Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Recent Advancements in Refashioning of NSAIDs and their Derivatives as Anticancer Candidates

Author(s): Asmaa E. Kassab* and Ehab M. Gedawy

Volume 30, Issue 16, 2024

Published on: 05 April, 2024

Page: [1217 - 1239] Pages: 23

DOI: 10.2174/0113816128304230240327044201

Price: $65

Abstract

Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor‐selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7(1): e11.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[3]
Jazieh A, Da’ar OB, Alkaiyat M, et al. Cancer incidence trends from 1999 to 2015 and contributions of various cancer types to the overall burden: Projections to 2030 and extrapolation of economic burden in Saudi Arabia. Cancer Manag Res 2019; 11: 9665-74.
[http://dx.doi.org/10.2147/CMAR.S222667] [PMID: 32009819]
[4]
Whiteman DC, Wilson LF. The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol 2016; 44: 203-21.
[http://dx.doi.org/10.1016/j.canep.2016.06.013] [PMID: 27460784]
[5]
Stanković T, Dinić J, Podolski-Renić A, et al. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr Med Chem 2019; 26(33): 6074-106.
[http://dx.doi.org/10.2174/0929867325666180607094856] [PMID: 29874992]
[6]
Sano S, Chan KS, Carbajal S, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 2005; 11(1): 43-9.
[http://dx.doi.org/10.1038/nm1162] [PMID: 15592573]
[7]
Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004; 14(6): 433-9.
[http://dx.doi.org/10.1016/j.semcancer.2004.06.006] [PMID: 15489136]
[8]
Mantovani A. Inflaming metastasis. Nature 2009; 457(7225): 36-7.
[http://dx.doi.org/10.1038/457036b] [PMID: 19122629]
[9]
Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 1999; 5(5): 1001-5.
[PMID: 10353732]
[10]
Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2: A role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/2048731] [PMID: 27882058]
[11]
Botting R. COX-1 and COX-3 inhibitors. Thromb Res 2003; 110(5-6): 269-72.
[http://dx.doi.org/10.1016/S0049-3848(03)00411-0] [PMID: 14592546]
[12]
Chandrasekharan NV, Dai H, Roos KLT, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl Acad Sci 2002; 99(21): 13926-31.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[13]
Steinmeyer J. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res 2000; 2(5): 379-85.
[http://dx.doi.org/10.1186/ar116] [PMID: 11094452]
[14]
Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105-18.
[http://dx.doi.org/10.2147/JPR.S75160] [PMID: 25759598]
[15]
Wang D, DuBois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010; 29(6): 781-8.
[http://dx.doi.org/10.1038/onc.2009.421] [PMID: 19946329]
[16]
Khan AA, Iadarola M, Yang HYT, Dionne RA. Expression of COX-1 and COX-2 in a clinical model of acute inflammation. J Pain 2007; 8(4): 349-54.
[http://dx.doi.org/10.1016/j.jpain.2006.10.004] [PMID: 17270500]
[17]
Ye YN, Wu WKK, Shin VY, Bruce IC, Wong BCY, Cho CH. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005; 26(4): 827-34.
[http://dx.doi.org/10.1093/carcin/bgi012] [PMID: 15637091]
[18]
Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004; 63(9): 901-10.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[19]
Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 2011; 96(1-4): 27-36.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.08.004] [PMID: 21864702]
[20]
Zhong B, Cai X, Chennamaneni S, et al. From COX-2 inhibitor nimesulide to potent anti-cancer agent: Synthesis, in vitro, in vivo and pharmacokinetic evaluation. Eur J Med Chem 2012; 47(1): 432-44.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.012] [PMID: 22119125]
[21]
Sarkar FH, Adsule S, Li Y, Padhye S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 2007; 7(6): 599-608.
[http://dx.doi.org/10.2174/138955707780859431] [PMID: 17584158]
[22]
Rayburn E, Ezell SJ, Zhang R. Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol 2009; 1(1): 29-43.
[http://dx.doi.org/10.4255/mcpharmacol.09.05] [PMID: 20333321]
[23]
Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 2019; 84: 260-8.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.033] [PMID: 30508771]
[24]
Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9(3): 255-67.
[http://dx.doi.org/10.1517/17460441.2014.883377] [PMID: 24483845]
[25]
Kang SN, Hong SS, Lee MK, Lim SJ. Dual function of tributyrin emulsion: Solubilization and enhancement of anticancer effect of celecoxib. Int J Pharm 2012; 428(1-2): 76-81.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.037] [PMID: 22405988]
[26]
Xu HB, Shen FM, Lv QZ. Celecoxib enhanced the cytotoxic effect of cisplatin in drug-resistant human gastric cancer cells by inhibition of cyclooxygenase-2. Eur J Pharmacol 2015; 769: 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.025] [PMID: 26407653]
[27]
Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology 2002; 35(3): 552-9.
[http://dx.doi.org/10.1053/jhep.2002.31774] [PMID: 11870367]
[28]
Fujita T, Matsui M, Takaku K, et al. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 1998; 58(21): 4823-6.
[PMID: 9809985]
[29]
Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schrör K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999; 59(1): 198-204.
[PMID: 9892207]
[30]
Koki AT, Masferrer JL. Celecoxib: A specific COX-2 inhibitor with anticancer properties. Cancer Contr 2002; 9(S2): 28-35.
[http://dx.doi.org/10.1177/107327480200902S04] [PMID: 11965228]
[31]
Liu CH, Chang SH, Narko K, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001; 276(21): 18563-9.
[http://dx.doi.org/10.1074/jbc.M010787200] [PMID: 11278747]
[32]
Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83(3): 493-501.
[http://dx.doi.org/10.1016/0092-8674(95)90127-2] [PMID: 8521479]
[33]
Francés DEA, Ingaramo PI, Mayoral R, et al. Cyclooxygenase‐2 over‐expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114(3): 669-80.
[http://dx.doi.org/10.1002/jcb.24409] [PMID: 23059845]
[34]
Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem 2000; 275(16): 11784-90.
[http://dx.doi.org/10.1074/jbc.275.16.11784] [PMID: 10766802]
[35]
Qu L, Liu B. Cyclooxygeanse-2 promotes metastasis in osteosarcoma. Cancer Cell Int 2015; 15(1): 69.
[http://dx.doi.org/10.1186/s12935-015-0220-2] [PMID: 26180515]
[36]
Hu H, Han T, Zhuo M, et al. Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer. Sci Rep 2017; 7(1): 470.
[http://dx.doi.org/10.1038/s41598-017-00288-4] [PMID: 28352075]
[37]
Kundu N, Fulton AM. Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Res 2002; 62(8): 2343-6.
[PMID: 11956094]
[38]
Rosas C, Sinning M, Ferreira A, Fuenzalida M, Lemus D. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res 2014; 47(1): 27.
[http://dx.doi.org/10.1186/0717-6287-47-27] [PMID: 25027008]
[39]
Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107(2): 135-42.
[http://dx.doi.org/10.1172/JCI11914] [PMID: 11160126]
[40]
Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals 2018; 11(4): 101.
[http://dx.doi.org/10.3390/ph11040101] [PMID: 30314310]
[41]
Kitamura T, Kawamori T, Uchiya N, et al. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis. Carcinogenesis 2002; 23(9): 1463-6.
[http://dx.doi.org/10.1093/carcin/23.9.1463] [PMID: 12189188]
[42]
Niho N, Kitamura T, Takahashi M, et al. Suppression of azoxymethane‐induced colon cancer development in rats by a cyclooxygenase‐1 selective inhibitor, mofezolac. Cancer Sci 2006; 97(10): 1011-4.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00275.x] [PMID: 16984374]
[43]
Elder DJ, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: Independence from COX-2 protein expression. Clin Cancer Res 1997; 3(10): 1679-83.
[PMID: 9815550]
[44]
Aggarwal S, Taneja N, Lin L, Orringer MB, Rehemtulla A, Beer DG. Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression. Neoplasia 2000; 2(4): 346-56.
[http://dx.doi.org/10.1038/sj.neo.7900097] [PMID: 11005569]
[45]
Vogt T, McClelland M, Jung B, et al. Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Res 2001; 11(6): 587-99.
[http://dx.doi.org/10.1097/00008390-200112000-00005] [PMID: 11725205]
[46]
Smith ML, Hawcroft G, Hull MA. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells. Eur J Cancer 2000; 36(5): 664-74.
[http://dx.doi.org/10.1016/S0959-8049(99)00333-0] [PMID: 10738133]
[47]
Zhang S, Suvannasankha A, Crean CD, et al. OSU-03012, a novel celecoxib derivative, is cytotoxic to myeloma cells and acts through multiple mechanisms. Clin Cancer Res 2007; 13(16): 4750-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0136] [PMID: 17699852]
[48]
Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3(3): 299-307.
[http://dx.doi.org/10.1158/1535-7163.299.3.3] [PMID: 15026550]
[49]
He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999; 99(3): 335-45.
[http://dx.doi.org/10.1016/S0092-8674(00)81664-5] [PMID: 10555149]
[50]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[51]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[52]
Antoszczak M, Markowska A, Markowska J, Huczyński A. Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866: 172784.
[http://dx.doi.org/10.1016/j.ejphar.2019.172784] [PMID: 31730760]
[53]
Armando RG, Mengual Gómez DL, Gomez DE. New drugs are not enough drug repositioning in oncology: An update. Int J Oncol 2020; 56(3): 651-84.
[http://dx.doi.org/10.3892/ijo.2020.4966] [PMID: 32124955]
[54]
Masuda T, Tsuruda Y, Matsumoto Y, Uchida H, Nakayama KI, Mimori K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci 2020; 111(4): 1039-46.
[http://dx.doi.org/10.1111/cas.14318] [PMID: 31957175]
[55]
Mudduluru G, Walther W, Kobelt D, et al. Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26: 10-27.
[http://dx.doi.org/10.1016/j.drup.2016.03.002] [PMID: 27180307]
[56]
Nowak-Sliwinska P, Scapozza L, Altaba RA. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 434-54.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[57]
Serafin MB, Bottega A, da Rosa TF, et al. Drug repositioning in oncology. Am J Ther 2021; 28(1): e111-7.
[http://dx.doi.org/10.1097/MJT.0000000000000906] [PMID: 31033488]
[58]
Corbett A, Williams G, Ballard C. Drug repositioning in Alzheimer’s disease. Front Biosci 2015; 7(1): 184-8.
[http://dx.doi.org/10.2741/s432] [PMID: 25961694]
[59]
de Castro AA, da Cunha EFF, Pereira AF, et al. Insights into the drug repositioning applied to the Alzheimer’s disease treatment and future perspectives. Curr Alzheimer Res 2018; 15(12): 1161-78.
[http://dx.doi.org/10.2174/1567205015666180813150703] [PMID: 30101709]
[60]
Grammer AC, Lipsky PE. Drug repositioning strategies for the identification of novel therapies for rheumatic autoimmune inflammatory diseases. Rheum Dis Clin North Am 2017; 43(3): 467-80.
[http://dx.doi.org/10.1016/j.rdc.2017.04.010] [PMID: 28711146]
[61]
Huo Y, Zhang HY. Genetic mechanisms of asthma and the implications for drug repositioning. Genes 2018; 9(5): 237.
[http://dx.doi.org/10.3390/genes9050237] [PMID: 29751569]
[62]
Grammer AC, Ryals MM, Heuer SE, et al. Drug repositioning in SLE: Crowd-sourcing, literature-mining and Big Data analysis. Lupus 2016; 25(10): 1150-70.
[http://dx.doi.org/10.1177/0961203316657437] [PMID: 27497259]
[63]
Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res 2017; 26(11): 3038-45.
[http://dx.doi.org/10.1007/s00044-017-2001-z] [PMID: 29104411]
[64]
Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. Phosphorus Sulfur Silicon Relat Elem 2020; 195(10): 836-41.
[http://dx.doi.org/10.1080/10426507.2020.1759060]
[65]
Galisteo A, Jannus F, García GA, et al. Diclofenac n-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect. Int J Mol Sci 2021; 22(10): 5067.
[http://dx.doi.org/10.3390/ijms22105067] [PMID: 34064702]
[66]
Narożna M, Kuźniak KV, Cwynar BB, Kleszcz R, Dubowska BW, Dubowska BW. The effect of novel oleanolic acid oximes conjugated with indomethacin on the Nrf2-ARE And NF-κB signaling pathways in normal hepatocytes and human hepatocellular cancer cells. Pharmaceuticals (Basel) 2020; 14(1): 32.
[http://dx.doi.org/10.3390/ph14010032] [PMID: 33396453]
[67]
Kummari B, Polkam N, Ramesh P, et al. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Advances 2017; 7(38): 23680-6.
[http://dx.doi.org/10.1039/C6RA28525B]
[68]
Çoruh I, Çevik Ö, Yelekçi K, Djikic T, Küçükgüzel ŞG. Synthesis, anticancer activity, and molecular modeling of etodolac‐thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm 2018; 351(3-4): 1700195.
[http://dx.doi.org/10.1002/ardp.201700195] [PMID: 29575045]
[69]
Kummari B, Ramesh P, Parsharamulu R, et al. Design and synthesis of new etodolac‐pyridazinones as potent anticancer agents using Pb(OAc)4 to assist N‐N bond formation. ChemistrySelect 2018; 3(18): 5050-4.
[http://dx.doi.org/10.1002/slct.201800459]
[70]
Kummari B, Ramesh P, Polkam N, Malthum S, Vishnuvardhan M, Anireddy J. Design, synthesis, and cytotoxic evaluation of etodolac-1,3,4-oxadiazole-1,2,3-triazole molecules. SynOpen 2018; 02(01): 0017-24.
[http://dx.doi.org/10.1055/s-0036-1591754]
[71]
Neeraja P, Srinivas S, Banothu V, Mukkanti K, Dubey PK, Pal S. Synthesis, biological evaluation and docking study of etodolac-triazole conjugate. Chem Sci Int 2020; 29: 35-51.
[http://dx.doi.org/10.9734/CSJI/2020/v29i930204]
[72]
Koç HC, Atlihan İ, Tiber MP, Orun O, Küçükgüzel G. Synthesis of some novel hydrazide-hydrazones derived from etodolac as potential anti-prostate cancer agents. J Res Pharm 2022; 26: 1-12.
[http://dx.doi.org/10.29228/jrp.97]
[73]
Onder CF, Siyah P, Durdagi S, Ay M, Ozpolat B. Novel etodolac derivatives as eukaryotic elongation factor 2 kinase (eEF2K) inhibitors for targeted cancer therapy. RSC Med Chem 2022; 13(7): 840-9.
[http://dx.doi.org/10.1039/D2MD00105E] [PMID: 35923718]
[74]
Nikanfar S, hajipirloo AS, Kheradmand F, Rashedi J, Heydari A. Cytotoxic effect of 2, 5-dimethyl-celecoxib as a structural analog of celecoxib on human colorectal cancer (HT-29) cell line. Cell Mol Biol 2018; 64(7): 8-13.
[http://dx.doi.org/10.14715/cmb/2018.64.7.2] [PMID: 29974839]
[75]
Buzharevski A, Paskas S, Sárosi MB, et al. Carboranyl analogues of celecoxib with potent cytostatic activity against human melanoma and colon cancer cell lines. ChemMedChem 2019; 14(3): 315-21.
[http://dx.doi.org/10.1002/cmdc.201800685] [PMID: 30602073]
[76]
Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25(4): 2307-19.
[http://dx.doi.org/10.1007/s11030-020-10121-2] [PMID: 32602075]
[77]
Yamahana H, Takino T, Endo Y, Yamada H, Suzuki T, Uto Y. A novel celecoxib analog UTX-121 inhibits HT1080 cell invasion by modulating membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 2020; 521(1): 137-44.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.092] [PMID: 31629465]
[78]
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and synthesis of novel celecoxib analogues with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Med Chem 2022; 18(8): 903-14.
[http://dx.doi.org/10.2174/1573406418666220309123648] [PMID: 35264093]
[79]
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase‐2 inhibitors. Arch Pharm 2022; 355(11): 2200190.
[http://dx.doi.org/10.1002/ardp.202200190] [PMID: 35976138]
[80]
Liu J, Zhang L, Guo L, et al. Novel bioactive hybrid celecoxib-HDAC inhibitor, induces apoptosis in human acute lymphoblastic leukemia cells. Bioorg Med Chem 2022; 75: 117085.
[http://dx.doi.org/10.1016/j.bmc.2022.117085] [PMID: 36395680]
[81]
Petruzzella E, Sirota R, Solazzo I, Gandin V, Gibson D. Triple action Pt(iv) derivatives of cisplatin: A new class of potent anticancer agents that overcome resistance. Chem Sci 2018; 9(18): 4299-307.
[http://dx.doi.org/10.1039/C8SC00428E] [PMID: 29780561]
[82]
Kłobucki M, Urbaniak A, Grudniewska A, et al. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties. Sci Rep 2019; 9(1): 220.
[http://dx.doi.org/10.1038/s41598-018-36571-1] [PMID: 30659229]
[83]
Rayam P, Polkam N, Kummari B, et al. Synthesis and biological evaluation of new ibuprofen‐1,3,4‐oxadiazole‐1,2,3‐triazole hybrids. J Heterocycl Chem 2019; 56(1): 296-305.
[http://dx.doi.org/10.1002/jhet.3409]
[84]
Alderawy MQA, Alrubaie LAR, Sheri FH. Synthesis, characterization of ibuprofen N-Acyl-1,3,4-oxadiazole derivatives and anticancer activity against MCF-7 cell line. Syst Rev Pharm 2020; 11: 681-9.
[http://dx.doi.org/10.31838/srp.2020.4.100]
[85]
Iqbal Farooqi S, Arshad N, Perveen F, et al. Structure and surface analysis of ibuprofen-organotin conjugate: Potential anti-cancer drug candidacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies. Polyhedron 2020; 192: 114845.
[http://dx.doi.org/10.1016/j.poly.2020.114845]
[86]
Farooqi SI, Arshad N, Channar PA, et al. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates. J Biomol Struct Dyn 2021; 39(10): 3548-64.
[http://dx.doi.org/10.1080/07391102.2020.1766569] [PMID: 32397836]
[87]
Kaur M, Muzzammel Rehman H, Kaur G, Kaur A, Bansal M. Switching of newly synthesized linker-based derivatives of non-steroidal anti-inflammatory drugs toward anti-inflammatory and anticancer activity. Bioorg Chem 2023; 133: 106406.
[http://dx.doi.org/10.1016/j.bioorg.2023.106406] [PMID: 36773455]
[88]
Kassab AE, Gedawy EM, Hamed MIA, Doghish AS, Hassan RA. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36(1): 922-39.
[http://dx.doi.org/10.1080/14756366.2021.1901089] [PMID: 33896327]
[89]
Şenkardeş S, İhsan Han M, Gürboğa M, Özakpinar ÖB, Küçükgüzel GŞ. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers. Med Chem Res 2022; 31(2): 368-79.
[http://dx.doi.org/10.1007/s00044-021-02837-z]
[90]
Mathew B, Snowden TS, Connelly MC, Guy RK, Reynolds RC. A small diversity library of α-methyl amide analogs of sulindac for probing anticancer structure-activity relationships. Bioorg Med Chem Lett 2018; 28(12): 2136-42.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.023] [PMID: 29776741]
[91]
Mathew B, Hobrath JV, Connelly MC, Guy RK, Reynolds RC. Oxazole and thiazole analogs of sulindac for cancer prevention. Future Med Chem 2018; 10(7): 743-53.
[http://dx.doi.org/10.4155/fmc-2017-0182] [PMID: 29671617]
[92]
Mathew B, Hobrath JV, Connelly MC, Guy RK, Reynolds RC. amine containing analogs of sulindac for cancer prevention. Open Med Chem J 2018; 12(1): 1-12.
[http://dx.doi.org/10.2174/1874104501812010001] [PMID: 29492166]
[93]
Yan Z, Chong S, Lin H, et al. Design, synthesis and biological evaluation of tetrazole-containing RXRα ligands as anticancer agents. Eur J Med Chem 2019; 164: 562-75.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.036] [PMID: 30634084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy