Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Analysis of the Relationship between Recent Small Subcortical Infarcts and Autonomic Nervous Dysfunction

Author(s): Wenxin Yuan, Lu An, Yunchao Wang, Ce Zong, Yinghao Yang, Hua Jin, Yuan Gao, Limei Wang, Yusheng Li, Yuming Xu* and Yan Ji*

Volume 21, Issue 2, 2024

Published on: 29 March, 2024

Page: [166 - 176] Pages: 11

DOI: 10.2174/0115672026303708240321035356

Price: $65

Abstract

Objective: Autonomic Nervous System (ANS) dysfunction may be involved in the pathogenesis of Cerebral Small Vessel Disease (CSVD). The study aimed to explore the relationship between Recent Small Subcortical Infarct (RSSI) and Blood Pressure Variability (BPV), and Heart Rate Variability (HRV).

Methods: A total of 588 patients from the CSVD registration research database of Henan Province were included in this study, and were divided into two groups according to the presence of RSSI. Clinical data, including demographic characteristics, disease history, laboratory indexes, 24-hour ambulatory blood pressure and electrocardiogram indicators, and imaging markers of CSVD, were collected. Univariate and binary logistic regression analyses were used to study the relationship between RSSI and indicators of laboratory, HRV and BPV in the CSVD population.

Results: Multivariate analysis showed that higher 24-hour mean Diastolic Blood Pressure (DBP)[Odds Ratios (OR)=1.083,95% Confidence Intervals (CI)=(1.038,1.129), p < 0.001], Standard Deviation (SD) of 24-hour DBP [OR=1.059,95%CI=(1.000,1.121), p = 0.049], nocturnal mean Systolic Blood Pressure (SBP) [OR=1.020,95%CI=(1.004,1.035), p = 0.012], nocturnal mean DBP [OR=1.025,95%CI=(1.009,1.040), p = 0.002] were independent risk factors for RSSI. In contrast, the decrease of the standard deviation of N–N intervals (SDNN) [OR=0.994,95%CI=(0.989,1.000), p = 0.035] was beneficial to the occurrence of RSSI. In addition, neutrophil counts [OR=1.138,95%CI=(1.030,1.258), p = 0.011], total cholesterol (TC) [OR=1.203,95%CI=(1.008,1.437), p = 0.041] and High-Density Lipoprotein (HDL) [OR=0.391, 95%CI=(0.195,0.786), p = 0.008] were also independently associated with the occurrence of RSSI. After adjusting for confounding factors, except for TC, the other factors remained associated with the occurrence of RSSI.

Conclusion: Increased 24-hour mean DBP, nocturnal mean SBP and DBP, SD of 24-hour DBP and decreased SDNN were independently correlated with RSSI occurrence, suggesting that sympathetic overactivity plays a role in the pathogenesis of RSSI.

[1]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[2]
Wu S, Wu B, Liu M, et al. Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol 2019; 18(4): 394-405.
[http://dx.doi.org/10.1016/S1474-4422(18)30500-3] [PMID: 30878104]
[3]
Gattringer T, Eppinger S, Pinter D, et al. Morphological MRI characteristics of recent small subcortical infarcts. Int J Stroke 2015; 10(7): 1037-43.
[http://dx.doi.org/10.1111/ijs.12499] [PMID: 25864877]
[4]
Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease. Neurology 2019; 92(24): 1146-56.
[http://dx.doi.org/10.1212/WNL.0000000000007654] [PMID: 31142635]
[5]
Abboud FM. The sympathetic nervous system in hypertension. Clin Exp Hypertens A 1984; 6(1-2): 43-60.
[http://dx.doi.org/10.3109/10641968409062550] [PMID: 6697560]
[6]
Rupprecht S, Finn S, Hoyer D, et al. Association between systemic inflammation, carotid arteriosclerosis, and autonomic dysfunction. Transl Stroke Res 2020; 11(1): 50-9.
[http://dx.doi.org/10.1007/s12975-019-00706-x] [PMID: 31093927]
[7]
Acampa M, Lazzerini PE, Martini G. Atrial cardiopathy and sympatho-vagal imbalance in cryptogenic stroke: Pathogenic mechanisms and effects on electrocardiographic markers. Front Neurol 2018; 9: 469.
[http://dx.doi.org/10.3389/fneur.2018.00469]
[8]
Wu JK, Huang Z, Zhang Z, Xiao W, Jiang H. Quantitative assessment of autonomic regulation of the cardiac system. J Healthc Eng 2019; 2019: 4501502.
[http://dx.doi.org/10.1155/2019/4501502]
[9]
Sluyter JD, Camargo CA Jr, Lowe A, Scragg RKR. Pulse rate variability predicts atrial fibrillation and cerebrovascular events in a large, population-based cohort. Int J Cardiol 2019; 275: 83-8.
[http://dx.doi.org/10.1016/j.ijcard.2018.10.026] [PMID: 30318296]
[10]
Tang S, Xiong L, Fan Y, Mok VCT, Wong KS, Leung TW. Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity. Stroke 2020; 51(4): 1317-20.
[http://dx.doi.org/10.1161/STROKEAHA.119.027981] [PMID: 31964286]
[11]
Chen YK, Ni ZX, Li W, et al. Diurnal blood pressure and heart rate variability in hypertensive patients with cerebral small vessel disease: A case-control study. J Stroke Cerebrovasc Dis 2021; 30(5): 105673.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105673] [PMID: 33631472]
[12]
Yu YP, Zheng YL, Tan L, Jiang TT. BPV associated with imaging features of SSI on MRI. Brain Behav 2021; 11(6): e02155.
[http://dx.doi.org/10.1002/brb3.2155] [PMID: 33960729]
[13]
Chao W. Correlation analysis of heart rate variability with moderate and the risk of recurrent stroke in acute ischemic mini-stroke. Henan University, MA thesis 2022.
[14]
Spallone V. Blood pressure variability and autonomic dysfunction. Curr Diab Rep 2018; 18(12): 137.
[http://dx.doi.org/10.1007/s11892-018-1108-z]
[15]
Zou X, Yu J, Zhang L. Relation between blood pressure variability and lacunar infarction in elderly patients with hypertension. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease 2016; 24(2): 69-71.
[16]
Martiskainen M, Pohjasvaara T, Mikkelsson J, et al. Fibrinogen gene promoter -455 A allele as a risk factor for lacunar stroke. Stroke 2003; 34(4): 886-91.
[http://dx.doi.org/10.1161/01.STR.0000060029.23872.55] [PMID: 12637691]
[17]
Tully PJ, Yano Y, Launer LJ, et al. Association between blood pressure variability and cerebral small-vessel disease: A systematic review and meta-analysis. J Am Heart Assoc 2020; 9(1): e013841.
[http://dx.doi.org/10.1161/JAHA.119.013841] [PMID: 31870233]
[18]
Mena LJ, Felix VG, Melgarejo JD, Maestre GE. 24-hour blood pressure variability assessed by average real variability: A systematic review and meta-analysis. J Am Heart Assoc 2017; 6(10): e006895.
[http://dx.doi.org/10.1161/JAHA.117.006895]
[19]
Yamaguchi Y, Wada M, Sato H, et al. Impact of ambulatory blood pressure variability on cerebral small vessel disease progression and cognitive decline in community-based elderly Japanese. Am J Hypertens 2014; 27(10): 1257-67.
[http://dx.doi.org/10.1093/ajh/hpu045] [PMID: 24651635]
[20]
Filomena J, Riba-Llena I, Vinyoles E, et al. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension 2015; 66(3): 634-40.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05440] [PMID: 26101344]
[21]
Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-induced cerebral small vessel disease leading to cognitive impairment. Chin Med J 2018; 131(5): 615-9.
[http://dx.doi.org/10.4103/0366-6999.226069] [PMID: 29483399]
[22]
Feng C, Xu Y, Hua T, Liu XY, Fang M. Irregularly shaped lacunar infarction: risk factors and clinical significance. Arq Neuropsiquiatr 2013; 71(10): 769-73.
[http://dx.doi.org/10.1590/0004-282X20130119] [PMID: 24212512]
[23]
Ciobanu DM, Mircea PA, Bala C, Rusu A. Vesa Ş, Roman G. Intercellular adhesion molecule-1 (ICAM-1) associates with 24-hour ambulatory blood pressure variability in type 2 diabetes and controls. Cytokine 2019; 116: 134-8.
[http://dx.doi.org/10.1016/j.cyto.2019.01.006] [PMID: 30716657]
[24]
Coca A, Camafort M, Doménech M, Sierra C. Ambulatory blood pressure in stroke and cognitive dysfunction. Curr Hypertens Rep 2013; 15(3): 150-9.
[http://dx.doi.org/10.1007/s11906-013-0346-3] [PMID: 23575735]
[25]
Brateanu A. Heart rate variability after myocardial infarction: What we know and what we still need to find out. Curr Med Res Opin 2015; 31(10): 1855-60.
[http://dx.doi.org/10.1185/03007995.2015.1086992] [PMID: 26313812]
[26]
Lombardi F. Clinical implications of present physiological understanding of HRV components. Card Electrophysiol Rev 2002; 6(3): 245-9.
[http://dx.doi.org/10.1023/A:1016329008921] [PMID: 12114846]
[27]
Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M. CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. J Physiol 2019; 597(10): 2595-8.
[http://dx.doi.org/10.1113/JP277500] [PMID: 31006862]
[28]
Nagata K, Sasaki E, Goda K, et al. Differences in heart rate variability in non&-hypertensive diabetic patients correlate with the presence of underlying cerebrovascular disease. Clin Physiol Funct Imaging 2006; 26(2): 92-8.
[http://dx.doi.org/10.1111/j.1475-097X.2006.00654.x] [PMID: 16494599]
[29]
Tian D, Zhang L, Zhuang Z, Huang T, Fan D. A two-sample Mendelian randomization analysis of heart rate variability and cerebral small vessel disease. J Clin Hypertens 2021; 23(8): 1608-14.
[http://dx.doi.org/10.1111/jch.14316] [PMID: 34196464]
[30]
Qiu Q, Song W, Zhou X. Heart rate variability is associated with cerebral small vessel disease in patients with diabetes. Front Neurol 2022; 13: 989064.
[http://dx.doi.org/10.3389/fneur.2022.989064]
[31]
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol 2013; 12(5): 483-97.
[http://dx.doi.org/10.1016/S1474-4422(13)70060-7] [PMID: 23602162]
[32]
Thorin E, Thorin-Trescases N. Vascular endothelial ageing, heartbeat after heartbeat. Cardiovasc Res 2009; 84(1): 24-32.
[http://dx.doi.org/10.1093/cvr/cvp236] [PMID: 19586943]
[33]
Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 2005; 4(8): 673-84.
[http://dx.doi.org/10.1038/nrd1797] [PMID: 16056392]
[34]
Binici Z, Mouridsen MR, Køber L, Sajadieh A. Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke 2011; 42(11): 3196-201.
[http://dx.doi.org/10.1161/STROKEAHA.110.607697] [PMID: 21921280]
[35]
Lu Q, Yao L, Ying D. Study of heart rate variability and its relationship with national institutes of health stroke scales in the patients with aged cerebral infarction. Chin J Geriatr 2016; 35(11): 1155-9. [in Chinese]
[36]
Sheng L. Common clinical factor analysis of heart rate variability in patients with cerebral infarction. Chin J Neuromed 2010; 9(02): 176-80. [in Chinese]
[37]
Yamaguchi Y, Wada M, Sato H, et al. Impact of nocturnal heart rate variability on cerebral small-vessel disease progression: A longitudinal study in community-dwelling elderly Japanese. Hypertens Res 2015; 38(8): 564-9.
[http://dx.doi.org/10.1038/hr.2015.38] [PMID: 25787037]
[38]
Wu B, Lin S, Hao Z, et al. Proportion, risk factors and outcome of lacunar infarction: A hospital-based study in a Chinese population. Cerebrovasc Dis 2010; 29(2): 181-7.
[http://dx.doi.org/10.1159/000267277] [PMID: 20029187]
[39]
Saji N, Toba K, Sakurai T. Cerebral small vessel disease and arterial stiffness: Tsunami effect in the brain. Pulse 2015; 3(3-4): 182-9.
[http://dx.doi.org/10.1159/000443614] [PMID: 27195239]
[40]
Georgakis MK, Malik R, Anderson CD, Parhofer KG, Hopewell JC, Dichgans M. Genetic determinants of blood lipids and cerebral small vessel disease: Role of high-density lipoprotein cholesterol. Brain 2020; 143(2): 597-610.
[http://dx.doi.org/10.1093/brain/awz413] [PMID: 31968102]
[41]
Jiang L, Cai X, Yao D. Association of inflammatory markers with cerebral small vessel disease in community-based population. J Neuroinflammation 2022; 19(1): 106.
[http://dx.doi.org/10.1186/s12974-022-02468-0]
[42]
Wu TH, Chien KL, Lin HJ. Total white blood cell count or neutrophil count predict ischemic stroke events among adult Taiwanese: Report from a community-based cohort study. BMC Neurol 2013; 13: 7.
[http://dx.doi.org/10.1186/1471-2377-13-7]
[43]
Zhu B, Pan Y, Jing J, et al. Neutrophil counts, neutrophil ratio, and new stroke in minor ischemic stroke or TIA. Neurology 2018; 90(21): e1870-8.
[http://dx.doi.org/10.1212/WNL.0000000000005554] [PMID: 29678934]
[44]
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol 2019; 18(7): 684-96.
[http://dx.doi.org/10.1016/S1474-4422(19)30079-1] [PMID: 31097385]
[45]
Ihara M, Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke 2016; 47(2): 554-60.
[http://dx.doi.org/10.1161/STROKEAHA.115.009627] [PMID: 26742799]
[46]
Charidimou A, Werring DJ. A raging fire in acute lacunar stroke: Inflammation, blood–brain barrier dysfunction and the origin of cerebral microbleeds. J Neurol Sci 2014; 340(1-2): 1-2.
[http://dx.doi.org/10.1016/j.jns.2014.03.004] [PMID: 24656599]
[47]
Lattanzi S, Cagnetti C, Provinciali L, Silvestrini M. Neutrophil-to-lymphocyte ratio predicts the outcome of acute intracerebral hemorrhage. Stroke 2016; 47(6): 1654-7.
[http://dx.doi.org/10.1161/STROKEAHA.116.013627] [PMID: 27165957]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy