Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Multi-omics Data Integration Analysis Identified Therapeutic Targets and Potential Reuse Drugs for Osteoporosis

In Press, (this is not the final "Version of Record"). Available online 28 March, 2024
Author(s): Mingdong Li, Xing Gao, Yuchen Zhang, Jinglei Wang, Run Dong, Peng Li* and Yongxiong He*
Published on: 28 March, 2024

DOI: 10.2174/0109298673291526240322081017

Price: $95

Abstract

Aims: To facilitate drug discovery and development for the treatment of osteoporosis. Background: With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis.

Objective: To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis.

Methods: Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets.

Results: Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM- MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable.

Conclusion: This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

[1]
Looker, A.C.; Sarafrazi Isfahani, N.; Fan, B.; Shepherd, J.A. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos. Int., 2017, 28(6), 1979-1988.
[http://dx.doi.org/10.1007/s00198-017-3996-1] [PMID: 28315954]
[2]
Andreo-López, M.C.; Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. The influence of the mediterranean dietary pattern on osteoporosis and sarcopenia. Nutrients, 2023, 15(14), 3224.
[http://dx.doi.org/10.3390/nu15143224] [PMID: 37513646]
[3]
Rahim, F.; Zaki Zadeh, A.; Javanmardi, P.; Emmanuel Komolafe, T.; Khalafi, M.; Arjomandi, A.; Ghofrani, H.A.; Shirbandi, K. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study. Biomed. Eng. Online, 2023, 22(1), 68.
[http://dx.doi.org/10.1186/s12938-023-01132-9] [PMID: 37430259]
[4]
Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623.
[http://dx.doi.org/10.3390/ijms21207623] [PMID: 33076329]
[5]
Reid, I.R.; Billington, E.O. Drug therapy for osteoporosis in older adults. Lancet, 2022, 399(10329), 1080-1092.
[http://dx.doi.org/10.1016/S0140-6736(21)02646-5] [PMID: 35279261]
[6]
Black, DM.; Rosen, CJ.; Clinical Practice. Postmenopausal Osteoporosis. N. Engl. J. Med., 2016, 21;374(3), 254-62.
[http://dx.doi.org/10.1056/NEJMcp1513724] [PMID: 26789873]
[7]
Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull., 2020, 133(1), 105-117.
[PMID: 32282039]
[8]
Aibar-Almazán, A.; Voltes-Martínez, A.; Castellote-Caballero, Y.; Afanador-Restrepo, D.F.; Carcelén-Fraile, M.C.; López-Ruiz, E. Current status of the diagnosis and management of osteoporosis. Int. J. Mol. Sci., 2022, 23(16), 9465.
[http://dx.doi.org/10.3390/ijms23169465] [PMID: 36012730]
[9]
Foessl, I.; Dimai, H.P.; Obermayer-Pietsch, B. Long-term and sequential treatment for osteoporosis. Nat. Rev. Endocrinol., 2023, 19(9), 520-533.
[http://dx.doi.org/10.1038/s41574-023-00866-9] [PMID: 37464088]
[10]
Dayanandan, A.P.; Cho, W.J.; Kang, H.; Bello, A.B.; Kim, B.J.; Arai, Y.; Lee, S.H. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater. Res., 2023, 27(1), 68.
[http://dx.doi.org/10.1186/s40824-023-00413-7] [PMID: 37443121]
[11]
Saxena, Y.; Routh, S.; Mukhopadhaya, A. Immunoporosis: Role of innate immune cells in osteoporosis. Front. Immunol., 2021, 12, 687037.
[http://dx.doi.org/10.3389/fimmu.2021.687037] [PMID: 34421899]
[12]
Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun., 2016, 7(1), 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[13]
Gu, X.Y.; Huo, J-L.; Yu, Z-Y.; Jiang, J-C.; Xu, Y-X.; Zhao, L-J. Immunotherapy in hepatocellular carcinoma: An overview of immune checkpoint inhibitors, drug resistance, and adverse effects. Oncologie, 2024, 26(1), 9-25.
[http://dx.doi.org/10.1515/oncologie-2023-0412]
[14]
Siegelin, M.D.; Schneider, E.; Westhoff, M.A.; Wirtz, C.R.; Karpel-Massler, G. Current state and future perspective of drug repurposing in malignant glioma. Semin. Cancer Biol., 2021, 68, 92-104.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.018] [PMID: 31734137]
[15]
Kim, K.J.; Moon, S.J.; Park, K.S.; Tagkopoulos, I. Network-based modeling of drug effects on disease module in systemic sclerosis. Sci. Rep., 2020, 10(1), 13393.
[http://dx.doi.org/10.1038/s41598-020-70280-y] [PMID: 32770109]
[16]
Li, S.; Lu, C.; Zhao, Z.; Lu, D.; Zheng, G. Uncovering neuroinflammation-related modules and potential repurposing drugs for Alzheimer’s disease through multi-omics data integrative analysis. Front. Aging Neurosci., 2023, 15, 1161405.
[http://dx.doi.org/10.3389/fnagi.2023.1161405] [PMID: 37333458]
[17]
Shahini, E.; Pasculli, G.; Mastropietro, A.; Stolfi, P.; Tieri, P.; Vergni, D.; Cozzolongo, R.; Pesce, F.; Giannelli, G. Network proximity-based drug repurposing strategy for early and late stages of primary biliary cholangitis. Biomedicines, 2022, 10(7), 1694.
[http://dx.doi.org/10.3390/biomedicines10071694] [PMID: 35884999]
[18]
Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420.
[http://dx.doi.org/10.1038/nbt.4096] [PMID: 29608179]
[19]
Laurens, V.D.M.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res., 2008, 9(2605), 2579-2605.
[20]
Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun., 2021, 12(1), 1088.
[http://dx.doi.org/10.1038/s41467-021-21246-9] [PMID: 33597522]
[21]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[22]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[23]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[24]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042.
[http://dx.doi.org/10.1093/bioinformatics/btx350] [PMID: 28575181]
[25]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[26]
Bai, R.J.; Li, Y.S.; Zhang, F.J. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front. Endocrinol. (Lausanne), 2022, 13, 1012508.
[http://dx.doi.org/10.3389/fendo.2022.1012508] [PMID: 36387862]
[27]
Xu, J.; Yu, L.; Liu, F.; Wan, L.; Deng, Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front. Immunol., 2023, 14, 1222129.
[http://dx.doi.org/10.3389/fimmu.2023.1222129] [PMID: 37475866]
[28]
Jiang, Y.; Zhang, P.; Zhang, X.; Lv, L.; Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif., 2021, 54(1), e12956.
[http://dx.doi.org/10.1111/cpr.12956] [PMID: 33210341]
[29]
Hu, L.; Yin, C.; Zhao, F.; Ali, A.; Ma, J.; Qian, A. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int. J. Mol. Sci., 2018, 19(2), 360.
[http://dx.doi.org/10.3390/ijms19020360] [PMID: 29370110]
[30]
Ma, T.; Su, G.; Wu, Q.; Shen, M.; Feng, X.; Zhang, Z. Mesenchymal stem cell exosomes: A promising delivery system for glioma therapy. Oncologie, 2024, 0(0)
[http://dx.doi.org/10.1515/oncologie-2023-0482]
[31]
Bozza, M.T.; Lintomen, L.; Kitoko, J.Z.; Paiva, C.N.; Olsen, P.C. The role of MIF on eosinophil biology and eosinophilic inflammation. Clin. Rev. Allergy Immunol., 2020, 58(1), 15-24.
[http://dx.doi.org/10.1007/s12016-019-08726-z] [PMID: 30680604]
[32]
Mun, S.H.; Won, H.Y.; Hernandez, P.; Aguila, H.L.; Lee, S.K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J. Bone Miner. Res., 2013, 28(4), 948-959.
[http://dx.doi.org/10.1002/jbmr.1787] [PMID: 23044992]
[33]
Gu, R.; Santos, L.L.; Ngo, D.; Fan, H.; Singh, P.P.; Fingerle-Rowson, G.; Bucala, R.; Xu, J.; Quinn, J.M.W.; Morand, E.F. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine, 2015, 72(2), 135-145.
[http://dx.doi.org/10.1016/j.cyto.2014.11.015] [PMID: 25647268]
[34]
Becker-Herman, S.; Rozenberg, M.; Hillel-Karniel, C.; Gil-Yarom, N.; Kramer, M.P.; Barak, A.; Sever, L.; David, K.; Radomir, L.; Lewinsky, H.; Levi, M.; Friedlander, G.; Bucala, R.; Peled, A.; Shachar, I. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol., 2021, 19(3), e3001121.
[http://dx.doi.org/10.1371/journal.pbio.3001121] [PMID: 33661886]
[35]
Hopwood, B.; Tsykin, A.; Findlay, D.M.; Fazzalari, N.L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res. Ther., 2007, 9(5), R100.
[http://dx.doi.org/10.1186/ar2301] [PMID: 17900349]
[36]
Löfdahl, E.; Ahmed, S.; Ahmed, A.; Rådegran, G. Plasma biomarkers for clinical assessment of bone mineral density in heart transplanted patients-a single-center study at skåne university hospital in lund. Transpl. Int., 2022, 35, 10161.
[http://dx.doi.org/10.3389/ti.2022.10161] [PMID: 36148003]
[37]
Li, X.; Akiyama, M.; Nakahama, K.; Koshiishi, T.; Takeda, S.; Morita, I. Role of intercellular adhesion molecule-2 in osteoclastogenesis. Genes Cells, 2012, 17(7), 568-575.
[http://dx.doi.org/10.1111/j.1365-2443.2012.01608.x] [PMID: 22646472]
[38]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[39]
Li, M.; Wei, J.; Xu, G.; Liu, Y.; Zhu, J. Surgery combined with molecular targeted therapy successfully treated giant esophageal gastrointestinal stromal tumor. Oncologie, 2022, 24(2), 349-356.
[http://dx.doi.org/10.32604/oncologie.2022.022436]
[40]
Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature, 2023, 616(7958), 673-685.
[http://dx.doi.org/10.1038/s41586-023-05905-z] [PMID: 37100941]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy