Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review on the Development of Polymer Supported Heterogeneous Palladium Materials for Organic Synthesis and Electrochemical Applications

Author(s): Ashlesha P. Kawale, Nishant Shekhar, Arti Srivastava* and Subhash Banerjee*

Volume 28, Issue 9, 2024

Published on: 29 March, 2024

Page: [675 - 685] Pages: 11

DOI: 10.2174/0113852728299173240302041524

Price: $65

Abstract

This comprehensive review explores the advancements in catalytic transformation, focusing on the use of heterogeneous catalytic systems with a particular emphasis on polymeric-supported palladium (Pd) complexes. This study explores the limitations associated with conventional homogeneous reagents, emphasizes the transition to ecofriendly catalytic systems, and emphasizes the importance of Pd nanoparticles. These nanoparticles are particularly noteworthy for their distinctive properties, including elevated catalytic activity, making them promising for various applications in organic synthesis. The review thoroughly examines the design and synthesis of heterogeneous catalysts, emphasizing the crucial selection of safe and recyclable supports to augment the longevity and reusability of metallic catalysts. Diverse polymer varieties, including polystyrene (PS), polyethylene (PE), polyacrylate derivatives, polyethylene glycol (PEG), and grafted polymers, are investigated as viable supports for Pd complexes. The authors intricately describe the synthesis techniques for these polymer- supported Pd catalysts and furnish illustrative examples showcasing their effectiveness in organic transformation. This comprehensive review additionally highlights the synthesis of polymer-supported palladium (Pd) materials and discusses their applications in electrochemistry. The focus extends to the electrocatalytic properties of Pd-based polymeric nanomaterials, showcasing their effectiveness in glucose sensing, hydrogen peroxide detection, and the sensing of other biological analytes. Furthermore, the catalytic capabilities of Pd nanoparticles in various electrochemical applications, including wastewater treatment and electrochemical capacitors, are explored. Integrating polymer-supported Pd materials into these electrochemical processes underscores their versatility and potential contributions to advancements in catalysis and electrochemical sensing. Catalytic applications featuring polymer-supported palladium complexes with polymeric ligands in organic synthesis processes use the Sonogashira reaction, Suzuki-Miyaura coupling, Heck reaction, Catalytic asymmetric transformations, etc. The subsequent section of the paper focuses on the creation of polymeric palladium complexes, achieved by the complexation of polymeric ligands with palladium precursors. It delves into noteworthy examples of catalytic processes employing polymer-supported palladium complexes featuring polymeric ligands, emphasizing distinct polymers, such as PS, PE, polyacrylate derivatives, PEG, and grafting polymers. The review concludes by exploring catalytic asymmetric transformations using chiral palladium complexes immobilized on polymer supports and discusses various chiral ligands and their immobilization on polymer supports, emphasizing their application in asymmetric allylic alkylation. The review furnishes a comprehensive summary of recent advancements, challenges, and prospective avenues in catalytic oxidation facilitated by polymer-supported palladium catalysts with electrochemical applications.

Graphical Abstract

[1]
Sheldon, R.A.; Kochi, J.K. Metal-Catalyzed Oxidation of Organic Compounds, 1st ed; Elsevier, 1981, p. 350.
[http://dx.doi.org/10.1016/B978-0-12-639380-4.50018-X]
[2]
Pocklanova, R.; Rathi, A.K.; Gawande, M.B.; Datta, K.K.R.; Ranc, V.; Cepe, K.; Petr, M.; Varma, R.S.; Kvitek, L.; Zboril, R. Gold nanoparticle-decorated graphene oxide: Synthesis and application in oxidation reactions under benign conditions. J. Mol. Catal. Chem., 2016, 424, 121-127.
[http://dx.doi.org/10.1016/j.molcata.2016.07.047]
[3]
Kani̇, İ.; Kurtça, M. Synthesis, structural characterization, and benzyl alcohol oxidation activity of mononuclear manganese(II) complex with 2,2′-bipyridine: [Mn(bipy)_2(ClO_4)_2]. Turk. J. Chem., 2012, 36, 827-940.
[http://dx.doi.org/10.3906/kim-1110-4]
[4]
Gallezot, P. Selective oxidation with air on metal catalysts. Catal. Today, 1997, 37(4), 405-418.
[http://dx.doi.org/10.1016/S0920-5861(97)00024-2]
[5]
George, K.; Sugunan, S. Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catal. Commun., 2008, 9(13), 2149-2153.
[http://dx.doi.org/10.1016/j.catcom.2008.03.040]
[6]
Gupta, K.C.; Sutar, K.A.; Lin, C.C. Polymer-supported schiff base complexes in oxidation reactions. Coord. Chem. Rev., 2009, 253(13-14), 1926-1946.
[http://dx.doi.org/10.1016/j.ccr.2009.03.019]
[7]
Stahl, S.S. Palladium oxidase catalysis: Selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed., 2004, 43(26), 3400-3420.
[http://dx.doi.org/10.1002/anie.200300630] [PMID: 15221827]
[8]
Muzart, J. Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron, 2003, 59(31), 5789-5816.
[http://dx.doi.org/10.1016/S0040-4020(03)00866-4]
[9]
Gupta, K.C.; Sutar, A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252(12-14), 1420-1450.
[http://dx.doi.org/10.1016/j.ccr.2007.09.005]
[10]
Polshettiwar, V.; Varma, R.S. Pd-N-heterocyclic carbene (NHC) organic silica: Synthesis and application in carbon-carbon coupling reactions. Tetrahedron, 2008, 64(20), 4637-4643.
[http://dx.doi.org/10.1016/j.tet.2008.02.098]
[11]
Rathi, A.K.; Gawande, M.B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R.S.; Zboril, R. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3-Pd): Applications in the Heck-Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chem., 2016, 18(8), 2363-2373.
[http://dx.doi.org/10.1039/C5GC02264A]
[12]
Maham, M.; Nasrollahzadeh, M.; Sajadi, S.M.; Nekoei, M. Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J. Colloid Interface Sci., 2017, 497, 33-42.
[http://dx.doi.org/10.1016/j.jcis.2017.02.064] [PMID: 28260673]
[13]
Xu, C.; Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Luque, R.; Santiago, P.A.R. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renew. Sustain. Energy Rev., 2019, 112, 195-252.
[http://dx.doi.org/10.1016/j.rser.2019.03.062]
[14]
Nasir Baig, R.B.; Leazer, J.; Varma, R.S. Magnetically separable Fe3O4@DOPA-Pd: A heterogeneous catalyst for aqueous Heck reaction. Clean Technol. Environ. Policy, 2015, 17(7), 2073-2077.
[http://dx.doi.org/10.1007/s10098-015-0914-0]
[15]
Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Carbon-coated magnetic palladium: Applications in partial oxidation of alcohols and coupling reactions. Green Chem., 2014, 16(9), 4333.
[http://dx.doi.org/10.1039/C4GC00748D]
[16]
Nasrollahzadeh, M.; Sajjadi, M.; Ghorbannezhad, F.; Sajadi, S.M. A review on recent advances in the application of nanocatalysts in A3 coupling reactions. Chem. Rec., 2018, 18(10), 1409-1473.
[http://dx.doi.org/10.1002/tcr.201700100] [PMID: 29537731]
[17]
Wang, D.; Deraedt, C.; Salmon, L.; Labrugère, C.; Etienne, L.; Ruiz, J.; Astruc, D.; Tris, A. A tris(triazolate) ligand for a highly active and magnetically recoverable palladium catalyst of selective alcohol oxidation using air at atmospheric pressure. Chemistry, 2015, 21(17), 6501-6510.
[http://dx.doi.org/10.1002/chem.201500122] [PMID: 25754469]
[18]
Polshettiwar, V.; Varma, R.S. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem., 2009, 7(1), 37-40.
[http://dx.doi.org/10.1039/B817669H] [PMID: 19081941]
[19]
Sá, S.; Gawande, M.B.; Velhinho, A.; Veiga, J.P.; Bundaleski, N.; Trigueiro, J.; Tolstogouzov, A.; Teodoro, O.M.N.D.; Zboril, R.; Varma, R.S.; Branco, P.S. Magnetically recyclable magnetite-palladium (Nanocat-Fe-Pd) nanocatalyst for the Buchwald-Hartwig reaction. Green Chem., 2014, 16(7), 3494-3500.
[http://dx.doi.org/10.1039/C4GC00558A]
[20]
Nadagouda, M.N.; Polshettiwar, V.; Varma, R.S. Self-assembly of palladium nanoparticles: Synthesis of nanobelts, nanoplates and nanotrees using vitamin B1, and their application in carbon-carbon coupling reactions. J. Mater. Chem., 2009, 19(14), 2026.
[http://dx.doi.org/10.1039/b817112b]
[21]
Verma, S.; Nasir Baig, R.B.; Nadagouda, M.N.; Varma, R.S. Photocatalytic C H activation and oxidative esterification using Pd@g-C3N4. Catal. Today, 2018, 309, 248-252.
[http://dx.doi.org/10.1016/j.cattod.2017.06.009] [PMID: 31595104]
[22]
Maryami, M.; Nasrollahzadeh, M. mehdipour, E.; Sajadi, S.M. Green synthesis of the Pd/perlite nanocomposite using Euphorbia neriifolia L. leaf extract and evaluation of its catalytic activity. Separ. Purif. Tech., 2017, 184, 298-307.
[http://dx.doi.org/10.1016/j.seppur.2017.05.003]
[23]
Khazaei, M.; Khazaei, A.; Nasrollahzadeh, M.; Tahsili, M.R. Highly efficient reusable Pd nanoparticles based on eggshell: Green synthesis, characterization and their application in catalytic reduction of variety of organic dyes and ligand-free oxidative hydroxylation of phenylboronic acid at room temperature. Tetrahedron, 2017, 73(38), 5613-5623.
[http://dx.doi.org/10.1016/j.tet.2017.04.016]
[24]
Omidvar, A.; Jaleh, B.; Nasrollahzadeh, M.; Dasmeh, H.R. Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes. Chem. Eng. Res. Des., 2017, 121, 339-347.
[http://dx.doi.org/10.1016/j.cherd.2017.03.026]
[25]
Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: Catalytic activity for cyanation of aryl iodides under ligand-free conditions. J. Colloid Interface Sci., 2016, 469, 191-195.
[http://dx.doi.org/10.1016/j.jcis.2016.02.024] [PMID: 26890384]
[26]
Naghdi, S.; Sajjadi, M.; Nasrollahzadeh, M.; Rhee, K.Y.; Sajadi, S.M.; Jaleh, B. Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J. Taiwan Inst. Chem. Eng., 2018, 86, 158-173.
[http://dx.doi.org/10.1016/j.jtice.2017.12.017]
[27]
Cheong, S.; Watt, J.D.; Tilley, R.D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale, 2010, 2(10), 2045-2053.
[http://dx.doi.org/10.1039/c0nr00276c] [PMID: 20694209]
[28]
Bej, A.; Ghosh, K.; Sarkar, A.; Knight, D.W. Palladium nanoparticles in the catalysis of coupling reactions. RSC Advances, 2016, 6(14), 11446-11453.
[http://dx.doi.org/10.1039/C5RA26304B]
[29]
Sehnal, P.; Taylor, R.J.K.; Fairlamb, I.J.S. Emergence of palladium(IV) chemistry in synthesis and catalysis. Chem. Rev., 2010, 110(2), 824-889.
[http://dx.doi.org/10.1021/cr9003242] [PMID: 20143876]
[30]
Selander, N.; Szabó, K.J. Catalysis by palladium pincer complexes. Chem. Rev., 2011, 111(3), 2048-2076.
[http://dx.doi.org/10.1021/cr1002112] [PMID: 21087012]
[31]
Biffis, A.; Centomo, P.; Zotto, D.A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev., 2018, 118(4), 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443] [PMID: 29460627]
[32]
Mironenko, R.M.; Belskaya, O.B.; Likholobov, V.A. Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions. Catal. Today, 2020, 357, 152-165.
[http://dx.doi.org/10.1016/j.cattod.2019.03.023]
[33]
Liu, X.; Astruc, D. Development of the applications of palladium on charcoal in organic synthesis. Adv. Synth. Catal., 2018, 360(18), 3426-3459.
[http://dx.doi.org/10.1002/adsc.201800343]
[34]
Liu, T.Z.; Lee, S.D.; Bhatnagar, R.S. Toxicity of palladium. Toxicol. Lett., 1979, 4(6), 469-473.
[http://dx.doi.org/10.1016/0378-4274(79)90113-9]
[35]
Emsley, J. Nature’s Building Blocks: An A-Z Guide to the Elements; Oxford University Press, 2011, pp. 384-387.
[36]
Hosseini, M.J.; Jafarian, I.; Farahani, S.; Khodadadi, R.; Tagavi, S.H.; Naserzadeh, P.; Bardbori, M.A.; Arghavanifard, N. New mechanistic approach of inorganic palladium toxicity: Impairment in mitochondrial electron transfer. Metallomics, 2016, 8(2), 252-259.
[http://dx.doi.org/10.1039/C5MT00249D] [PMID: 26739318]
[37]
Kim, J.H.; Kim, J.W.; Shokouhimehr, M.; Lee, Y.S. Polymer-supported N-heterocyclic carbene-palladium complex for heterogeneous Suzuki cross-coupling reaction. J. Org. Chem., 2005, 70(17), 6714-6720.
[http://dx.doi.org/10.1021/jo050721m] [PMID: 16095291]
[38]
Shokouhimehr, M.; Hong, K.; Lee, T.H.; Moon, C.W.; Hong, S.P.; Zhang, K.; Suh, J.M.; Choi, K.S.; Varma, R.S.; Jang, H.W. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: Efficient reduction of nitroaromatics in aqueous media. Green Chem., 2018, 20(16), 3809-3817.
[http://dx.doi.org/10.1039/C8GC01240G]
[39]
Schweizer, S.; Becht, J.M.; Le Drian, C. Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction. Tetrahedron, 2010, 66(3), 765-772.
[http://dx.doi.org/10.1016/j.tet.2009.11.050]
[40]
Patel, S.A.; Patel, K.N.; Sinha, S.; Kamath, B.V.; Bedekar, A.V. Preparation of polymer anchored Pd-catalysts: Application in mizoroki-heck reaction. J. Mol. Catal. Chem., 2010, 332(1-2), 70-75.
[http://dx.doi.org/10.1016/j.molcata.2010.08.023]
[41]
Albuquerque, B.L.; Denicourt-Nowicki, A.; Mériadec, C.; Domingos, J.B.; Roucoux, A. Water soluble polymer-surfactant complexes-stabilized Pd(0) nanocatalysts: Characterization and structure-activity relationships in biphasic hydrogenation of alkenes and α,β-unsaturated ketones. J. Catal., 2016, 340, 144-153.
[http://dx.doi.org/10.1016/j.jcat.2016.05.015]
[42]
Chen, X.; Wang, W.; Zhu, H.; Yang, W.; Ding, Y. Pd0-PyPPh2 @porous organic polymer: Efficient heterogeneous nanoparticle catalyst for dehydrogenation of 3-methyl-2-cyclohexen-1-one without extra oxidants and hydrogen acceptors. Mol. Catal., 2018, 456(456), 49-56.
[http://dx.doi.org/10.1016/j.mcat.2018.07.007]
[43]
Heck, R.F. Palladium reagents in organic synthesis; Academic London, 1985.
[44]
Tsuji, J. Palladium reagents and catalysts; Wiley: Chichester, 1995.
[45]
Negishi, E-I. Organopalladium chemistry for organic synthesis; Wiley-InterScience: New York, 2002.
[46]
Shuttleworth, S.J. Allin; Sharma, P.K. Functionalised polymers: Recent developments and new applications in synthetic organic chemistry. Synthesis, 1997, 1997(11), 1217-1239.
[http://dx.doi.org/10.1055/s-1997-1358]
[47]
Shuttleworth, S.J.; Allin, S.M.; Wilson, R.D.; Nasturica, D. Functionalised polymers in organic chemistry; Part 2. Synthesis, 2000, 2000(8), 1035-1074.
[http://dx.doi.org/10.1055/s-2000-6310]
[48]
Bailey, D.C.; Langer, S.H. Immobilized transition-metal carbonyls and related catalysts. Chem. Rev., 1981, 81(2), 109-148.
[http://dx.doi.org/10.1021/cr00042a001]
[49]
Dorwald, F.Z. Organic Synthesis on Solid Phase; Wiley-VCH: Weinheim, 2000.
[50]
Buchmeiser, M.R. Ed Polymeric Materials in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, 2003.
[http://dx.doi.org/10.1002/3527601856]
[51]
Ley, S.V.; Baxendale, I.R.; Bream, R.N.; Jackson, P.S.; Leach, A.G.; Longbottom, D.A.; Taylor, S.J. Multi-step organic synthesis using solid-supported reagents and scavengers: A new paradigm in chemical library generation. J. Chem. Soc. Perkin Trans., 2000, 2000(23), 3815-4195.
[http://dx.doi.org/10.1039/b006588i]
[52]
Bunin, B.A. Eds The Combinatorial Index; Academic: San Diego, 1998.
[53]
Nicolaou, K.C.; Hanko, R.; Hartwig, W. Eds Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials; Wiley‐VCH Verlag GmbH, 2002.
[http://dx.doi.org/10.1002/3527603034]
[54]
McNamara, C.A.; Dixon, M.J.; Bradley, M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev., 2002, 102(10), 3275-3300.
[http://dx.doi.org/10.1021/cr0103571] [PMID: 12371885]
[55]
Farrall, M.J.; Frechet, J.M.J. Bromination and lithiation: Two important steps in the functionalization of polystyrene resins. J. Org. Chem., 1976, 41(24), 3877-3882.
[http://dx.doi.org/10.1021/jo00886a023]
[56]
Pittman, C. 1,3-Butadiene oligomerization catalyzed by polymer-attached palladium complexes. Comparison with homogeneous catalysis. J. Catal., 1976, 44(1), 87-100.
[http://dx.doi.org/10.1016/0021-9517(76)90378-X]
[57]
Trost, B.M.; Keinan, E. Steric steering with supported palladium catalysts. J. Am. Chem. Soc., 1978, 100(24), 7779-7781.
[http://dx.doi.org/10.1021/ja00492a084]
[58]
Bayer, E.; Schurig, V. Soluble metal complexes of polymers for catalysis. Angew. Chem. Int. Ed. Engl., 1975, 14(7), 493-494.
[http://dx.doi.org/10.1002/anie.197504932]
[59]
Bayer, E.; Schumann, W. Liquid phase polymer-based catalysis for stereo- and regio-selective hydrogenation. J. Chem. Soc. Chem. Commun., 1986, (12), 949.
[http://dx.doi.org/10.1039/c39860000949]
[60]
Kaneda, K.; Terasawa, M.; Imanaka, T.; Teranishi, S. Highly active polymer-supported pd complex. A new synthetic method and its use in selective hydrogenation of olefins and acetylenes. Chem. Lett., 1975, 4(10), 1005-1008.
[http://dx.doi.org/10.1246/cl.1975.1005]
[61]
Terasawa, M.; Kaneda, K.; Imanaka, T.; Teranishi, S. A coordinatively unsaturated, polymer-bound palladium(0) complex. Synthesis and catalytic activities. J. Organomet. Chem., 1978, 162(3), 403-414.
[http://dx.doi.org/10.1016/S0022-328X(00)81408-4]
[62]
Kaneda, K.; Kurosaki, H.; Terasawa, M.; Imanaka, T.; Teranishi, S. Selective telomerization of butadiene with various nucleophiles catalyzed by polymer-bound palladium(0) complexes. J. Org. Chem., 1981, 46(11), 2356-2362.
[http://dx.doi.org/10.1021/jo00324a029]
[63]
Bergbreiter, D.E.; Blanton, J.R. Functionalized ethylene oligomers as phase-transfer catalysts. J. Org. Chem., 1985, 50(26), 5828-5833.
[http://dx.doi.org/10.1021/jo00350a076]
[64]
Bergbreiter, D.E.; Chandran, R. Use of functionalized ethylene oligomers to prepare recoverable, recyclable nickel(0) diene cyclooligomerization catalysts. J. Org. Chem., 1986, 51(25), 4754-4760.
[http://dx.doi.org/10.1021/jo00375a002]
[65]
Bergbreiter, D.E.; Chandran, R. Polyethylene-bound rhodium(I) hydrogenation catalysts. J. Am. Chem. Soc., 1987, 109(1), 174-179.
[http://dx.doi.org/10.1021/ja00235a027]
[66]
Bergbreiter, D.E.; Weatherford, D.A. Polyethylene-bound soluble recoverable palladium(0) catalysts. J. Org. Chem., 1989, 54(11), 2726-2730.
[http://dx.doi.org/10.1021/jo00272a050]
[67]
Colacot, T.J.; Gore, E.S.; Kuber, A. High-throughput screening studies of fiber-supported catalysts leading to room-temperature Suzuki coupling. Organometallics, 2002, 21(16), 3301-3304.
[http://dx.doi.org/10.1021/om020352+]
[68]
Bergbreiter, D.E. Using soluble polymers to recover catalysts and ligands. Chem. Rev., 2002, 102(10), 3345-3384.
[http://dx.doi.org/10.1021/cr010343v] [PMID: 12371888]
[69]
Bergbreiter, D.E.; Liu, Y.S. Water-soluble polymer-bound, recoverable palladium(0)-phosphine catalysts. Tetrahedron Lett., 1997, 38(45), 7843-7846.
[http://dx.doi.org/10.1016/S0040-4039(97)10130-7]
[70]
Bergbreiter, D.E.; Osburn, P.L.; Wilson, A.; Sink, E.M. Palladium-catalyzed C−C coupling under thermomorphic conditions. J. Am. Chem. Soc., 2000, 122(38), 9058-9064.
[http://dx.doi.org/10.1021/ja001708g]
[71]
Gravert, D.J.; Janda, K.D. Organic synthesis on soluble polymer supports: Liquid-phase methodologies. Chem. Rev., 1997, 97(2), 489-510.
[http://dx.doi.org/10.1021/cr960064l] [PMID: 11848880]
[72]
Delgado, M.; Janda, K. Polymeric supports for solid phase organic synthesis. Curr. Org. Chem., 2002, 6(12), 1031-1043.
[http://dx.doi.org/10.2174/1385272023373671]
[73]
Vaino, A.R.; Janda, K.D. Solid-phase organic synthesis: A critical understanding of the resin. J. Comb. Chem., 2000, 2(6), 579-596.
[http://dx.doi.org/10.1021/cc000046o] [PMID: 11126287]
[74]
Toy, P.H.; Janda, K.D. Soluble polymer-supported organic synthesis. Acc. Chem. Res., 2000, 33(8), 546-554.
[http://dx.doi.org/10.1021/ar990140h] [PMID: 10955985]
[75]
Jr, P.W.; Janda, K.D. Liquid-phase chemistry: recent advances in soluble polymer-supported catalysts, reagents and synthesis. Chem. Commun., 1999, (19), 1917-1924.
[http://dx.doi.org/10.1039/a901955c]
[76]
Dickerson, T.J.; Reed, N.N.; Janda, K.D. Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem. Rev., 2002, 102(10), 3325-3344.
[http://dx.doi.org/10.1021/cr010335e] [PMID: 12371887]
[77]
Bergbreiter, D.E.; Osburn, P.L.; Liu, Y.S.; Tridentate, S.C.S. Tridentate SCS palladium(II) complexes: New, highly stable, recyclable catalysts for the heck reaction. J. Am. Chem. Soc., 1999, 121(41), 9531-9538.
[http://dx.doi.org/10.1021/ja991099g]
[78]
Albrecht, M.A.; van Koten, G. Platinum group organometallics based on “Pincer” complexes: Sensors, switches, and catalysts. Angew. Chem. Int. Ed., 2001, 40(20), 3750-3781.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3750:AID-ANIE3750>3.0.CO;2-6]
[79]
van der Boom, M.E.; Milstein, D. Cyclometalated phosphine-based pincer complexes: Mechanistic insight in catalysis, coordination, and bond activation. Chem. Rev., 2003, 103(5), 1759-1792.
[http://dx.doi.org/10.1021/cr960118r] [PMID: 12744693]
[80]
Jr, P.W.; Vandersteen, A.M.; Janda, K.D. Poly(ethylene glycol) (PEG) as a reagent support: The preparation and utility of a PEG-triarylphosphine conjugate in liquid-phase organic synthesis (LPOS). Chem. Commun., 1997, (8), 759-760.
[http://dx.doi.org/10.1039/a608388i]
[81]
Köllhofer, A.; Plenio, H. Homogeneous catalysts supported on soluble polymers: Biphasic Sonogashira coupling of aryl halides and acetylenes using MeOPEG-bound phosphine-palladium catalysts for efficient catalyst recycling. Chemistry, 2003, 9(6), 1416-1425.
[http://dx.doi.org/10.1002/chem.200390161] [PMID: 12645031]
[82]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[83]
Du, X.; Armstrong, R.W. Synthesis of benzofuran derivatives on solid support via SmI2-mediated radical cyclization. J. Org. Chem., 1997, 62(17), 5678-5679.
[http://dx.doi.org/10.1021/jo970913k]
[84]
Gooding, O.W.; Baudert, S.; Deegan, T.L.; Heisler, K.; Labadie, J.; Newcomb, W. On the development of new poly(styrene-oxyethylene) graft copolymer resin supports for solid-phase organic synthesis. J. Comb. Chem., 1998, 1998(1), 113-122.
[85]
Uozumi, Y. Recent progress in polymeric palladium catalysts for organic synthesis. Top. Curr. Chem., 2004, 242, 77-112.
[http://dx.doi.org/10.1007/b96874] [PMID: 23900911]
[86]
Uozumi, Y.; Danjo, H.; Hayashi, T. New amphiphilic palladium-phosphine complexes bound to solid supports: Preparation and use for catalytic allylic substitution in aqueous media. Tetrahedron Lett., 1997, 38(20), 3557-3560.
[http://dx.doi.org/10.1016/S0040-4039(97)00702-8]
[87]
Danjo, H.; Tanaka, D.; Hayashi, T.; Uozumi, Y. Allylic substitution in water catalyzed by amphiphilic resin-supported palladium-phosphine complexes. Tetrahedron, 1999, 55(50), 14341-14352.
[http://dx.doi.org/10.1016/S0040-4020(99)00883-2]
[88]
Uozumi, Y.; Watanabe, T. Green catalysis: Hydroxycarbonylation of aryl halides in water catalyzed by an amphiphilic resin-supported phosphine-palladium complex. ChemInform, 2010, 31(2)
[http://dx.doi.org/10.1002/chin.200002081]
[89]
Uozumi, Y.; Kimura, T. Heck reaction in water with amphiphilic resin-supported palladium-phosphine complexes. Synlett, 2002, (12), 2045-2048.
[http://dx.doi.org/10.1055/s-2002-35605]
[90]
Uozumi, Y.; Danjo, H.; Hayashi, T. Cross-coupling of aryl halides and allyl acetates with arylboron reagents in water using an amphiphilic resin-supported palladium catalyst. J. Org. Chem., 1999, 64(9), 3384-3388.
[http://dx.doi.org/10.1021/jo982438b] [PMID: 11674453]
[91]
Uozumi, Y.; Nakai, Y. An amphiphilic resin-supported palladium catalyst for high-throughput cross-coupling in water. Org. Lett., 2002, 4(17), 2997-3000.
[http://dx.doi.org/10.1021/ol0264298] [PMID: 12182608]
[92]
Judkins, C.M.G.; Knights, K.A.; Johnson, B.F.G.; Miguel, Y.R.; Raja, R.; Thomas, J.M. Immobilisation of ruthenium cluster catalysts via novel derivatisations of ArgoGel resins. Chem. Commun., 2001, (24), 2624-2625.
[http://dx.doi.org/10.1039/b106336g]
[93]
Reetz, M.T.; Lohmer, G.; Schwickardi, R. Systhesis and catalytic activity of dendritic diphosphane metal complexes. Angew. Chem. Int. Ed. Engl., 1997, 36(13-14), 1526-1529.
[http://dx.doi.org/10.1002/anie.199715261]
[94]
Mizugaki, T.; Murata, M.; Ooe, M.; Ebitani, K.; Kaneda, K. Novel catalysis of dendrimer-bound Pd(0) complexes: Sterically steered allylic amination and the first application for a thermomorphic system. Chem. Commun., 2002, (1), 52-53.
[http://dx.doi.org/10.1039/b107452k] [PMID: 12120306]
[95]
Riegel, N.; Darcel, C.; Stéphan, O.; Jugé, S. Mono and diphosphine borane complexes grafted on polypyrrole matrix: Direct use as supported ligands for Rh and Pd catalysis. J. Organomet. Chem., 1998, 567(1-2), 219-233.
[http://dx.doi.org/10.1016/S0022-328X(98)00684-6]
[96]
Trnka, T.M.; Day, M.W.; Grubbs, R.H. Novel η3-vinylcarbene complexes derived from ruthenium-based olefin metathesis catalysts. Organometallics, 2001, 20(18), 3845-3847.
[http://dx.doi.org/10.1021/om010314a]
[97]
Bielawski, C.W.; Grubbs, R.H. Highly efficient ring-opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N-heterocyclic carbene ligands. Angew. Chem. Int. Ed., 2000, 39(16), 2903-2906.
[http://dx.doi.org/10.1002/1521-3773(20000818)39:16<2903:AID-ANIE2903>3.0.CO;2-Q] [PMID: 11028004]
[98]
Schrock, R.R. Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc. Chem. Res., 1990, 23(5), 158-165.
[http://dx.doi.org/10.1021/ar00173a007]
[99]
Barrett, A.G.M.; Hopkins, B.T.; Köbberling, J. ROMPgel reagents in parallel synthesis. Chem. Rev., 2002, 102(10), 3301-3324.
[http://dx.doi.org/10.1021/cr0103423] [PMID: 12371886]
[100]
Buchmeiser, M.R.; Wurst, K. Access to well-defined heterogeneous catalytic systems via ring-opening metathesis polymerization (ROMP): Applications in palladium(II)-mediated coupling reactions. J. Am. Chem. Soc., 1999, 121(48), 11101-11107.
[http://dx.doi.org/10.1021/ja991501r]
[101]
Alper, H.; Arya, P.; Bourque, S.C.; Jefferson, G.R.; Manzer, L.E. Heck reaction using palladium complexed to dendrimers on silica. Can. J. Chem., 2000, 78(6), 920-924.
[http://dx.doi.org/10.1139/v00-018]
[102]
Arya, P.; Panda, G.; Rao, N.V.; Alper, H.; Bourque, S.C.; Manzer, L.E. Solid-phase catalysis: A biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. J. Am. Chem. Soc., 2001, 123(12), 2889-2890.
[http://dx.doi.org/10.1021/ja003854s] [PMID: 11456979]
[103]
Eggeling, E.B.; Hovestad, N.J.; Jastrzebski, J.T.B.H.; Vogt, D.; van Koten, G. Phosphino carboxylic acid ester functionalized carbosilane dendrimers: Nanoscale ligands for the Pd-catalyzed hydrovinylation reaction in a membrane reactor. J. Org. Chem., 2000, 65(26), 8857-8865.
[http://dx.doi.org/10.1021/jo000433k] [PMID: 11149826]
[104]
Dahan, A.; Portnoy, M. Synthesis of poly(aryl benzyl ether) dendrimers on solid support. Macromolecules, 2003, 36(4), 1034-1038.
[http://dx.doi.org/10.1021/ma020901n]
[105]
Dahan, A.; Portnoy, M. Remarkable dendritic effect in the polymer-supported catalysis of the Heck arylation of olefins. Org. Lett., 2003, 5(8), 1197-1200.
[http://dx.doi.org/10.1021/ol0340181] [PMID: 12688718]
[106]
Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer, 1999.
[107]
Ojima, I. Catalytic Asymmetric Synthesis; Wiley-VCH, 2000.
[108]
De Vos, D.E.; Vankelecom, I.F.J.; Jacobs, P.A. Chiral Catalyst Immobilization and Recycling; WILEY‐VCH Verlag GmbH, 2000.
[http://dx.doi.org/10.1002/9783527613144]
[109]
Gamez, P.; Dunjic, B.; Fache, F.; Lemaire, M. Homogeneous and heterogeneous Pd-catalyzed enantioselective alkylation with C2-symmetric chiral nitrogen ligands. Tetrahedron Asymmetry, 1995, 6(5), 1109-1116.
[http://dx.doi.org/10.1016/0957-4166(95)00136-D]
[110]
Uozumi, Y.; Danjo, H.; Hayashi, T. Palladium-catalyzed asymmetric allylic substitution in aqueous media using amphiphilic resin-supported MOP ligands. Tetrahedron Lett., 1998, 39(45), 8303-8306.
[http://dx.doi.org/10.1016/S0040-4039(98)01812-7]
[111]
Hallman, K.; Macedo, E.; Nordström, K.; Moberg, C. Enantioselective allylic alkylation using polymer-supported palladium catalysts. Tetrahedron Asymmetry, 1999, 10(20), 4037-4046.
[http://dx.doi.org/10.1016/S0957-4166(99)00416-4]
[112]
Hallman, K.; Moberg, C. Polymer-bound bis(oxazoline) as a chiral catalyst. Tetrahedron Asymmetry, 2001, 12(10), 1475-1478.
[http://dx.doi.org/10.1016/S0957-4166(01)00245-2]
[113]
Glos, M.; Reiser, O. Aza-bis(oxazolines): New chiral ligands for asymmetric catalysis. Org. Lett., 2000, 2(14), 2045-2048.
[http://dx.doi.org/10.1021/ol005947k] [PMID: 10891226]
[114]
Song, C.E.; Yang, J.W.; Roh, E.J.; Lee, S.; Ahn, J.H.; Han, H. Heterogeneous Pd-catalyzed asymmetric allylic substitution using resin-supported trost-type bisphosphane ligands. Angew. Chem. Int. Ed., 2002, 41(20), 3852-3854.
[http://dx.doi.org/10.1002/1521-3773(20021018)41:20<3852:AID-ANIE3852>3.0.CO;2-I] [PMID: 12386868]
[115]
Trost, B.M.; Pan, Z.; Zambrano, J.; Kujat, C. Polymer-supported C2-symmetric ligands for palladium-catalyzed asymmetric allylic alkylation reactions. Angew. Chem. Int. Ed., 2002, 41(24), 4691-4693.
[http://dx.doi.org/10.1002/anie.200290018] [PMID: 12481328]
[116]
Trost, B.M.; Crawley, M.L. Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis. Chem. Rev., 2003, 103(8), 2921-2944.
[http://dx.doi.org/10.1021/cr020027w] [PMID: 12914486]
[117]
Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 2011, 6(3), 240-264.
[http://dx.doi.org/10.1016/j.nantod.2011.04.007]
[118]
Lee, C.H.; Wang, S.C.; Yuan, C.J.; Wen, M.F.; Chang, K.S. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes. Biosens. Bioelectron., 2007, 22(6), 877-884.
[http://dx.doi.org/10.1016/j.bios.2006.03.008] [PMID: 16644200]
[119]
Meng, L.; Jin, J.; Yang, G.; Lu, T.; Zhang, H.; Cai, C. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem., 2009, 81(17), 7271-7280.
[http://dx.doi.org/10.1021/ac901005p] [PMID: 19715358]
[120]
Chen, X.; Wu, G.; Cai, Z.; Oyama, M.; Chen, X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Mikrochim. Acta, 2014, 181(7-8), 689-705.
[http://dx.doi.org/10.1007/s00604-013-1098-0]
[121]
Liu, H.; Chen, X.; Huang, L.; Wang, J.; Pan, H. Palladium nanoparticles embedded into graphene nanosheets: Preparation, characterization, and nonenzymatic electrochemical detection of H2O2. Electroanalysis, 2014, 26(3), 556-564.
[http://dx.doi.org/10.1002/elan.201300428]
[122]
Huang, J.; Wang, D.; Hou, H.; You, T. Electrospun palladium nanoparticle‐loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv. Funct. Mater., 2008, 18(3), 441-448.
[http://dx.doi.org/10.1002/adfm.200700729]
[123]
Wang, J.; Wang, Z.; Zhao, D.; Xu, C. Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta, 2014, 832, 34-43.
[http://dx.doi.org/10.1016/j.aca.2014.04.062] [PMID: 24890692]
[124]
Hosseini, H.; Rezaei, S.J.T.; Rahmani, P.; Sharifi, R.; Nabid, M.R.; Bagheri, A. Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly(3,4-ethylenedioxythiophene) nanofibers. Sens. Actuators B Chem., 2014, 195, 85-91.
[http://dx.doi.org/10.1016/j.snb.2014.01.015]
[125]
Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron., 2008, 24(4), 632-637.
[http://dx.doi.org/10.1016/j.bios.2008.06.011] [PMID: 18640024]
[126]
Zhang, X.; Cao, Y.; Yu, S.; Yang, F.; Xi, P. An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosens. Bioelectron., 2013, 44, 183-190.
[http://dx.doi.org/10.1016/j.bios.2013.01.020] [PMID: 23428731]
[127]
Reddaiah, K.; Reddy, T.M.; Mallikarjuna, K.; Narasimha, G. Electrochemical detection of dopamine at poly(solochrome cyanine)/Pd nanoparticles doped modified carbon paste electrode and simultaneous resolution in the presence of ascorbic acid and uric acid: A voltammetric method. Anal. Methods, 2013, 5(20), 5627.
[http://dx.doi.org/10.1039/c3ay41039k]
[128]
Ye, J.S.; Chen, C.W.; Lee, C.L. Pd nanocube as non-enzymatic glucose sensor. Sens. Actuators B Chem., 2015, 208, 569-574.
[http://dx.doi.org/10.1016/j.snb.2014.11.091]
[129]
Kour, G.; Kaur, A.; Kaur, H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. In: Polymer-Plastics Technology and Materials; Taylor & Francis: Routledge, 2020; pp. 1-8.
[http://dx.doi.org/10.1080/25740881.2020.1844233]
[130]
Güney, S.; Arslan, T.; Yanık, S.; Güney, O. An electrochemical sensing platform based on graphene oxide and molecularly imprinted polymer modified electrode for selective detection of amoxicillin. Electroanalysis, 2021, 33(1), 46-56.
[http://dx.doi.org/10.1002/elan.202060129]
[131]
Shi, Q.; Diao, G. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes. Electrochim. Acta, 2011, 58, 399-405.
[http://dx.doi.org/10.1016/j.electacta.2011.09.064]
[132]
Qiu, C.; Dong, X.; Huang, M.; Wang, S.; Ma, H. Facile fabrication of nanostructured Pd-Fe bimetallic thin films and their electrodechlorination activity. J. Mol. Catal. Chem., 2011, 350(1-2), 56-63.
[http://dx.doi.org/10.1016/j.molcata.2011.09.004]
[133]
El-Sheikh, S.M.; Ismail, A.A.; Al-Sharab, J.F. Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J. Chem., 2013, 37(8), 2399.
[http://dx.doi.org/10.1039/c3nj00138e]
[134]
Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B, 2015, 162, 372-380.
[http://dx.doi.org/10.1016/j.apcatb.2014.07.009]
[135]
Premkumar, T.; Geckeler, K.E. Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol. Mater. Chem. Phys., 2014, 148(3), 772-777.
[http://dx.doi.org/10.1016/j.matchemphys.2014.08.047]
[136]
Xue, Y.; Lu, X.; Bian, X.; Lei, J.; Wang, C. Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. J. Colloid Interface Sci., 2012, 379(1), 89-93.
[http://dx.doi.org/10.1016/j.jcis.2012.04.036] [PMID: 22609190]
[137]
Li, H.; Han, L.; White, C.J.; Kim, I. Palladium nanoparticles decorated carbon nanotubes: Facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol. Green Chem., 2012, 14(3), 586.
[http://dx.doi.org/10.1039/c2gc16359d]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy