Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

A Computational Study of Green Tea Extracts and their Derivatives as Potential Inhibitors for Squalene Monooxygenase

Author(s): Kabelo Phuti Mokgopa*, Kevin A. Lobb and Tendamudzimu Tshiwawa*

Volume 20, Issue 7, 2024

Published on: 04 April, 2024

Page: [721 - 732] Pages: 12

DOI: 10.2174/0115734064280290240211170037

Price: $65

Abstract

Background: According to the World Health Organisation, cardiovascular complications have been recognized as the leading course of death between 2000 and 2019. Cardiovascular complications are caused by excess LDL cholesterol in the body or arteries that can build up to form a plaque. There are drugs currently in clinical use called statins that target HMGCoA reductase. However, these drugs result in several side effects. This work investigated using computational approaches to lower cholesterol by investigating green tea extracts as an inhibitors for squalene monooxygenase (the second-rate-controlling step in cholesterol synthesis).

Methods: Pharmacophore modeling was done to identify possible pharmacophoric sites based on the pIC50 values. The best hypothesis generated by pharmacophore modeling was further validated by atom-based 3D QSAR, where 70% of the data set was treated as the training set. Prior molecular docking ADMET studies were done to investigate the physiochemical properties of these molecules. Glide docking was performed, followed by molecular dynamics to evaluate the protein conformational changes.

Results: Pharmacophore results suggest that the best molecules to interact with the biological target should have at least one hydrogen acceptor (A5), two hydrogen donors (D9 and D10), and two benzene rings (R14 and R15) for green tea polyphenols and theasinensin A. ADMET result shows that all molecules in this class have low oral adsorption. Molecular docking results showed that some green tea polyphenols have good binding affinities, with most of these structures having a docking score of less than -10 kcal/mol. Molecular dynamics further illustrated that the best-docked ligands perfectly stay within the active site over a 100 ns simulation.

Conclusion: The results obtained from this study suggest that green tea polyphenols have the potential for inhibition of squalene monooxygenase, except for theasinensin A.

[1]
Brown, A.J.; Galea, A.M. Cholesterol as an evolutionary response to living with oxygen. Evolution, 2010, 64(7), 2179-2183.
[http://dx.doi.org/10.1111/j.1558-5646.2010.01011.x]
[2]
Craig, M.; Yarrarapu, S.N.S.; Dimri, M. Biochemistry, Cholesterol; StatPearls Publishing: Treasure Island, FL, 2022.
[3]
Chua, N.K.; Coates, H.W.; Brown, A.J. Squalene monooxygenase: A journey to the heart of cholesterol synthesis. Prog. Lipid Res., 2020, 79, 101033.
[http://dx.doi.org/10.1016/j.plipres.2020.101033]
[4]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The lipid bilayer. In: In Mol. Biol. Cell; Garland Science, 2002. https://www.ncbi.nlm.nih.gov/books/NBK26871/
[5]
Burns, M.; Duff, K. Cholesterol in alzheimer’s disease and tauopathy. Ann. N. Y. Acad. Sci., 2002, 977(1), 367-375.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04839.x]
[6]
Goldstein, J.L.; Anderson, R.G.; Brown, M.S. Receptor-mediated endocytosis and the cellular uptake of low density lipoprotein. Ciba Found. Symp., 1982, (92), 77-95.https://pubmed.ncbi.nlm.nih.gov/6129958/
[http://dx.doi.org/10.1002/9780470720745.ch5]
[7]
Goldstein, J.L.; Rawson, R.B.; Brown, M.S. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys., 2002, 397(2), 139-148.
[http://dx.doi.org/10.1006/abbi.2001.2615]
[8]
Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med., 2016, 4(13), 256.
[http://dx.doi.org/10.21037/atm.2016.06.33]
[9]
Barker, D.J.P. Fetal origins of coronary heart disease. BMJ, 1995, 311(6998), 171-174.
[http://dx.doi.org/10.1136/bmj.311.6998.171]
[10]
Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med., 2012, 272(1), 13-24.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02553.x]
[11]
Bruce, I.N. Not only… but also’: factors that contribute to accelerated atherosclerosis and premature coronary heart disease in systemic lupus erythematosus. Rheumatology, 2005, 44(12), 1492-1502.
[12]
Skodova, Z.; Nagyova, I.; van Dijk, J.P.; Sudzinova, A.; Vargova, H.; Studencan, M.; Reijneveld, S.A. Socioeconomic differences in psychosocial factors contributing to coronary heart disease: A review. J. Clin. Psychol. Med. Settings, 2008, 15(3), 204-213.
[http://dx.doi.org/10.1007/s10880-008-9117-8]
[13]
Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2000, 1529(1-3), 245-256.
[http://dx.doi.org/10.1016/S1388-1981(00)00153-0]
[14]
Remaley, A.T.; Schumacher, U.K.; Stonik, J.A.; Farsi, B.D.; Nazih, H.; Brewer, H.B. Decreased reverse cholesterol transport from tangier disease fibroblasts: Acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler. Thromb. Vasc. Biol., 1997, 17(9), 1813-1821.
[http://dx.doi.org/10.1161/01.ATV.17.9.1813]
[15]
Yokoyama, S. Release of cellular cholesterol: Molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2000, 1529(1-3), 231-244.
[http://dx.doi.org/10.1016/S1388-1981(00)00152-9]
[16]
Gramza, A.; Korczak, J.; Amarowicz, R. Tea polyphenols-their antioxidant properties and biological activity-a review. Pol. J. Food Nutr. Sci., 2005, 14, 219.
[17]
Sabu, M.C.; Smitha, K.; Kuttan, R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol., 2002, 83, 109-116.
[http://dx.doi.org/10.1016/S0378-8741(02)00217-9]
[18]
Tipoe, G. L.; Leung, T.; Hung, M.; Fung, M. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovascular & Haematological Disorders- Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 2007, 7, 135-144.
[19]
Alexopoulos, N.; Vlachopoulos, C.; Stefanadis, C. Role of green tea in reduction of cardiovascular risk factors. Nutr. Diet. Suppl., 2010, 85-95.
[20]
Abe, I.; Seki, T.; Umehara, K.; Miyase, T.; Noguchi, H.; Sakakibara, J.; Ono, T. Green tea polyphenols: Novel and potent inhibitors of squalene epoxidase. Biochem. Biophys. Res. Commun., 2000, 268(3), 767-771.
[http://dx.doi.org/10.1006/bbrc.2000.2217]
[21]
MarvinSketch 22.11, 2014, ChemAxon 2014. Available from: http://www.chemaxon.com
[22]
Release, S. 2023-2: Maestro; Schrödinger, LLC: New York, NY, 2023.
[23]
Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des., 2006, 20(10-11), 647-671.
[http://dx.doi.org/10.1007/s10822-006-9087-6]
[24]
QikProp; Schrödinger, LLC: New York, NY, 2021.
[25]
Release, S. 2023-2: LigPrep; Schrödinger, LLC: New York, NY, 2023.
[26]
Pires, D.; Blundell, T.L. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104]
[27]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717]
[28]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b]
[29]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1]
[30]
Madhavi, S.G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8]
[31]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o]
[32]
Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E. Scalable algorithms for molecular dynamics simulations on commodity clusters,Proceedings of the ACM/IEEE Conference on Supercomputing (SC06); Tampa, Florida, 2006. November 11-17
[http://dx.doi.org/10.1109/SC.2006.54]
[33]
Jiang, L.; Rizzo, R.C. Pharmacophore-based similarity scoring for dock. J. Phys. Chem. B, 2015, 119(3), 1083-1102.
[http://dx.doi.org/10.1021/jp506555w]
[34]
Colin, C.A.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econom., 1997, 77(2), 329-342.
[http://dx.doi.org/10.1016/S0304-4076(96)01818-0]
[35]
Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg., 2018, 126(5), 1763-1768.
[http://dx.doi.org/10.1213/ANE.0000000000002864]
[36]
Chin, W.W.; Henseler, J.; Wang, H. Handbook of partial least squares: Concepts, methods and applications; Springer Berlin Heidelberg, 1998, p. 206.
[37]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR models - strategies and importance. Int. J. Drug Des. Disocovery, 2011, 2(3), 511-519.
[38]
Barde, P.; Barde, M. What to use to express the variability of data: Standard deviation or standard error of mean? Perspect. Clin. Res., 2012, 3(3), 113.
[http://dx.doi.org/10.4103/2229-3485.100662]
[39]
Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 2014, 7(3), 1247-1250.
[http://dx.doi.org/10.5194/gmd-7-1247-2014]
[40]
Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol., 2000, 9(3), 165-169.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x]
[41]
Ensrud, K.E.; Blackwell, T.; Mangione, C.M.; Bowman, P.J.; Bauer, D.C.; Schwartz, A.; Hanlon, J.T.; Nevitt, M.C.; Whooley, M.A. Central nervous system active medications and risk for fractures in older women. Arch. Intern. Med., 2003, 163(8), 949-957.
[http://dx.doi.org/10.1001/archinte.163.8.949]
[42]
Strazielle, N.; Ghersi-Egea, J.F. Factors affecting delivery of antiviral drugs to the brain. Rev. Med. Virol., 2005, 15(2), 105-133.
[http://dx.doi.org/10.1002/rmv.454]
[43]
Li, S.; He, H.; Parthiban, L.J.; Yin, H.; Serajuddin, A.T.M. IV-IVC considerations in the development of immediate-release oral dosage form. J. Pharm. Sci., 2005, 94(7), 1396-1417.
[http://dx.doi.org/10.1002/jps.20378]
[44]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007]
[45]
Garrido, A.; Lepailleur, A.; Mignani, S.M.; Dallemagne, P.; Rochais, C. hERG toxicity assessment: Useful guidelines for drug design. Eur. J. Med. Chem., 2020, 195, 112290.
[http://dx.doi.org/10.1016/j.ejmech.2020.112290]
[46]
Volpe, D.A. Variability in caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci., 2008, 97(2), 712-725.
[http://dx.doi.org/10.1002/jps.21010]
[47]
Daneman, R.; Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412]
[48]
Sawada, M.; Washizuka, K.; Okumura, H. Synthesis and biological activity of a novel squalene epoxidase inhibitor, FR194738. Bioorg. Med. Chem. Lett., 2004, 14(3), 633-637.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.072]
[49]
Russell, D.W. Cholesterol biosynthesis and metabolism. Cardiovasc. Drugs Ther., 1992, 6(2), 103-110.
[http://dx.doi.org/10.1007/BF00054556]
[50]
Hatano, T.; Kusuda, M.; Hori, M.; Shiota, S.; Tsuchiya, T.; Yoshida, T. Theasinensin A, a tea polyphenol formed from (-)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant Staphylococcus aureus. Planta Med., 2003, 69(11), 984-989.
[http://dx.doi.org/10.1055/s-2003-45142]
[51]
Elokely, K.M.; Doerksen, R.J. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model., 2013, 53(8), 1934-1945.
[http://dx.doi.org/10.1021/ci400040d]
[52]
Cabaleiro-Lago, E.M.; Avda Alfonso El Sabio, L.X. On the Nature of σ-σ, σ-π, and π-π stacking in extended systems. ACS Omega, 2018, 3(8), 9348-9359.
[http://dx.doi.org/10.1021/acsomega.8b01339]
[53]
Nayal, M.; Honig, B. On the nature of cavities on protein surfaces: Application to the identification of drug‐binding sites. Proteins, 2006, 63(4), 892-906.
[http://dx.doi.org/10.1002/prot.20897]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy