Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Electron Properties of Baicalein and its Derivatives via Quantum Chemistry Calculation: The Effect of Hydroxyl-substitution at A and C Rings

Author(s): Xiong Li*

Volume 21, Issue 11, 2024

Published on: 28 March, 2024

Page: [983 - 991] Pages: 9

DOI: 10.2174/0115701786298726240319082334

Price: $65

Abstract

The electron properties of baicalein-family are of great importance in influencing its properties and corresponding bioactivities. In this work, we conducted comprehensive quantum chemistry calculations on pristine baicalein, and its two hydroxyl-substituted derivatives where the hydroxylsubstitution respectively occur at A and C rings. By contrasting with each other, the effects of the hydroxyl-substitution on the electron properties were studied from the aspects of the density of states, molecular orbital, electronic excitation, electrostatic potential, and electron delocalization. According to our computation, the hydroxyl-substitution results in variations in geometry and the consequent electron properties among the discussed molecules. Certainly, this research can contribute to the development of the research on the electron involved properties and the structure-property-activity relationship for the baicalein-family.

« Previous
Graphical Abstract

[1]
Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Curr. Res. Food Sci., 2021, 4, 200-214.
[http://dx.doi.org/10.1016/j.crfs.2021.03.011] [PMID: 33899007]
[2]
Yan, X.; Zeng, Z.; McClements, D.J.; Gong, X.; Yu, P.; Xia, J.; Gong, D. Compr. Rev. Food Sci. Food Saf., 2023, 22(2), 1312-1336.
[http://dx.doi.org/10.1111/1541-4337.13112] [PMID: 36789802]
[3]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[4]
Oluwole, O.; Fernando, W.M.A.D.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Int. J. Food Sci. Technol., 2022, 57(10), 6326-6335.
[http://dx.doi.org/10.1111/ijfs.15936]
[5]
Boudet, A.M. Phytochemistry, 2007, 68(22-24), 2722-2735.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.012] [PMID: 17643453]
[6]
Nishikawa, K.; Ishimaru, K. J. Plant Physiol., 1997, 151(5), 633-636.
[http://dx.doi.org/10.1016/S0176-1617(97)80241-6]
[7]
D’Andrea, G. Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[8]
Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. J. Am. Chem. Soc., 1994, 116(11), 4846-4851.
[http://dx.doi.org/10.1021/ja00090a032]
[9]
Handique, J.G.; Baruah, J.B. React. Funct. Polym., 2002, 52(3), 163-188.
[http://dx.doi.org/10.1016/S1381-5148(02)00091-3]
[10]
Stevenson, D.E.; Hurst, R.D. Cell. Mol. Life Sci., 2007, 64(22), 2900-2916.
[http://dx.doi.org/10.1007/s00018-007-7237-1] [PMID: 17726576]
[11]
Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[12]
Halake, K.; Birajdar, M.; Lee, J. J. Ind. Eng. Chem., 2016, 35, 1-7.
[http://dx.doi.org/10.1016/j.jiec.2016.01.003]
[13]
Coppo, E.; Marchese, A. Curr. Pharm. Biotechnol., 2014, 15(4), 380-390.
[http://dx.doi.org/10.2174/138920101504140825121142] [PMID: 25312620]
[14]
Chung, S. Annu. Rev. Nutr., 2001, 21, 381-406.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.381]
[15]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[16]
Liao, H.; Ye, J.; Gao, L.; Liu, Y. Biomed. Pharmacother., 2021, 133, 110917.
[http://dx.doi.org/10.1016/j.biopha.2020.110917] [PMID: 33217688]
[17]
Havsteen, B.H. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[18]
New J. Chem., 2003, 27, 1392-1398.
[19]
Marković, Z.S.; Dimitrić Marković, J.M.; Milenković, D.; Filipović, N. J. Mol. Model., 2011, 17(10), 2575-2584.
[http://dx.doi.org/10.1007/s00894-010-0942-y] [PMID: 21229369]
[20]
Gao, H.; Nishioka, T.; Kawabata, J.; Kasai, T. Biosci. Biotechnol. Biochem., 2004, 68(2), 369-375.
[http://dx.doi.org/10.1271/bbb.68.369] [PMID: 14981300]
[21]
Rice-Evans, C.A.; Miller, N.J. Biochem. Soc. Trans., 1996, 24(3), 790-795.
[http://dx.doi.org/10.1042/bst0240790] [PMID: 8878849]
[22]
Gong, W.; Zhao, Z.; Liu, B.; Lu, L.; Dong, J. Eur. J. Med. Chem., 2017, 126, 844-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.058] [PMID: 27960146]
[23]
Yoshino, M.; Ito, M.; Okajima, H.; Haneda, M.; Murakami, K. Biomed. Res., 1997, 18(5), 349-352.
[http://dx.doi.org/10.2220/biomedres.18.349]
[24]
Jing, L.; Ma, H.; Fan, P. Jia, Z. Chem. Nat. Compd., 2017, 53(2), 248-253.
[http://dx.doi.org/10.1007/s10600-017-1963-x]
[25]
Liu, R.Z.; Zhang, S.; Zhang, W.; Zhao, X.Y.; Du, G.H. Antioxidants, 2022, 12(1), 12.
[http://dx.doi.org/10.3390/antiox12010012] [PMID: 36670874]
[26]
Wang, X.; Li, Y.; Han, L.; Li, J.; Liu, C.; Sun, C. Front. Cell Dev. Biol., 2021, 9, 685364.
[http://dx.doi.org/10.3389/fcell.2021.685364] [PMID: 34291050]
[27]
Gao, Y.; Snyder, S.A.; Smith, J.N.; Chen, Y.C. Med. Chem. Res., 2016, 25(8), 1515-1523.
[http://dx.doi.org/10.1007/s00044-016-1607-x] [PMID: 28008217]
[28]
Perez, C.A.; Wei, Y.; Guo, M. J. Inorg. Biochem., 2009, 103(3), 326-332.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.003] [PMID: 19108897]
[29]
Li, Q.; Li, Q.Q.; Jia, J.N.; Sun, Q.Y.; Zhou, H.H.; Jin, W.L.; Mao, X.Y. Front. Pharmacol., 2019, 10, 638.
[http://dx.doi.org/10.3389/fphar.2019.00638] [PMID: 31231224]
[30]
Huang, S.T.; Lee, Y.; Gullen, E.A.; Cheng, Y.C. Bioorg. Med. Chem. Lett., 2008, 18(18), 5046-5049.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.001] [PMID: 18722769]
[31]
Lee, Y.; Yeo, H.; Liu, S.H.; Jiang, Z.; Savizky, R.M.; Austin, D.J.; Cheng, Y. J. Med. Chem., 2004, 47(22), 5555-5566.
[http://dx.doi.org/10.1021/jm049949c] [PMID: 15481991]
[32]
Rossi, M.; Meyer, R.; Constantinou, P.; Caruso, F.; Castelbuono, D.; O’Brien, M.; Narasimhan, V. J. Nat. Prod., 2001, 64(1), 26-31.
[http://dx.doi.org/10.1021/np000068s] [PMID: 11170661]
[33]
Wang, N.; Ren, D.; Deng, S.; Yang, X. Chem. Biol. Interact., 2014, 221, 99-108.
[http://dx.doi.org/10.1016/j.cbi.2014.08.003] [PMID: 25130856]
[34]
Kim, K.H.; Park, Y.D.; Park, H.; Moon, K.O.; Ha, K.T.; Baek, N.I.; Park, C.S.; Joo, M.; Cha, J. Eur. J. Pharmacol., 2014, 744, 147-156.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.013] [PMID: 25446915]
[35]
Luo, R.; Wang, J.; Zhao, L.; Lu, N.; You, Q.; Guo, Q.; Li, Z. Bioorg. Med. Chem. Lett., 2014, 24(5), 1334-1338.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.053] [PMID: 24507925]
[36]
Wang, J.F.; Ding, N.; Zhang, W.; Wang, P.; Li, Y.X. Helv. Chim. Acta, 2011, 94(12), 2221-2230.
[http://dx.doi.org/10.1002/hlca.201100162]
[37]
Jiang, X.; Zhou, J.; Lin, Q.; Gong, G.; Sun, H.; Liu, W.; Guo, Q.; Feng, F.; Qu, W. Bioorg. Med. Chem., 2018, 26(15), 4481-4492.
[http://dx.doi.org/10.1016/j.bmc.2018.07.037] [PMID: 30098912]
[38]
Tian, L.U.; Fei-Wu, C.H.E.N. Wuli Huaxue Xuebao, 2011, 27(12), 2786-2792.
[http://dx.doi.org/10.3866/PKU.WHXB20112786]
[39]
Miller, S.E.; Zhao, Y.; Schaller, R.; Mulloni, V.; Just, E.M.; Johnson, R.C.; Wasielewski, M.R. Chem. Phys., 2002, 275(1-3), 167-183.
[http://dx.doi.org/10.1016/S0301-0104(01)00518-3]
[40]
Hashimoto, T.; Nakano, H.; Hirao, K. J. Chem. Phys., 1996, 104(16), 6244-6258.
[http://dx.doi.org/10.1063/1.471286]
[41]
Li, Z.; Li, H.; Suo, B.; Liu, W. Acc. Chem. Res., 2014, 47(9), 2758-2767.
[http://dx.doi.org/10.1021/ar500082t] [PMID: 25019464]
[42]
Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78.
[http://dx.doi.org/10.1002/wcms.81]
[43]
Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys., 2020, 152(22), 224108.
[http://dx.doi.org/10.1063/5.0004608] [PMID: 32534543]
[44]
El Mouhi, R.; Daoui, O.; Fitri, A.; Benjelloun, A.T.; El Khattabi, S.; Benzakour, M.; Mcharfi, M.; Kurban, M. New J. Chem., 2023, 47(2), 812-827.
[http://dx.doi.org/10.1039/D2NJ04281A]
[45]
Levina, E.O.; Tsirelson, V.G. J. Comput. Chem., 2023, 44(22), 1817-1835.
[http://dx.doi.org/10.1002/jcc.27131] [PMID: 37183763]
[46]
Outeiral, C.; Vincent, M.A.; Martín Pendás, Á.; Popelier, P.L.A. Chem. Sci. (Camb.), 2018, 9(25), 5517-5529.
[http://dx.doi.org/10.1039/C8SC01338A] [PMID: 30061983]
[47]
Gündüz, B.; Kurban, M. Vib. Spectrosc., 2018, 96, 46-51.
[http://dx.doi.org/10.1016/j.vibspec.2018.02.008]
[48]
Shah, A.; Parmar, G.; Shah, U.; Perumal, S. Chemistry Africa, 2023, 6(4), 1847-1861.
[http://dx.doi.org/10.1007/s42250-023-00611-9]
[49]
Šimunková, M.; Valko, M. Bučinský, L.; Malček, M. J. Mol. Struct., 2020, 1222, 128923.
[http://dx.doi.org/10.1016/j.molstruc.2020.128923]
[50]
Elangovan, N.; Pandian, P.; Kasthuri, A.; Sowrirajan, S.; Arumugam, N.; Almansour, A.I.; Perumal, K. J. Mol. Struct., 2023, 1294, 136355.
[http://dx.doi.org/10.1016/j.molstruc.2023.136355]
[51]
Kurban, M.; Gündüz, B. Göktaş, F. Optik (Stuttg.), 2019, 182, 611-617.
[http://dx.doi.org/10.1016/j.ijleo.2019.01.080]
[52]
Foster, M.E.; Wong, B.M. J. Chem. Theory Comput., 2012, 8(8), 2682-2687.
[http://dx.doi.org/10.1021/ct300420f] [PMID: 22904693]
[53]
Lu, T.; Chen, F. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]
[54]
Lu, T.; Chen, Q. Theor. Chem. Acc., 2020, 139(2), 25.
[http://dx.doi.org/10.1007/s00214-019-2541-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy