Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: The tumor microenvironment (TME) is created by the tumor and dominated by tumor-induced interactions. Long-term survival of lung adenocarcinoma (LUAD) patients is strongly influenced by immune cell infiltration in TME. The current article intends to construct a gene signature from LUAD ICI for predicting patient outcomes.
Methods: For the initial phase of the study, the TCGA-LUAD dataset was chosen as the training group for dataset selection. We found two datasets named GSE72094 and GSE68465 in the Gene Expression Omnibus (GEO) database for model validation. Unsupervised clustering was performed on the training cohort patients using the ICI profiles. We employed Kaplan-Meier estimators and univariate Cox proportional-hazard models to identify prognostic differentially expressed genes in immune cell infiltration (ICI) clusters. These prognostic genes are then used to develop a LASSO Cox model that generates a prognostic gene signature. Validation was performed using Kaplan-Meier estimation, Cox, and ROC analysis. Our signature and vital immune-relevant signatures were analyzed. Finally, we performed gene set enrichment analysis (GSEA) and immune infiltration analysis on our finding gene signature to further examine the functional mechanisms and immune cellular interactions.
Results: Our study found a sixteen-gene signature (EREG, HPGDS, TSPAN32, ACSM5, SFTPD, SCN7A, CCR2, S100P, KLK12, MS4A1, INHA, HOXB9, CYP4B1, SPOCK1, STAP1, and ACAP1) to be prognostic based on data from the training cohort. This prognostic signature was certified by Kaplan-Meier, Cox proportional-hazards, and ROC curves. 11/15 immune-relevant signatures were related to our signature. The GSEA results indicated our gene signature strongly correlates with immune-related pathways. Based on the immune infiltration analysis findings, it can be deduced that a significant portion of the prognostic significance of the signature can be attributed to resting mast cells.
Conclusions: We used bioinformatics to determine a new, robust sixteen-gene signature. We also found that this signature's prognostic ability was closely related to the resting mast cell infiltration of LUAD patients.
[1]
Rocha, V.; Fraga, S.; Moreira, C.; Carmeli, C.; Lenoir, A.; Steptoe, A.; Giles, G.; Goldberg, M.; Zins, M.; Kivimäki, M.; Vineis, P.; Vollenweider, P.; Barros, H.; Stringhini, S.; Consortium, L. Life-course socioeconomic disadvantage and lung function: A multicohort study of 70 496 individuals. Eur. Respir. J., 2021, 57(3), 2001600.
[http://dx.doi.org/10.1183/13993003.01600-2020] [PMID: 33214206]
[http://dx.doi.org/10.1183/13993003.01600-2020] [PMID: 33214206]
[2]
Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656.
[http://dx.doi.org/10.1002/cbdv.202200656] [PMID: 36538730]
[http://dx.doi.org/10.1002/cbdv.202200656] [PMID: 36538730]
[3]
Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987.
[http://dx.doi.org/10.1002/jmr.2987] [PMID: 36326002]
[http://dx.doi.org/10.1002/jmr.2987] [PMID: 36326002]
[4]
Uguz, H.; Avcı, B.; Palabıyık, E.; Nurseli Sulumer, A.; Kızıltunç Özmen, H.; Demir, Y.; Aşkın, H. Naringenin, hesperidin and quercetin ameliorate radiation-induced damage in rats: In vivo and in silico evaluations. Chem. Biodivers., 2024, 21(2), e202301613.
[http://dx.doi.org/10.1002/cbdv.202301613] [PMID: 38105348]
[http://dx.doi.org/10.1002/cbdv.202301613] [PMID: 38105348]
[5]
Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640.
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[6]
Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31.
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[7]
Schoenhals, J.E.; Seyedin, S.N.; Anderson, C.; Brooks, E.D.; Li, Y.R.; Younes, A.I.; Niknam, S.; Li, A.; Barsoumian, H.B.; Cortez, M.A.; Welsh, J.W. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Transl. Lung Cancer Res., 2007, 6(2), 148-158.
[http://dx.doi.org/10.21037/tlcr.2017.03.06] [PMID: 28529897]
[http://dx.doi.org/10.21037/tlcr.2017.03.06] [PMID: 28529897]
[8]
Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; Diehn, M.; Alizadeh, A.A. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol., 2019, 37(7), 773-782.
[http://dx.doi.org/10.1038/s41587-019-0114-2] [PMID: 31061481]
[http://dx.doi.org/10.1038/s41587-019-0114-2] [PMID: 31061481]
[9]
Ma, C.; Li, F.; Gu, Z.; Yang, Y.; Qi, Y. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma. Front. Pharmacol., 2023, 14, 1146840.
[http://dx.doi.org/10.3389/fphar.2023.1146840] [PMID: 37670938]
[http://dx.doi.org/10.3389/fphar.2023.1146840] [PMID: 37670938]
[10]
Zhang, K.; Shi, J.; Lin, F. Immunohistochemical evaluation of inhibin-alpha in non-small-cell lung carcinomas--a pitfall in diagnosing metastatic pulmonary carcinomas. Ann Clin Lab Sci, 2012, 42(2), 118-122.
[11]
Huang, K.; Yuan, R.; Wang, K.; Hu, J.; Huang, Z.; Yan, C.; Shen, W.; Shao, J. Overexpression of HOXB9 promotes metastasis and indicates poor prognosis in colon cancer. Chin. J. Cancer Res., 2014, 26(1), 72-80.
[http://dx.doi.org/10.3978/j.issn.1000-9604.2014.01.11] [PMID: 24653628]
[http://dx.doi.org/10.3978/j.issn.1000-9604.2014.01.11] [PMID: 24653628]
[12]
Hsu, Y.L.; Hung, J.Y.; Liang, Y.Y.; Lin, Y.S.; Tsai, M.J.; Chou, S.H.; Lu, C.Y.; Kuo, P.L. S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer. Oncotarget, 2015, 6(30), 29585-29598.
[http://dx.doi.org/10.18632/oncotarget.4987] [PMID: 26320193]
[http://dx.doi.org/10.18632/oncotarget.4987] [PMID: 26320193]
[13]
Sunaga, N.; Kaira, K. Epiregulin as a therapeutic target in non-small-cell lung cancer. Lung Cancer, 2015, 6, 91-98.
[http://dx.doi.org/10.2147/LCTT.S60427] [PMID: 28210154]
[http://dx.doi.org/10.2147/LCTT.S60427] [PMID: 28210154]
[14]
Wang, T.; Liu, X.; Tian, Q.; Liang, T.; Chang, P. Reduced SPOCK1 expression inhibits non-small cell lung cancer cell proliferation and migration through Wnt/β-catenin signaling. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(3), 637-644.
[http://dx.doi.org/10.26355/eurrev_201802_14288] [PMID: 29461591]
[http://dx.doi.org/10.26355/eurrev_201802_14288] [PMID: 29461591]
[15]
Cheng, W.L.; Feng, P.H.; Lee, K.Y.; Chen, K.Y.; Sun, W.L.; Van Hiep, N.; Luo, C.S.; Wu, S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci., 2021, 22(23), 12828.
[http://dx.doi.org/10.3390/ijms222312828] [PMID: 34884633]
[http://dx.doi.org/10.3390/ijms222312828] [PMID: 34884633]
[16]
Umeda, Y.; Hasegawa, Y.; Otsuka, M.; Ariki, S.; Takamiya, R.; Saito, A.; Uehara, Y.; Saijo, H.; Kuronuma, K.; Chiba, H.; Ohnishi, H.; Sakuma, Y.; Takahashi, H.; Kuroki, Y.; Takahashi, M. Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients. Oncogene, 2017, 36(46), 6432-6445.
[http://dx.doi.org/10.1038/onc.2017.253] [PMID: 28745320]
[http://dx.doi.org/10.1038/onc.2017.253] [PMID: 28745320]
[17]
Liu, Y.; Wang, L.; Lo, K.W.; Lui, V.W.Y. Omics-wide quantitative B-cell infiltration analyses identify GPR18 for human cancer prognosis with superiority over CD20. Commun. Biol., 2020, 3(1), 234.
[http://dx.doi.org/10.1038/s42003-020-0964-7] [PMID: 32398659]
[http://dx.doi.org/10.1038/s42003-020-0964-7] [PMID: 32398659]
[18]
Zhang, J.; Zhang, Q.; Zhang, J.; Wang, Q. Expression of ACAP1 is associated with tumor immune infiltration and clinical outcome of ovarian cancer. DNA Cell Biol., 2020, 39(9), 1545-1557.
[http://dx.doi.org/10.1089/dna.2020.5596] [PMID: 32456571]
[http://dx.doi.org/10.1089/dna.2020.5596] [PMID: 32456571]
[19]
Li, M.; Qiu, M.; Xu, Y.; Mao, Q.; Wang, J.; Dong, G.; Xia, W.; Yin, R.; Xu, L. Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer. Tumour Biol., 2015, 36(12), 9969-9978.
[http://dx.doi.org/10.1007/s13277-015-3714-6] [PMID: 26178480]
[http://dx.doi.org/10.1007/s13277-015-3714-6] [PMID: 26178480]
[20]
Liu, X.; Jia, Y.; Shi, C.; Kong, D.; Wu, Y.; Zhang, T.; Wei, A.; Wang, D. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. PLoS One, 2021, 16(2), e0247020.
[http://dx.doi.org/10.1371/journal.pone.0247020] [PMID: 33592039]
[http://dx.doi.org/10.1371/journal.pone.0247020] [PMID: 33592039]
[21]
Lombardo, S.D.; Mazzon, E.; Basile, M.S.; Campo, G.; Corsico, F.; Presti, M.; Bramanti, P.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Modulation of tetraspanin 32 (TSPAN32) expression in T cell-mediated immune responses and in multiple sclerosis. Int. J. Mol. Sci., 2019, 20(18), 4323.
[http://dx.doi.org/10.3390/ijms20184323] [PMID: 31487788]
[http://dx.doi.org/10.3390/ijms20184323] [PMID: 31487788]
[22]
Murata, T.; Lin, M.I.; Aritake, K.; Matsumoto, S.; Narumiya, S.; Ozaki, H.; Urade, Y.; Hori, M.; Sessa, W.C. Role of prostaglandin D 2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 20009-20014.
[http://dx.doi.org/10.1073/pnas.0805171105] [PMID: 19060214]
[http://dx.doi.org/10.1073/pnas.0805171105] [PMID: 19060214]
[23]
Ma, C.; Luo, H.; Cao, J.; Zheng, X.; Zhang, J.; Zhang, Y.; Fu, Z. Identification of a novel tumor microenvironment–associated eight-gene signature for prognosis prediction in lung adenocarcinoma. Front. Mol. Biosci., 2020, 7, 571641.
[http://dx.doi.org/10.3389/fmolb.2020.571641] [PMID: 33102522]
[http://dx.doi.org/10.3389/fmolb.2020.571641] [PMID: 33102522]
[24]
Planque, C.; Li, L.; Zheng, Y.; Soosaipillai, A.; Reckamp, K.; Chia, D.; Diamandis, E.P.; Goodglick, L. A multiparametric serum kallikrein panel for diagnosis of non-small cell lung carcinoma. Clin. Cancer Res., 2008, 14(5), 1355-1362.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4117] [PMID: 18316555]
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4117] [PMID: 18316555]
[25]
An, J.; Xue, Y.; Long, M.; Zhang, G.; Zhang, J.; Su, H. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget, 2017, 8(24), 39230-39240.
[http://dx.doi.org/10.18632/oncotarget.16837] [PMID: 28424406]
[http://dx.doi.org/10.18632/oncotarget.16837] [PMID: 28424406]
[26]
Zhao, R.; Ding, D.; Yu, W.; Zhu, C.; Ding, Y. The lung adenocarcinoma microenvironment mining and its prognostic merit. Technol. Cancer Res. Treat., 2020, 19
[http://dx.doi.org/10.1177/1533033820977547] [PMID: 33280515]
[http://dx.doi.org/10.1177/1533033820977547] [PMID: 33280515]
[27]
Wright, C.M.; Savarimuthu Francis, S.M.; Tan, M.E.; Martins, M.U.; Winterford, C.; Davidson, M.R.; Duhig, E.E.; Clarke, B.E.; Hayward, N.K.; Yang, I.A.; Bowman, R.V.; Fong, K.M. MS4A1 dysregulation in asbestos-related lung squamous cell carcinoma is due to CD20 stromal lymphocyte expression. PLoS One, 2012, 7(4), e34943.
[http://dx.doi.org/10.1371/journal.pone.0034943] [PMID: 22514692]
[http://dx.doi.org/10.1371/journal.pone.0034943] [PMID: 22514692]
[28]
Wang, N.; Zhu, L.; Xu, X.; Yu, C.; Huang, X. Integrated analysis and validation reveal ACAP1 as a novel prognostic biomarker associated with tumor immunity in lung adenocarcinoma. Comput. Struct. Biotechnol. J., 2022, 20, 4390-4401.
[http://dx.doi.org/10.1016/j.csbj.2022.08.026] [PMID: 36051873]
[http://dx.doi.org/10.1016/j.csbj.2022.08.026] [PMID: 36051873]
[29]
Yang, Y.; Yuan, S.; Yan, S.; Dong, K.; Yang, Y. Missense variants in CYP4B1 associated with increased risk of lung cancer among Chinese Han population. World J. Surg. Oncol., 2023, 21(1), 352.
[http://dx.doi.org/10.1186/s12957-023-03223-2] [PMID: 37950293]
[http://dx.doi.org/10.1186/s12957-023-03223-2] [PMID: 37950293]
[30]
Kadomoto, S.; Izumi, K.; Mizokami, A. Roles of CCL2-CCR2 axis in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(16), 8530.
[http://dx.doi.org/10.3390/ijms22168530] [PMID: 34445235]
[http://dx.doi.org/10.3390/ijms22168530] [PMID: 34445235]
[31]
Viale, P.H. The american cancer society’s facts & figures: 2020 edition. J. Adv. Pract. Oncol., 2020, 11(2), 135-136.
[http://dx.doi.org/10.6004/jadpro.2020.11.2.1] [PMID: 33532112]
[http://dx.doi.org/10.6004/jadpro.2020.11.2.1] [PMID: 33532112]
[32]
Xia, L.; Liu, Y.; Wang, Y. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist, 2019, 24(S1)(Suppl. 1), S31-S41.
[http://dx.doi.org/10.1634/theoncologist.2019-IO-S1-s05] [PMID: 30819829]
[http://dx.doi.org/10.1634/theoncologist.2019-IO-S1-s05] [PMID: 30819829]
[33]
Perets, R.; Bar, J.; Rasco, D.W.; Ahn, M.J.; Yoh, K.; Kim, D.W.; Nagrial, A.; Satouchi, M.; Lee, D.H.; Spigel, D.R.; Kotasek, D.; Gutierrez, M.; Niu, J.; Siddiqi, S.; Li, X.; Cyrus, J.; Chackerian, A.; Chain, A.; Altura, R.A.; Cho, B.C. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Ann. Oncol., 2021, 32(3), 395-403.
[http://dx.doi.org/10.1016/j.annonc.2020.11.020] [PMID: 33276076]
[http://dx.doi.org/10.1016/j.annonc.2020.11.020] [PMID: 33276076]
[34]
Xiao, W.; Huang, H.; Zheng, P.; Liu, Y.; Chen, Y.; Chen, J.; Zheng, X.; Chen, L.; Jiang, J. The CXCL10/CXCR3 pathway contributes to the synergy of thermal ablation and PD-1 blockade therapy against tumors. Cancers, 2023, 15(5), 1427.
[http://dx.doi.org/10.3390/cancers15051427] [PMID: 36900218]
[http://dx.doi.org/10.3390/cancers15051427] [PMID: 36900218]
[35]
Hong, S.; Kang, N.; Kim, O.; Hong, S.A.; Park, J.; Kim, J.; Lee, M.A.; Kang, J. EGFR-tyrosine kinase inhibitors induced activation of the autocrine CXCL10/CXCR3 pathway through crosstalk between the tumor and the microenvironment in EGFR-mutant lung cancer. Cancers, 2022, 15(1), 124.
[http://dx.doi.org/10.3390/cancers15010124] [PMID: 36612121]
[http://dx.doi.org/10.3390/cancers15010124] [PMID: 36612121]
[36]
Tibbs, E.; Cao, X. Emerging canonical and non-canonical roles of granzyme B in health and disease. Cancers, 2022, 14(6), 1436.
[http://dx.doi.org/10.3390/cancers14061436] [PMID: 35326588]
[http://dx.doi.org/10.3390/cancers14061436] [PMID: 35326588]
[37]
Krepela; Krepela, E. Granzyme B-induced apoptosis in cancer cells and its regulation (Review). Int. J. Oncol., 2010, 37(6), 1361-1378.
[http://dx.doi.org/10.3892/ijo_00000788] [PMID: 21042704]
[http://dx.doi.org/10.3892/ijo_00000788] [PMID: 21042704]
[38]
Hurkmans, D.P.; Basak, E.A.; Schepers, N.; Oomen-De Hoop, E.; Van der Leest, C.H.; El Bouazzaoui, S.; Bins, S.; Koolen, S.L.W.; Sleijfer, S.; Van der Veldt, A.A.M.; Debets, R.; Van Schaik, R.H.N.; Aerts, J.G.J.V.; Mathijssen, R.H.J. Granzyme B is correlated with clinical outcome after PD-1 blockade in patients with stage IV non-small-cell lung cancer. J. Immunother. Cancer, 2020, 8(1), e000586.
[http://dx.doi.org/10.1136/jitc-2020-000586] [PMID: 32461348]
[http://dx.doi.org/10.1136/jitc-2020-000586] [PMID: 32461348]
[39]
Champhekar, A.; Heymans, R.; Saco, J.; Turon Font, G.; Gonzalez, C.; Gao, A.; Pham, J.; Lee, J.; Maryoung, R.; Medina, E.; Campbell, K.M.; Karin, D.; Austin, D.; Damioseaux, R.; Ribas, A. ERK mediates interferon gamma-induced melanoma cell death. Mol. Cancer, 2023, 22(1), 165.
[http://dx.doi.org/10.1186/s12943-023-01868-x] [PMID: 37803324]
[http://dx.doi.org/10.1186/s12943-023-01868-x] [PMID: 37803324]
[40]
Song, M.; Ping, Y.; Zhang, K.; Yang, L.; Li, F.; Zhang, C.; Cheng, S.; Yue, D.; Maimela, N.R.; Qu, J.; Liu, S.; Sun, T.; Li, Z.; Xia, J.; Zhang, B.; Wang, L.; Zhang, Y. Low-dose IFNγ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res., 2019, 79(14), 3737-3748.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0596] [PMID: 31085700]
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0596] [PMID: 31085700]
[41]
Casey, S.C.; Baylot, V.; Felsher, D.W. The MYC oncogene is a global regulator of the immune response. Blood, 2018, 131(18), 2007-2015.
[http://dx.doi.org/10.1182/blood-2017-11-742577] [PMID: 29514782]
[http://dx.doi.org/10.1182/blood-2017-11-742577] [PMID: 29514782]
[42]
Ireland, A.S.; Micinski, A.M.; Kastner, D.W.; Guo, B.; Wait, S.J.; Spainhower, K.B.; Conley, C.C.; Chen, O.S.; Guthrie, M.R.; Soltero, D.; Qiao, Y.; Huang, X.; Tarapcsák, S.; Devarakonda, S.; Chalishazar, M.D.; Gertz, J.; Moser, J.C.; Marth, G.; Puri, S.; Witt, B.L.; Spike, B.T.; Oliver, T.G. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell, 2020, 38(1), 60-78.e12.
[http://dx.doi.org/10.1016/j.ccell.2020.05.001] [PMID: 32473656]
[http://dx.doi.org/10.1016/j.ccell.2020.05.001] [PMID: 32473656]
[43]
Soto-Heredero, G.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis - a key player in the inflammatory response. FEBS J., 2020, 287(16), 3350-3369.
[http://dx.doi.org/10.1111/febs.15327] [PMID: 32255251]
[http://dx.doi.org/10.1111/febs.15327] [PMID: 32255251]
[44]
Cascone, T.; McKenzie, J.A.; Mbofung, R.M.; Punt, S.; Wang, Z.; Xu, C.; Williams, L.J.; Wang, Z.; Bristow, C.A.; Carugo, A.; Peoples, M.D.; Li, L.; Karpinets, T.; Huang, L.; Malu, S.; Creasy, C.; Leahey, S.E.; Chen, J.; Chen, Y.; Pelicano, H.; Bernatchez, C.; Gopal, Y.N.V.; Heffernan, T.P.; Hu, J.; Wang, J.; Amaria, R.N.; Garraway, L.A.; Huang, P.; Yang, P.; Wistuba, I.I.; Woodman, S.E.; Roszik, J.; Davis, R.E.; Davies, M.A.; Heymach, J.V.; Hwu, P.; Peng, W. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab., 2018, 27(5), 977-987.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.02.024] [PMID: 29628419]
[http://dx.doi.org/10.1016/j.cmet.2018.02.024] [PMID: 29628419]
[45]
Wang, H.; Wang, X.; Xu, L.; Zhang, J.; Cao, H. Integrated analysis of the E2F transcription factors across cancer types. Oncol. Rep., 2020, 43(4), 1133-1146.
[http://dx.doi.org/10.3892/or.2020.7504] [PMID: 32323836]
[http://dx.doi.org/10.3892/or.2020.7504] [PMID: 32323836]
[46]
Sun, C.C.; Zhou, Q.; Hu, W.; Li, S.J.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; Tang, Q.Z.; Li, D.J. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging, 2018, 10(5), 973-987.
[http://dx.doi.org/10.18632/aging.101441] [PMID: 29754146]
[http://dx.doi.org/10.18632/aging.101441] [PMID: 29754146]
[47]
Zhang, H.; Sun, L.; Hu, X. Mast cells resting-related prognostic signature in hepatocellular carcinoma. J. Oncol., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/4614257] [PMID: 34840569]
[http://dx.doi.org/10.1155/2021/4614257] [PMID: 34840569]