doi.org/10.1021/ja00084a014]
[51]
Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation. J. Org. Chem., 2006, 71(13), 5020-5022.
[http://dx.doi.org/10.1021/jo060492j] [PMID: 16776539]
[52]
Nycz, J.E.; Musiol, R. New approaches to the synthesis of diphosphine dioxides and hypophosphoric acid esters. Heteroatom Chem., 2006, 17(4), 310-316.
[http://dx.doi.org/10.1002/hc.20208]
[53]
Goldeman, W.; Olszewski, T.K.; Boduszek, B.; Dobrowolska, S.W. Aminophosphine oxides in a pyridine series. Studies on the cleavage of pyridine-2- and pyridine-4-yl-(N-benzylamino)-methyldiphenylphosphine oxides in acidic solutions. Tetrahedron, 2006, 62(18), 4506-4518.
[http://dx.doi.org/10.1016/j.tet.2006.02.048]
[54]
Cooper, R.J.; Camp, P.J.; Gordon, R.J.; Henderson, D.K.; Henry, D.C.R.; McNab, H.; De Silva, S.S.; Tackley, D.; Tasker, P.A.; Wight, P. The assembly of rotaxane-like dye/cyclodextrin/surface complexes on aluminium trihydroxide or goethite. Dalton Trans., 2006, (23), 2785-2793.
[http://dx.doi.org/10.1039/b518260c] [PMID: 16751886]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy