Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Mendelian Randomization Highlights Gut Microbiota of Short-chain Fatty Acids’ Producer as Protective Factor of Cerebrovascular Disease

Author(s): Shihang Luo, Rui Mao* and Yi Li*

Volume 21, Issue 1, 2024

Published on: 28 March, 2024

Page: [32 - 40] Pages: 9

DOI: 10.2174/0115672026299307240321090030

Price: $65

Abstract

Background: Recent research advancements have indicated a potential association between gut microbiota and cerebrovascular diseases, although the precise causative pathways and the directionality of this association remain to be fully elucidated.

Objective: This study utilized a bidirectional two-sample Mendelian Randomization (MR) methodology to explore the causal impact of gut microbiota compositions on the risk of cerebrovascular disease.

Methods: Genome-wide Association Study (GWAS) data pertaining to gut microbiota were obtained from the MiBioGen consortium. For Ischemic Stroke (IS), Transient Ischemic Attack (TIA), Vascular Dementia (VD), and Subarachnoid Hemorrhage (SAH), GWAS summary data were sourced from the FinnGen consortium, the IEU Open GWAS project, and the GWAS catalog, respectively.

Results: Our MR analyses identified that specific bacterial strains, notably those involved in the production of Short-chain Fatty Acids (SCFAs), including Barnesiella, Ruminococcus torques group, and Coprobacter, serve as protective factors against IS, TIA, and SAH. Linkage Disequilibrium Score Regression (LDSC) analysis corroborated a significant genetic correlation between these gut microbiota strains and various forms of cerebrovascular disease. In contrast, reverse MR analysis failed to establish a bidirectional causal relationship between genetically inferred gut microbiota profiles and these cerebrovascular conditions.

Conclusion: This investigation has pinpointed particular strains of gut microbiota that play protective or detrimental roles in cerebrovascular disease pathogenesis. These findings offer valuable insights that could be pivotal for the clinical management, prevention, and treatment of cerebrovascular diseases.

[1]
Sacco RL, Rundek T. Cerebrovascular disease. Curr Opin Neurol 2012; 25(1): 1-4.
[http://dx.doi.org/10.1097/WCO.0b013e32834f89b1] [PMID: 22222890]
[2]
Goldstein LB. Introduction for focused updates in cerebrovascular disease. Stroke 2020; 51(3): 708-10.
[http://dx.doi.org/10.1161/STROKEAHA.119.024159] [PMID: 32078448]
[3]
Pandian JD, Gall SL, Kate MP, et al. Prevention of stroke: A global perspective. Lancet 2018; 392(10154): 1269-78.
[http://dx.doi.org/10.1016/S0140-6736(18)31269-8] [PMID: 30319114]
[4]
Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: A global response is needed. Bull World Health Organ 2016; 94(9): 634-634A.
[http://dx.doi.org/10.2471/BLT.16.181636] [PMID: 27708464]
[5]
González VJC, Hachinski V. Insidious cerebrovascular disease-the uncool iceberg. JAMA Neurol 2020; 77(2): 155-6.
[http://dx.doi.org/10.1001/jamaneurol.2019.3933] [PMID: 31738373]
[6]
O’Brien JT, Thomas A. Vascular dementia. Lancet 2015; 386(10004): 1698-706.
[http://dx.doi.org/10.1016/S0140-6736(15)00463-8] [PMID: 26595643]
[7]
The Lancet. Transient ischaemic attack: More than a stroke of bad luck. Lancet 2014; 383(9929): 1610.
[http://dx.doi.org/10.1016/S0140-6736(14)60772-8]
[8]
Claassen J, Park S. Spontaneous subarachnoid haemorrhage. Lancet 2022; 400(10355): 846-62.
[http://dx.doi.org/10.1016/S0140-6736(22)00938-2] [PMID: 35985353]
[9]
Tonomura S, Ihara M, Friedland RP. Microbiota in cerebrovascular disease: A key player and future therapeutic target. J Cereb Blood Flow Metab 2020; 40(7): 1368-80.
[http://dx.doi.org/10.1177/0271678X20918031] [PMID: 32312168]
[10]
Honarpisheh P, Bryan RM, McCullough LD. Aging microbiota-gut-brain axis in stroke risk and outcome. Circ Res 2022; 130(8): 1112-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.319983] [PMID: 35420913]
[11]
Durgan DJ, Lee J, McCullough LD, Bryan RM Jr. Examining the role of the microbiota-gut-brain axis in stroke. Stroke 2019; 50(8): 2270-7.
[http://dx.doi.org/10.1161/STROKEAHA.119.025140] [PMID: 31272315]
[12]
Kim ES, Yoon BH, Lee SM, et al. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med 2022; 54(2): 103-14.
[http://dx.doi.org/10.1038/s12276-022-00728-w] [PMID: 35115674]
[13]
Luo J, Xu Z, Noordam R, van Heemst D, Gao RL. Depression and inflammatory bowel disease: A bidirectional two-sample mendelian randomization study. J Crohn’s Colitis 2022; 16(4): 633-42.
[14]
Dusingize JC, Olsen CM, An J, et al. Body mass index and height and risk of cutaneous melanoma: Mendelian randomization analyses. Int J Epidemiol 2020; 49(4): 1236-45.
[http://dx.doi.org/10.1093/ije/dyaa009] [PMID: 32068838]
[15]
Budu-Aggrey A, Brumpton B, Tyrrell J, et al. Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLoS Med 2019; 16(1): e1002739.
[http://dx.doi.org/10.1371/journal.pmed.1002739] [PMID: 30703100]
[16]
Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 2021; 53(2): 156-65.
[http://dx.doi.org/10.1038/s41588-020-00763-1] [PMID: 33462485]
[17]
Kurki MI, Karjalainen J, Palta P. FinnGen: Unique genetic insights from combining isolated population and national health register data. Medrix 2022.
[http://dx.doi.org/10.1101/2022.03.03.22271360]
[18]
Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res 2023; 51(D1): D977-85.
[http://dx.doi.org/10.1093/nar/gkac1010] [PMID: 36350656]
[19]
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018; 7: e34408.
[http://dx.doi.org/10.7554/eLife.34408] [PMID: 29846171]
[20]
MiBioGen consortium Available from: https://mibiogen.gcc.rug.nl/
[21]
Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 2021; 53(10): 1415-24.
[http://dx.doi.org/10.1038/s41588-021-00931-x] [PMID: 34594039]
[22]
Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018; 50(4): 524-37.
[http://dx.doi.org/10.1038/s41588-018-0058-3] [PMID: 29531354]
[23]
Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat Med 2016; 35(11): 1880-906.
[http://dx.doi.org/10.1002/sim.6835] [PMID: 26661904]
[24]
Zhang Q, Zhou J, Zhang X, Mao R, Zhang C. Mendelian randomization supports causality between gut microbiota and chronic hepatitis B. Front Microbiol 2023; 14: 1243811.
[http://dx.doi.org/10.3389/fmicb.2023.1243811] [PMID: 37655340]
[25]
Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am J Epidemiol 2013; 178(7): 1177-84.
[http://dx.doi.org/10.1093/aje/kwt084] [PMID: 23863760]
[26]
Bowden J, Smith DG, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512-25.
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[27]
Hartwig FP, Smith DG, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 2017; 46(6): 1985-98.
[http://dx.doi.org/10.1093/ije/dyx102] [PMID: 29040600]
[28]
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693-8.
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[29]
Burgess S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol 2014; 43(3): 922-9.
[http://dx.doi.org/10.1093/ije/dyu005] [PMID: 24608958]
[30]
Strimmer K. fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008; 24(12): 1461-2.
[http://dx.doi.org/10.1093/bioinformatics/btn209] [PMID: 18441000]
[31]
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 2017; 13(11): e1007081.
[http://dx.doi.org/10.1371/journal.pgen.1007081] [PMID: 29149188]
[32]
Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: A practical tutorial. Evid Based Ment Health 2019; 22(4): 153-60.
[http://dx.doi.org/10.1136/ebmental-2019-300117] [PMID: 31563865]
[33]
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: A two-sample Mendelian randomisation study. BMC Med 2023; 21(1): 66.
[http://dx.doi.org/10.1186/s12916-023-02761-6] [PMID: 36810112]
[34]
Li P, Wang H, Guo L, et al. Association between gut microbiota and preeclampsia-eclampsia: A two-sample Mendelian randomization study. BMC Med 2022; 20(1): 443.
[http://dx.doi.org/10.1186/s12916-022-02657-x] [PMID: 36380372]
[35]
Zeng X, Gao X, Peng Y, et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 2019; 9: 4.
[http://dx.doi.org/10.3389/fcimb.2019.00004] [PMID: 30778376]
[36]
Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3(1): 1245.
[http://dx.doi.org/10.1038/ncomms2266] [PMID: 23212374]
[37]
Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 2019; 19(1): 191.
[http://dx.doi.org/10.1186/s12866-019-1552-1] [PMID: 31426765]
[38]
Rosli D, Shahar S, Manaf ZA, Lau HJ. Randomized controlled trial on the effect of partially hydrolyzed guar gum supplementation on diarrhea frequency and gut microbiome count among pelvic radiation patients. JPEN J Parenter Enteral Nutr 2022; 46(2): 475.
[http://dx.doi.org/10.1002/jpen.2295] [PMID: 34813118]
[39]
Yin J, Liao SX, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylamine‐n‐oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015; 4(11): e002699.
[http://dx.doi.org/10.1161/JAHA.115.002699] [PMID: 26597155]
[40]
Tian DY, Fan DS. Risk factors, regional disparity and trends of ischemic stroke etiologic subtypes. Chin Med J 2018; 131(2): 127-9.
[http://dx.doi.org/10.4103/0366-6999.222332] [PMID: 29336358]
[41]
Fei N, Bernabé BP, Lie L, et al. The human microbiota is associated with cardiometabolic risk across the epidemiologic transition. PLoS One 2019; 14(7): e0215262.
[http://dx.doi.org/10.1371/journal.pone.0215262] [PMID: 31339887]
[42]
Yue C, Li M, Li J, et al. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE −/− mice. Food Funct 2020; 11(6): 5142-55.
[http://dx.doi.org/10.1039/D0FO01006E] [PMID: 32432606]
[43]
Song Y, Shen H, Liu T, et al. Effects of three different mannans on obesity and gut microbiota in high-fat diet-fed C57BL/6J mice. Food Funct 2021; 12(10): 4606-20.
[http://dx.doi.org/10.1039/D0FO03331F] [PMID: 33908936]
[44]
Geng S, Yang L, Cheng F, et al. Gut microbiota are associated with psychological stress-induced defections in intestinal and blood–brain barriers. Front Microbiol 2020; 10: 3067.
[http://dx.doi.org/10.3389/fmicb.2019.03067] [PMID: 32010111]
[45]
Aranaz P, Ramos-Lopez O, Cuevas-Sierra A, Martinez JA, Milagro FI, Boj RJI. A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. Int J Obes 2021; 45(10): 2261-8.
[http://dx.doi.org/10.1038/s41366-021-00904-4] [PMID: 34267323]
[46]
Pinart M, Dötsch A, Schlicht K, et al. Gut microbiome composition in obese and non-obese persons: A systematic review and meta-analysis. Nutrients 2021; 14(1): 12.
[http://dx.doi.org/10.3390/nu14010012] [PMID: 35010887]
[47]
Wang B, Liu J, Lei R, et al. Cold exposure, gut microbiota, and hypertension: A mechanistic study. Sci Total Environ 2022; 833: 155199.
[http://dx.doi.org/10.1016/j.scitotenv.2022.155199] [PMID: 35417730]
[48]
Maciel SS, Feres M, Gonçalves TED, et al. Does obesity influence the subgingival microbiota composition in periodontal health and disease? J Clin Periodontol 2016; 43(12): 1003-12.
[http://dx.doi.org/10.1111/jcpe.12634] [PMID: 27717180]
[49]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[50]
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci 2013; 110(11): 4410-5.
[http://dx.doi.org/10.1073/pnas.1215927110] [PMID: 23401498]
[51]
Chen L, He FJ, Dong Y, et al. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives. Hypertension 2020; 76(1): 73-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14800] [PMID: 32475312]
[52]
Lee J, Venna VR, Durgan DJ, et al. Young versus aged microbiota transplants to germ-free mice: Increased short-chain fatty acids and improved cognitive performance. Gut Microbes 2020; 12(1): 1814107.
[http://dx.doi.org/10.1080/19490976.2020.1814107] [PMID: 32897773]
[53]
Lee J, d’Aigle J, Atadja L, et al. Gut microbiota–derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res 2020; 127(4): 453-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316448] [PMID: 32354259]
[54]
Chen R, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 2019; 148: 104403.
[http://dx.doi.org/10.1016/j.phrs.2019.104403] [PMID: 31425750]
[55]
Xia W, Khan I, Li X, et al. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacol Res 2020; 159: 104809.
[http://dx.doi.org/10.1016/j.phrs.2020.104809] [PMID: 32502642]
[56]
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol 2019; 18(7): 684-96.
[http://dx.doi.org/10.1016/S1474-4422(19)30079-1] [PMID: 31097385]
[57]
Su C, Wu H, Yang X, Zhao B, Zhao R. The relation between antihypertensive treatment and progression of cerebral small vessel disease. Medicine 2021; 100(30): e26749.
[http://dx.doi.org/10.1097/MD.0000000000026749] [PMID: 34397717]
[58]
Liao Y, Zeng X, Xie X, et al. Bacterial signatures of cerebral thrombi in large vessel occlusion stroke. MBio 2022; 13(4): e01085-22.
[http://dx.doi.org/10.1128/mbio.01085-22] [PMID: 35726919]
[59]
Gambardella J, Castellanos V, Santulli G. Standardizing translational microbiome studies and metagenomic analyses. Cardiovasc Res 2021; 117(3): 640-2.
[http://dx.doi.org/10.1093/cvr/cvaa175] [PMID: 32569375]
[60]
Kumar A, Chidambaram V, Mehta JL. Vegetarianism, microbiota, and cardiovascular health: Looking back, and forward. Eur J Prev Cardiol 2022; 29(14): 1895-910.
[http://dx.doi.org/10.1093/eurjpc/zwac128] [PMID: 35727958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy