Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Disruptions of Gut Microbiota are Associated with Cognitive Deficit of Preclinical Alzheimer's Disease: A Cross-Sectional Study

Author(s): Binbin Yu, Guomeng Wan, Shupeng Cheng, Pengcheng Wen, Xi Yang, Jiahuan Li, Huifang Tian, Yaxin Gao, Qian Zhong, Jin Liu, Jianan Li* and Yi Zhu*

Volume 20, Issue 12, 2023

Published on: 25 March, 2024

Page: [875 - 889] Pages: 15

DOI: 10.2174/0115672050303878240319054149

Price: $65

Abstract

Background: Alzheimer's Disease (AD) is the most prevalent type of dementia. The early change of gut microbiota is a potential biomarker for preclinical AD patients.

Objective: The study aimed to explore changes in gut microbiota characteristics in preclinical AD patients, including those with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), and detect the correlation between gut microbiota characteristics and cognitive performances.

Methods: This study included 117 participants [33 MCI, 54 SCD, and 30 Healthy Controls (HC)]. We collected fresh fecal samples and blood samples from all participants and evaluated their cognitive performance. We analyzed the diversity and structure of gut microbiota in all participants through qPCR, screened characteristic microbial species through machine learning models, and explored the correlations between these species and cognitive performances and serum indicators.

Results: Compared to the healthy controls, the structure of gut microbiota in MCI and SCD patients was significantly different. The three characteristic microorganisms, including Bacteroides ovatus, Bifidobacterium adolescentis, and Roseburia inulinivorans, were screened based on the best classification model (HC and MCI) having intergroup differences. Bifidobacterium adolescentis is associated with better performance in multiple cognitive scores and several serum indicators. Roseburia inulinivorans showed negative correlations with the scores of the Functional Activities Questionnaire (FAQ).

Conclusion: The gut microbiota in patients with preclinical AD has significantly changed in terms of composition and richness. Correlations have been discovered between changes in characteristic species and cognitive performances. Gut microbiota alterations have shown promise in affecting AD pathology and cognitive deficit.

[1]
Kaur, D.; Sharma, V.; Deshmukh, R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology, 2019, 27(4), 663-677.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[2]
Mancuso, C.; Santangelo, R. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacol. Res., 2018, 129, 329-336.
[http://dx.doi.org/10.1016/j.phrs.2017.12.009] [PMID: 29233677]
[3]
Fisher, R.A.; Miners, J.S.; Love, S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol., 2022, 32(6), e13061.
[http://dx.doi.org/10.1111/bpa.13061] [PMID: 35289012]
[4]
Lin, Y.; Shan, P.Y.; Jiang, W.J.; Sheng, C.; Ma, L. Subjective cognitive decline: Preclinical manifestation of Alzheimer’s disease. Neurol. Sci., 2019, 40(1), 41-49.
[http://dx.doi.org/10.1007/s10072-018-3620-y] [PMID: 30397816]
[5]
Hönig, M.; Altomare, D.; Caprioglio, C.; Collij, L.; Barkhof, F.; Van Berckel, B.; Scheltens, P.; Farrar, G.; Battle, M.R.; Theis, H.; Giehl, K.; Bischof, G.N.; Garibotto, V.; Molinuevo, J.L.L.; Rivera, G.O.; Delrieu, J.; Payoux, P.; Demonet, J.F.; Nordberg, A.K.; Savitcheva, I.; Walker, Z.; Edison, P.; Stephens, A.W.; Gismondi, R.; Jessen, F.; Buckley, C.J.; Gispert, J.D.; Frisoni, G.B.; Drzezga, A. Association between years of education and amyloid burden in patients with subjective cognitive decline, MCI, and Alzheimer disease. Neurology, 2024, 102(6), e208053.
[http://dx.doi.org/10.1212/WNL.0000000000208053] [PMID: 38377442]
[6]
Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; Glodzik, L.; van Harten, A.C.; de Leon, M.J.; McHugh, P.; Mielke, M.M.; Molinuevo, J.L.; Mosconi, L.; Osorio, R.S.; Perrotin, A.; Petersen, R.C.; Rabin, L.A.; Rami, L.; Reisberg, B.; Rentz, D.M.; Sachdev, P.S.; de la Sayette, V.; Saykin, A.J.; Scheltens, P.; Shulman, M.B.; Slavin, M.J.; Sperling, R.A.; Stewart, R.; Uspenskaya, O.; Vellas, B.; Visser, P.J.; Wagner, M. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement., 2014, 10(6), 844-852.
[http://dx.doi.org/10.1016/j.jalz.2014.01.001] [PMID: 24798886]
[7]
van Harten, A.C.; Mielke, M.M.; Dravis, S.D.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Subjective cognitive decline and risk of MCI. Neurology, 2018, 91(4), e300-e312.
[http://dx.doi.org/10.1212/WNL.0000000000005863] [PMID: 29959257]
[8]
Zhang, Y.; Li, X.; Hu, Y.; Yuan, H.; Wu, X.; Yang, Y.; Zhao, T.; Hu, K.; Wang, Z.; Wang, G.; Zhang, K.; Liu, H. Evaluation of mild cognitive impairment genetic susceptibility risks in a Chinese population. BMC Psychiatry, 2022, 22(1), 93.
[http://dx.doi.org/10.1186/s12888-022-03756-y] [PMID: 35135506]
[9]
Peng, Y.; Jin, H.; Xue, Y.; Chen, Q.; Yao, S.; Du, M.; Liu, S. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci., 2023, 15, 1206572.
[http://dx.doi.org/10.3389/fnagi.2023.1206572] [PMID: 37600514]
[10]
Integrative, H.M.P. The integrative human microbiome project. Nature, 2019, 569(7758), 641-648.
[http://dx.doi.org/10.1038/s41586-019-1238-8] [PMID: 31142853]
[11]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[12]
Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther., 2024, 9(1), 37.
[http://dx.doi.org/10.1038/s41392-024-01743-1] [PMID: 38360862]
[13]
Bou Zerdan, M.; Hebbo, E.; Hijazi, A.; El Gemayel, M.; Nasr, J.; Nasr, D.; Yaghi, M.; Bouferraa, Y.; Nagarajan, A. The gut microbiome and Alzheimer’s Disease: A growing relationship. Curr. Alzheimer Res., 2022, 19(12), 808-818.
[http://dx.doi.org/10.2174/1567205020666221227090125] [PMID: 36578263]
[14]
Grabrucker, S.; Marizzoni, M.; Silajdžić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; Hoffmann, K.; Cryan, J.F.; O’Leary, O.F.; English, J.A.; Lavelle, A.; O’Neill, C.; Thuret, S.; Cattaneo, A.; Nolan, Y.M. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain, 2023, 146(12), 4916-4934.
[http://dx.doi.org/10.1093/brain/awad303] [PMID: 37849234]
[15]
Manderino, L.; Carroll, I.; Peril, A.M.A.; Rochette, A.; Heinberg, L.; Peat, C.; Steffen, K.; Mitchell, J.; Gunstad, J. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. J. Int. Neuropsychol. Soc., 2017, 23(8), 700-705.
[http://dx.doi.org/10.1017/S1355617717000492] [PMID: 28641593]
[16]
Kesika, P.; Suganthy, N.; Sivamaruthi, B.S.; Chaiyasut, C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci., 2021, 264, 118627.
[http://dx.doi.org/10.1016/j.lfs.2020.118627] [PMID: 33169684]
[17]
Vogt, N.M.; Kerby, R.L.; McFarland, D.K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[18]
Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to AD pathology. Front. Immunol., 2022, 12, 794519.
[http://dx.doi.org/10.3389/fimmu.2021.794519] [PMID: 35173707]
[19]
Erny, D.; Dokalis, N.; Mezö, C.; Castoldi, A.; Mossad, O.; Staszewski, O.; Frosch, M.; Villa, M.; Fuchs, V.; Mayer, A.; Neuber, J.; Sosat, J.; Tholen, S.; Schilling, O.; Vlachos, A.; Blank, T.; Gomez de Agüero, M.; Macpherson, A.J.; Pearce, E.J.; Prinz, M. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab., 2021, 33(11), 2260-2276.e7.
[http://dx.doi.org/10.1016/j.cmet.2021.10.010] [PMID: 34731656]
[20]
Tcw, J.; Qian, L.; Pipalia, N.H.; Chao, M.J.; Liang, S.A.; Shi, Y.; Jain, B.R.; Bertelsen, S.E.; Kapoor, M.; Marcora, E.; Sikora, E.; Andrews, E.J.; Martini, A.C.; Karch, C.M.; Head, E.; Holtzman, D.M.; Zhang, B.; Wang, M.; Maxfield, F.R.; Poon, W.W.; Goate, A.M. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell, 2022, 185(13), 2213-2233.e25.
[http://dx.doi.org/10.1016/j.cell.2022.05.017] [PMID: 35750033]
[21]
Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Shaul, K.H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[22]
Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; Stark, S.L.; Holtzman, D.M.; Fagan, A.M.; Schindler, S.E.; Cruchaga, C.; Butt, O.H.; Morris, J.C.; Tarr, P.I.; Ances, B.M.; Dantas, G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med., 2023, 15(700), eabo2984.
[http://dx.doi.org/10.1126/scitranslmed.abo2984] [PMID: 37315112]
[23]
Abdukhakimova, D.; Dossybayeva, K.; Poddighe, D. Fecal and duodenal microbiota in pediatric celiac disease. Front Pediatr., 2021, 9, 652208.
[http://dx.doi.org/10.3389/fped.2021.652208] [PMID: 33968854]
[24]
Belei, O.; Jugănaru, I.; Basaca, D.G.; Munteanu, A.I.; Mărginean, O. The role of intestinal microbiota in celiac disease and further therapeutic perspectives. Life, 2023, 13(10), 2039.
[http://dx.doi.org/10.3390/life13102039] [PMID: 37895421]
[25]
Saeed, N.K.; Al-Beltagi, M.; Bediwy, A.S.; El-Sawaf, Y.; Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World J. Gastroenterol., 2022, 28(18), 1875-1901.
[http://dx.doi.org/10.3748/wjg.v28.i18.1875] [PMID: 35664966]
[26]
Zhao, Q.; Lv, Y.; Zhou, Y.; Hong, Z.; Guo, Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS One, 2012, 7(12), e51157.
[http://dx.doi.org/10.1371/journal.pone.0051157] [PMID: 23236445]
[27]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C. The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008]
[28]
Sperling, RA; Aisen, PS; Beckett, LA; Bennett, DA; Craft, S; Fagan, AM Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003]
[29]
van der Flier, W.M.; Pijnenburg, Y.A.L.; Prins, N.; Lemstra, A.W.; Bouwman, F.H.; Teunissen, C.E.; van Berckel, B.N.M.; Stam, C.J.; Barkhof, F.; Visser, P.J.; van Egmond, E.; Scheltens, P. Optimizing patient care and research: The Amsterdam dementia cohort. J. Alzheimers Dis., 2014, 41(1), 313-327.
[http://dx.doi.org/10.3233/JAD-132306] [PMID: 24614907]
[30]
Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc., 1992, 40(9), 922-935.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01992.x] [PMID: 1512391]
[31]
Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 1993, 43(11), 2412-2414.
[32]
Pantoni, L.; Inzitari, D. Hachinski’s ischemic score and the diagnosis of vascular dementia: A review. Ital. J. Neurol. Sci., 1993, 14(7), 539-546.
[http://dx.doi.org/10.1007/BF02339212] [PMID: 8282525]
[33]
Li, D.; Zhang, D.; Shao, J.; Qi, X.; Tian, L. A meta-analysis of the prevalence of depressive symptoms in Chinese older adults. Arch. Gerontol. Geriatr., 2014, 58(1), 1-9.
[http://dx.doi.org/10.1016/j.archger.2013.07.016] [PMID: 24001674]
[34]
Jian, C; Luukkonen, P; Järvinen, Y.H; Salonen, A; Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One., 2020, 15(1), e0227285.
[35]
Molina-López, J.; Ricalde, M.A.Q.; Hernández, B.V.; Planells, A.; Otero, R.; Planells, E. Effect of 8-week of dietary micronutrient supplementation on gene expression in elite handball athletes. PLoS One, 2020, 15(5), e0232237.
[http://dx.doi.org/10.1371/journal.pone.0232237] [PMID: 32357196]
[36]
Arance, E.; Ramírez, V.; Roldan, R.A.; Peinado, O.F.M.; Cachinero, R.C.; Reyes, J.A.B.; Alonso, V.F.; Gonzalez, M.L.J.; Cubero, A.M.J. Determination of exosome mitochondrial DNA as a biomarker of renal cancer aggressiveness. Cancers, 2021, 14(1), 199.
[http://dx.doi.org/10.3390/cancers14010199] [PMID: 35008363]
[37]
Wu, S.; Zheng, J.; Li, Y.; Wu, Z.; Shi, S.; Huang, M.; Yu, H.; Dong, W.; Huang, J.; Lin, T. Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine, 2018, 34, 76-84.
[http://dx.doi.org/10.1016/j.ebiom.2018.07.029] [PMID: 30078735]
[38]
Zheng, Y.; Fang, Z.; Xue, Y.; Zhang, J.; Zhu, J.; Gao, R.; Yao, S.; Ye, Y.; Wang, S.; Lin, C.; Chen, S.; Huang, H.; Hu, L.; Jiang, G.N.; Qin, H.; Zhang, P.; Chen, J.; Ji, H. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4), 1030-1042.
[http://dx.doi.org/10.1080/19490976.2020.1737487] [PMID: 32240032]
[39]
Ribeiro, L.F.; Lopes, E.M.; Kishi, L.T.; Ribeiro, L.F.C.; Menegueti, M.G.; Gaspar, G.G.; Silva-Rocha, R.; Guazzaroni, M.E. Microbial community profiling in intensive care units expose limitations in current sanitary standards. Front. Public Health, 2019, 7, 240.
[http://dx.doi.org/10.3389/fpubh.2019.00240] [PMID: 31555629]
[40]
Guo, M.; Peng, J.; Huang, X.; Xiao, L.; Huang, F.; Zuo, Z. Gut microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis., 2021, 80(1), 299-310.
[http://dx.doi.org/10.3233/JAD-201040] [PMID: 33523001]
[41]
Zhang, Q.; Zhang, Y.; Zeng, L.; Chen, G.; Zhang, L.; Liu, M.; Sheng, H.; Hu, X.; Su, J.; Zhang, D.; Lu, F.; Liu, X.; Zhang, L. The role of gut microbiota and microbiota-related serum metabolites in the progression of diabetic kidney disease. Front. Pharmacol., 2021, 12, 757508.
[http://dx.doi.org/10.3389/fphar.2021.757508] [PMID: 34899312]
[42]
Liu, P; Wu, L; Peng, G; Han, Y; Tang, R; Ge, J Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun., 2019, 80, 633-643.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008]
[43]
Yang, X; Yu, D; Xue, L; Li, H; Du, J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B., 2020, 10(3), 475-487.
[http://dx.doi.org/10.1016/j.apsb.2019.07.001]
[44]
Kim, H.; Kim, S.; Park, S.; Park, G.; Shin, H.; Park, M.S.; Kim, J. Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer’s Disease. Front. Aging Neurosci., 2021, 13, 709091.
[http://dx.doi.org/10.3389/fnagi.2021.709091] [PMID: 34421576]
[45]
Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; Ichimiya, Y.; Koido, S.; Ohno, K.; Bernier, F.; Katsumata, N.; Nagahara, A.; Arai, H.; Ohkusa, T.; Sato, N. Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis., 2022, 88(1), 75-95.
[http://dx.doi.org/10.3233/JAD-220148] [PMID: 35570493]
[46]
Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; Mc-Donald, M.P.; Khan, M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s Disease. Cells, 2021, 10(4), 779.
[http://dx.doi.org/10.3390/cells10040779] [PMID: 33916001]
[47]
Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep., 2017, 7(1), 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[48]
Kameno, K.; Hasegawa, Y.; Hayashi, K.; Takemoto, Y.; Uchikawa, H.; Mukasa, A.; Mitsuyama, K.S. Loss of body weight in old 5xFAD mice and the alteration of gut microbiota composition. Exp. Gerontol., 2022, 166, 111885.
[http://dx.doi.org/10.1016/j.exger.2022.111885] [PMID: 35792287]
[49]
Kim, N.; Jeon, S.H.; Ju, I.G.; Gee, M.S.; Do, J.; Oh, M.S.; Lee, J.K. Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav. Immun., 2021, 98, 357-365.
[http://dx.doi.org/10.1016/j.bbi.2021.09.002] [PMID: 34500036]
[50]
Elangovan, S.; Borody, T.J.; Holsinger, R.M.D. Fecal microbiota transplantation reduces pathology and improves cognition in a mouse model of Alzheimer’s Disease. Cells, 2022, 12(1), 119.
[http://dx.doi.org/10.3390/cells12010119] [PMID: 36611911]
[51]
Chen, Y.; Li, Y.; Fan, Y.; Chen, S.; Chen, L.; Chen, Y.; Chen, Y. Gut microbiota-driven metabolic alterations reveal gut–brain communication in Alzheimer’s disease model mice. Gut Microbes, 2024, 16(1), 2302310.
[http://dx.doi.org/10.1080/19490976.2024.2302310] [PMID: 38261437]
[52]
Nagpal, R.; Neth, B.J.; Wang, S.; Mishra, S.P.; Craft, S.; Yadav, H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer’s disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine, 2020, 59, 102950.
[http://dx.doi.org/10.1016/j.ebiom.2020.102950] [PMID: 32861197]
[53]
Xi, J.; Ding, D.; Zhu, H.; Wang, R.; Su, F.; Wu, W.; Xiao, Z.; Liang, X.; Zhao, Q.; Hong, Z.; Fu, H.; Xiao, Q. Disturbed microbial ecology in Alzheimer’s disease: Evidence from the gut microbiota and fecal metabolome. BMC Microbiol., 2021, 21(1), 226.
[http://dx.doi.org/10.1186/s12866-021-02286-z] [PMID: 34384375]
[54]
Khedr, E.M.; Omeran, N.; Ramadan, K.A.H.; Ahmed, G.K.; Abdelwarith, A.M. Alteration of gut microbiota in Alzheimer’s disease and their relation to the cognitive impairment. J. Alzheimers Dis., 2022, 88(3), 1103-1114.
[http://dx.doi.org/10.3233/JAD-220176] [PMID: 35754271]
[55]
Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J.; Peril, A.M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr., 2022, 41(11), 2565-2576.
[http://dx.doi.org/10.1016/j.clnu.2022.09.012] [PMID: 36228569]
[56]
Zhang, X.; Wang, Y.; Liu, W.; Wang, T.; Wang, L.; Hao, L.; Ju, M.; Xiao, R. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr., 2021, 114(2), 429-440.
[http://dx.doi.org/10.1093/ajcn/nqab078] [PMID: 33871591]
[57]
Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement., 2019, 15(10), 1357-1366.
[http://dx.doi.org/10.1016/j.jalz.2019.07.002] [PMID: 31434623]
[58]
Wanapaisan, P.; Chuansangeam, M.; Nopnipa, S.; Mathuranyanon, R.; Nonthabenjawan, N.; Ngamsombat, C.; Thientunyakit, T.; Muangpaisan, W. Association between gut microbiota with mild cognitive impairment and Alzheimer’s disease in a Thai population. Neurodegener. Dis., 2022, 22(2), 43-54.
[http://dx.doi.org/10.1159/000526947] [PMID: 36070704]
[59]
Chen, G.; Zhou, X.; Zhu, Y.; Shi, W.; Kong, L. Gut microbiome characteristics in subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: a systematic review and meta‐analysis. Eur. J. Neurol., 2023, 30(11), 3568-3580.
[http://dx.doi.org/10.1111/ene.15961] [PMID: 37399128]
[60]
Jung, J.H.; Kim, G.; Byun, M.S.; Lee, J.H.; Yi, D.; Park, H.; Lee, D.Y. Gut microbiome alterations in preclinical Alzheimer’s disease. PLoS One, 2022, 17(11), e0278276.
[http://dx.doi.org/10.1371/journal.pone.0278276] [PMID: 36445883]
[61]
Sheng, C.; Lin, L.; Lin, H.; Wang, X.; Han, Y.; Liu, S.L. Altered gut microbiota in adults with subjective cognitive decline: The SILCODE study. J. Alzheimers Dis., 2021, 82(2), 513-526.
[http://dx.doi.org/10.3233/JAD-210259] [PMID: 34024839]
[62]
Linares, D.M.; Ross, P.; Stanton, C. Beneficial microbes: The pharmacy in the gut. Bioengineered, 2016, 7(1), 11-20.
[http://dx.doi.org/10.1080/21655979.2015.1126015] [PMID: 26709457]
[63]
Holscher, HD Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes., 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756]
[64]
Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S.B.; Mallet, B.M.; Gougeon, J.A. Roseburia spp.: A marker of health? Future Microbiol., 2017, 12(2), 157-170.
[http://dx.doi.org/10.2217/fmb-2016-0130] [PMID: 28139139]
[65]
Tan, H.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol., 2019, 103(5), 2353-2365.
[http://dx.doi.org/10.1007/s00253-019-09617-1] [PMID: 30666361]
[66]
Fernando, W.M.A.D.B.; Martins, I.J.; Morici, M.; Bharadwaj, P.; Rainey-Smith, S.R.; Lim, W.L.F.; Martins, R.N. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimers Dis., 2020, 74(1), 91-99.
[http://dx.doi.org/10.3233/JAD-190120] [PMID: 31958090]
[67]
Scaldaferri, F.; Pizzoferrato, M.; Gerardi, V.; Lopetuso, L.; Gasbarrini, A. The gut barrier: New acquisitions and therapeutic approaches. J. Clin. Gastroenterol., 2012, 46, S12-S17.
[http://dx.doi.org/10.1097/MCG.0b013e31826ae849] [PMID: 22955350]
[68]
Jiang, S.; Xie, S.; Lv, D.; Zhang, Y.; Deng, J.; Zeng, L.; Chen, Y. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek, 2016, 109(10), 1389-1396.
[http://dx.doi.org/10.1007/s10482-016-0737-y] [PMID: 27431681]
[69]
Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord., 2015, 30(10), 1351-1360.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[70]
Xin, X.; Wang, Q.; Qing, J.; Song, W.; Gui, Y.; Li, X.; Li, Y. Th17 cells in primary Sjögren’s syndrome negatively correlate with increased Roseburia and Coprococcus. Front. Immunol., 2022, 13, 974648.
[http://dx.doi.org/10.3389/fimmu.2022.974648] [PMID: 36275752]
[71]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Brown, K.R.; Stafshede, W.P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[72]
Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol., 2020, 11, 598.
[http://dx.doi.org/10.3389/fphys.2020.00598] [PMID: 32581851]
[73]
Rostagno, A.A. Pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci., 2022, 24(1), 107.
[http://dx.doi.org/10.3390/ijms24010107] [PMID: 36613544]
[74]
Leeuw, F.A.; Tijms, B.M.; Doorduijn, A.S.; Hendriksen, H.M.A.; Rest, O.; van der Schueren, M.A.E.; Visser, M.; den Heuvel, E.G.H.M.; Wijk, N.; Bierau, J.; Berckel, B.N.; Scheltens, P.; Kester, M.I.; Flier, W.M.; Teunissen, C.E. LDL cholesterol and uridine levels in blood are potential nutritional biomarkers for clinical progression in Alzheimer’s disease: The NUDAD project. Alzheimers Dement., 2020, 12(1), e12120.
[http://dx.doi.org/10.1002/dad2.12120] [PMID: 33392381]
[75]
Ishii, M. Apolipoprotein B as a new link between cholesterol and Alzheimer disease. JAMA Neurol., 2019, 76(7), 751-753.
[76]
Hosseini, M.; Poljak, A.; Braidy, N.; Crawford, J.; Sachdev, P. Blood fatty acids in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res. Rev., 2020, 60, 101043.
[http://dx.doi.org/10.1016/j.arr.2020.101043] [PMID: 32194194]
[77]
Xu, Q.; Zhang, Y.; Zhang, X.; Liu, L.; Zhou, B.; Mo, R.; Li, Y.; Li, H.; Li, F.; Tao, Y.; Liu, Y.; Xue, C. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4−/−: A double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr., 2020, 39(7), 2092-2105.
[http://dx.doi.org/10.1016/j.clnu.2019.10.017] [PMID: 31694759]
[78]
Lin, P.Y.; Cheng, C.; Satyanarayanan, S.K.; Chiu, L.T.; Chien, Y.C.; Chuu, C.P.; Lan, T.H.; Su, K.P. Omega-3 fatty acids and blood-based biomarkers in Alzheimer’s disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav. Immun., 2022, 99, 289-298.
[http://dx.doi.org/10.1016/j.bbi.2021.10.014] [PMID: 34755655]
[79]
Wang, X.; Cheng, Z. Cross-sectional studies. Chest, 2020, 158(1), S65-S71.
[http://dx.doi.org/10.1016/j.chest.2020.03.012] [PMID: 32658654]
[80]
Lombardi, V.C.; De Meirleir, K.L.; Subramanian, K.; Nourani, S.M.; Dagda, R.K.; Delaney, S.L.; Palotás, A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem., 2018, 61, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.004] [PMID: 29886183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy