Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Characterization, Antimicrobial Activity, and Molecular Docking Study of Newer Chalcone-based Triazolo Pyrimidine Compounds

Author(s): Monik Gohil, Siva Prasad Das and Jeena Jyoti Boruah*

Volume 28, Issue 8, 2024

Published on: 29 March, 2024

Page: [636 - 648] Pages: 13

DOI: 10.2174/0113852728298472240305110906

Price: $65

conference banner
Abstract

In this work, we present the synthesis of a newer series of 15 chalcone-based pyrimidine compounds 4a-o. All the compounds were characterized by elemental analysis, melting point determination, mass, FTIR, and NMR analysis. We have evaluated the antimicrobial activity of these compounds. The compounds showed good inhibition activity towards different bacterial and fungal species such as S. aureus, S. pneumonia, E. coli, P. aeruginosa, Candida albicans, Aspergillus niger, and Alternaria alternata. Compounds 4c, 4h, 4k, and 4g showed comparable activities to those of commercially available drugs. Molecular docking study showed good interaction between each of the compounds and DNA gyrase enzyme. The docking score of the compounds ranges between -8.0 to -8.9 kcal/mol. Further, the ADMET analysis indicated the potential of the compounds as a drug candidate.

Graphical Abstract

[1]
Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications; Wiley, 2003.
[http://dx.doi.org/10.1002/352760183X]
[2]
El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg. Chem., 2019, 89, 102976-102989.
[http://dx.doi.org/10.1016/j.bioorg.2019.102976] [PMID: 31103494]
[3]
Raj, V.K.K.; Naryana, B.; Ashalatha, B.V.; Kumari, N.S. New thiazoles containing pyrazolopyrimidine moiety as possible analgesic agents. J. Pharmacol. Toxicol., 2006, 6, 559-565.
[4]
Farooq, S.; Ngaini, Z. ONE‐POT and TWO‐POT methods for chalcone derived pyrimidines synthesis and applications. J. Heterocycl. Chem., 2021, 58(6), 1209-1224.
[http://dx.doi.org/10.1002/jhet.4226]
[5]
Nasr, M.N.; Gineinah, M.M. Pyrido[2, 3-d]pyrimidines and pyrimido[5′,4′:5, 6]pyrido[2, 3-d]pyrimidines as new antiviral agents: Synthesis and biological activity. Arch. Pharm., 2002, 335(6), 289-295.
[http://dx.doi.org/10.1002/1521-4184(200208)335:6<289:AID-ARDP289>3.0.CO;2-Z] [PMID: 12210772]
[6]
Jung, J.C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical synthesis of chalcone derivatives and their biological activities. Molecules, 2017, 22(11), 1872.
[http://dx.doi.org/10.3390/molecules22111872] [PMID: 29104222]
[7]
Mamand, S.O.; Abdul, D.A.; Ayoob, M.M.; Hussein, A.J.; Samad, M.K.; Hawaiz, F.E. Traditional, one-pot three-component synthesis and anti-bacterial evaluations of some new pyrimidine derivatives. Inorg. Chem. Commun., 2024, 160, 111875.
[http://dx.doi.org/10.1016/j.inoche.2023.111875]
[8]
Milović, E.; Janković, N.; Vraneš, M.; Stefanović, S.; Petronijević, J.; Joksimović, N.; Muškinja, J.; Ratković, Z. Green one-pot synthesis of pyrido-dipyrimidine DNA-base hybrids in water. Environ. Chem. Lett., 2021, 19(1), 729-736.
[http://dx.doi.org/10.1007/s10311-020-01076-9]
[9]
Farooq, S.; Ngaini, Z. One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines. Tetrahedron Lett., 2020, 61(4), 151416.
[http://dx.doi.org/10.1016/j.tetlet.2019.151416]
[10]
Achelle, S.; Ple, N. Pyrimidine ring as building block for the synthesis of functionalized?-conjugated materials. Curr. Org. Synth., 2012, 9(2), 163-187.
[http://dx.doi.org/10.2174/157017912799829067]
[11]
Kostova, I.; Atanasov, P.Y. Antioxidant properties of pyrimidine and uracil derivatives. Curr. Org. Chem., 2017, 21(20), 2096-2108.
[http://dx.doi.org/10.2174/1385272820666161025152154]
[12]
Li, M.; Wang, S.; Wen, L.; Zhang, X.; Ke, Z. Synthesis, bioactivities, and X-ray structure analysis of 2-cyano-5-methylpyrazolo[1,5-a]pyrimidine. J. Chem. Crystallogr., 2005, 35(9), 667-671.
[http://dx.doi.org/10.1007/s10870-005-3475-y]
[13]
Aly, A.A. Synthesis and pharmacological activity of annelated pyrimidine derivatives. Chin. J. Chem., 2005, 23(2), 211-217.
[http://dx.doi.org/10.1002/cjoc.200590211]
[14]
Mahfoudh, M.; Abderrahim, R.; Leclerc, E.; Campagne, J.M. Recent approaches to the synthesis of pyrimidine derivatives. Eur. J. Org. Chem., 2017, 2017(20), 2856-2865.
[http://dx.doi.org/10.1002/ejoc.201700008]
[15]
Bukhari, S.N.; Jasamai, M.; Jantan, I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev. Med. Chem., 2012, 12(13), 1394-1403.
[PMID: 22876958]
[16]
Al-Allaf, T.A.K.; Al-Bayati, R.I.H.; Rashan, L.J.; Khuzaie, R.F. Synthesis, characterization and cytotoxic activity of diorganotin (IV) complexes with 4H-pyrido[1,2-a]pyrimidin-4-one derivatives. Appl. Organomet. Chem., 1996, 10(1), 47-51.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199602)10:1<47:AID-AOC476>3.0.CO;2-3]
[17]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Sinha, S.; Chauhan, P.M.S. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2005, 15(23), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.053] [PMID: 16171994]
[18]
Shaabani, A.; Rahmati, A.; Naderi, S. A novel one-pot three-component reaction: Synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems. Bioorg. Med. Chem. Lett., 2005, 15(24), 5553-5557.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.101] [PMID: 16236502]
[19]
Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S.K. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem., 2010, 45(2), 745-751.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.022] [PMID: 20022412]
[20]
Shaabani, A.; Rahmati, A.; Rezayan, A.H.; Darvishi, M.; Badri, Z.; Sarvari, A. Clean synthesis in water: Uncatalyzed three‐component condensation reaction of 3‐amino‐1,2,4‐triazole or 2‐aminobenzimidazole with aldehyde in the presence of activated CH‐acids. QSAR Comb. Sci., 2007, 26(9), 973-979.
[http://dx.doi.org/10.1002/qsar.200620024]
[21]
Mahapatra, D.K.; Shivhare, R.S.; Kumar, P. Murrayanine-chalcone transformed into novel pyrimidine compounds demonstrated promising anti-inflammatory activity. Asian J. Pharm. Res., 2018, 8, 06-10.
[22]
Ho, Y.W.; Yao, W.H. Thioxopyrimidine in heterocyclic synthesis III: Synthesis and properties of some novel heterocyclic chalcone derivatives containing a thieno[2,3-d]pyrimidine-based chromophore. J. Chem., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/649576]
[23]
Amabye, T.G. A new approach for the synthesis of chalcone, acetyl pyrazoline and amino pyrimidine bearing 1,3,5-triazine nucleus as potential antimicrobial and antitubercular agent. Mass Spectrom. Purif. Tech., 2015, 1(2), 1000108.
[http://dx.doi.org/10.4172/2469-9861.1000108]
[24]
Mikhaleva, M.A.; Gulevich, V.V.; Naumenko, I.I.; Mamaev, V.P. Pyrimidines. 69. syntheses based on acetylpyrimidines. dipyrimidinyls and pyrimidine analogs of chalcone. Chem. Heterocycl. Compd., 1979, 15(5), 551-556.
[http://dx.doi.org/10.1007/BF00773226]
[25]
Ibrahim, T.S.; Almalki, A.J.; Moustafa, A.H.; Allam, R.M.; Rahma, A.G.E.D.A.; El Subbagh, H.I.; Mohamed, M.F.A. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study. Bioorg. Chem., 2021, 111, 104885.
[http://dx.doi.org/10.1016/j.bioorg.2021.104885] [PMID: 33838559]
[26]
Glomb, T.; Świątek, P. Antimicrobial activity of 1,3,4-oxadiazole derivatives. Int. J. Mol. Sci., 2021, 22(13), 6979.
[http://dx.doi.org/10.3390/ijms22136979] [PMID: 34209520]
[27]
Abdullah, M.I.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem., 2014, 54, 31-37.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.006] [PMID: 24747187]
[28]
Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem., 2020, 199, 112326.
[http://dx.doi.org/10.1016/j.ejmech.2020.112326] [PMID: 32460040]
[29]
Burmaoglu, S.; Akin Kazancioglu, E.; Kazancioglu, M.Z.; Alagoz, M.A.; Dogen, A.; Algul, O. Synthesis, in vitro biological evaluation, and molecular docking studies of novel biphenyl chalcone derivatives as antimicrobial agents. Polycycl. Aromat. Compd., 2022, 42(9), 5948-5961.
[http://dx.doi.org/10.1080/10406638.2021.1962925]
[30]
Alfonso, E.E.; Deng, Z.; Boaretto, D.; Hood, B.L.; Vasile, S.; Smith, L.H.; Chambers, J.W.; Chapagain, P.; Leng, F. Novel and structurally diversified bacterial DNA gyrase inhibitors discovered through a fluorescence-based high-throughput screening assay. ACS Pharmacol. Transl. Sci., 2022, 5(10), 932-944.
[http://dx.doi.org/10.1021/acsptsci.2c00113] [PMID: 36268121]
[31]
Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother., 2018, 103, 923-938.
[http://dx.doi.org/10.1016/j.biopha.2018.04.021] [PMID: 29710509]
[32]
Jakhar, R.; Khichi, A.; Kumar, D.; Sura, K.; Bhoomika; Dangi, M.; Chhillar, A.K. Development of pharmacophore model to identify potential DNA gyrase inhibitors. J. Biomol. Struct. Dyn., 2023, 41(19), 10125-10135.
[http://dx.doi.org/10.1080/07391102.2022.2153171] [PMID: 36473713]
[33]
Govender, P.; Müller, R.; Singh, K.; Reddy, V.; Eyermann, C.J.; Fienberg, S.; Ghorpade, S.R.; Koekemoer, L.; Myrick, A.; Schnappinger, D.; Engelhart, C.; Meshanni, J.; Byl, J.A.W.; Osheroff, N.; Singh, V.; Chibale, K.; Basarab, G.S. Spiropyrimidinetrione DNA gyrase inhibitors with potent and selective antituberculosis activity. J. Med. Chem., 2022, 65(9), 6903-6925.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00266] [PMID: 35500229]
[34]
Byl, J.A.W.; Mueller, R.; Bax, B.; Basarab, G.S.; Chibale, K.; Osheroff, N. A series of spiropyrimidinetriones that enhances DNA cleavage mediated by Mycobacterium tuberculosis gyrase. ACS Infect. Dis., 2023, 9(3), 706-715.
[http://dx.doi.org/10.1021/acsinfecdis.3c00012] [PMID: 36802491]
[35]
El-Aleam, A.R.H.; George, R.F.; Hassan, G.S.; Rahman, A.H.M.; Rahman, A.H.M. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg. Chem., 2020, 94, 103411.
[http://dx.doi.org/10.1016/j.bioorg.2019.103411] [PMID: 31711767]
[36]
Chen, Q.; Zhu, X.L.; Jiang, L.L.; Liu, Z.M.; Yang, G.F. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur. J. Med. Chem., 2008, 43(3), 595-603.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.021] [PMID: 17618711]
[37]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[38]
Krochmal, K.B.; Wicher, D.R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021, 10(2), 165.
[http://dx.doi.org/10.3390/pathogens10020165] [PMID: 33557078]
[39]
Gupta, M.; Kumar, A. Comparison of minimum inhibitory concentration (MIC) value of statin drugs: A systematic review. Antiinfect. Agents, 2018, 17(1), 4-19.
[http://dx.doi.org/10.2174/2211352516666180629124433]
[40]
Sadgrove, N.J.; Jones, G.L. From petri dish to patient: Bioavailability estimation and mechanism of action for antimicrobial and immunomodulatory natural products. Front. Microbiol., 2019, 10, 2470.
[http://dx.doi.org/10.3389/fmicb.2019.02470] [PMID: 31736910]
[41]
Mongalo, N.I.; Mashele, S.S.; Makhafola, T.J. Ziziphus mucronata Willd. (Rhamnaceae): It’s botany, toxicity, phytochemistry and pharmacological activities. Heliyon, 2020, 6(4), e03708.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03708] [PMID: 32322712]
[42]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(3), 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[43]
Reece, R.J.; Maxwell, A. DNA gyrase: Structure and function. Crit. Rev. Biochem. Mol. Biol., 1991, 26(3-4), 335-375.
[http://dx.doi.org/10.3109/10409239109114072] [PMID: 1657531]
[44]
Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci. Rep., 2017, 7(1), 46277.
[http://dx.doi.org/10.1038/srep46277] [PMID: 28397808]
[45]
Chen, D.; Zhao, M.; Tan, W.; Li, Y.; Li, X.; Li, Y.; Fan, X. Effects of intramolecular hydrogen bonds on lipophilicity. Eur. J. Pharm. Sci., 2019, 130, 100-106.
[http://dx.doi.org/10.1016/j.ejps.2019.01.020] [PMID: 30685238]
[46]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[47]
Release, H. 7.5 for windows, molecular modeling system, Hypercube, Inc. 2002. Available from: http://www.hyper.com
[48]
Allinger, N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., 1977, 99(25), 8127-8134.
[http://dx.doi.org/10.1021/ja00467a001]
[49]
Dewar, M.J.S.; Thiel, W. Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc., 1977, 99(15), 4907-4917.
[http://dx.doi.org/10.1021/ja00457a005]
[50]
Wass, M.N.; Kelley, L.A.; Sternberg, M.J.E. 3DLigandSite: Predicting ligand-binding sites using similar structures. Nucleic Acids Res., 2010, 38(S2), W469-W473.
[http://dx.doi.org/10.1093/nar/gkq406] [PMID: 20513649]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy