Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease

Author(s): Kushagra Nagori, Madhulika Pradhan, Mukesh Sharma, Ajazuddin, Hemant R. Badwaik and Kartik T. Nakhate*

Volume 21, Issue 1, 2024

Published on: 25 March, 2024

Page: [50 - 68] Pages: 19

DOI: 10.2174/0115672050306008240321034006

Price: $65

Abstract

Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer’s disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.

[1]
Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res., 2011, 221(2), 488-498.
[http://dx.doi.org/10.1016/j.bbr.2009.12.046] [PMID: 20060422]
[2]
Robinson, L.; Platt, B.; Riedel, G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res., 2011, 221(2), 443-465.
[http://dx.doi.org/10.1016/j.bbr.2011.01.055] [PMID: 21315109]
[3]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[4]
Iarkov, A.; Mendoza, C.; Echeverria, V. Cholinergic receptor modulation as a target for preventing dementia in parkinson’s disease. Front. Neurosci., 2021, 15, 665820.
[http://dx.doi.org/10.3389/fnins.2021.665820] [PMID: 34616271]
[5]
Fibiger, H.C. Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence. Trends Neurosci., 1991, 14(6), 220-223.
[http://dx.doi.org/10.1016/0166-2236(91)90117-D] [PMID: 1716012]
[6]
Jahed, F.J.; Rahbarghazi, R.; Shafaei, H.; Rezabakhsh, A.; Karimipour, M. Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimer’s disease-like pathology on the human neuroblastoma cells. Brain Res. Bull., 2021, 172, 180-189.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.014] [PMID: 33895268]
[7]
Dunnett, S.B.; Fibiger, H.C. Role of forebrain cholinergic systems in learning and memory: Relevance to the cognitive deficits of aging and Alzheimer’s dementia. Prog. Brain Res., 1993, 98, 413-420.
[http://dx.doi.org/10.1016/S0079-6123(08)62425-5] [PMID: 8248529]
[8]
Han, C. Corrigendum to “New mechanism of neuroinflflammation in Alzheimer’s disease: The activation of NLRP3 inflflammasome mediated by gut microbiota” Progress in Neuropsychopharmacology & Biological Psychiatry 100 (2020) 109884. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 114, 110482.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110482] [PMID: 34838637]
[9]
Sohn, E.; Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Kim, J.H.; Jeong, S.J. Elaeagnus glabra f. oxyphylla attenuates scopolamine-induced learning and memory impairments in mice by improving cholinergic transmission via activation of CREB/NGF signaling. Nutrients, 2019, 11(6), 1205.
[http://dx.doi.org/10.3390/nu11061205] [PMID: 31141948]
[10]
Nagori, K.; Nakhate, K.T.; Yadav, K.; Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for alzheimer’s disease: Preclinical to clinical trial insights. Fut. Pharmacol., 2023, 3(4), 877-907.
[http://dx.doi.org/10.3390/futurepharmacol3040053]
[11]
Ko, Y.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 6,7,4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol., 2018, 826, 140-147.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.048] [PMID: 29510125]
[12]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[13]
(a) Hampel, H.; Mesulam, M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 2018, 141(7), 1917-1933. (b) Thakur, A.; Nagori, K.; Rao, A.; Rai, N. Use of Deep Learning Approaches for the Prediction of Diseases from Medical Images. In Medical Imaging Informatics: Machine learning, deep learning and big data analytics; 2024; pp. 115138.
[http://dx.doi.org/10.1093/brain/awy132]
[14]
Perry, E.K.; Tomlinson, B.E.; Blessed, G.; Bergmann, K.; Gibson, P.H.; Perry, R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ, 1978, 2(6150), 1457-1459.
[http://dx.doi.org/10.1136/bmj.2.6150.1457] [PMID: 719462]
[15]
Chen, Q.; Wu, J.; Dong, X.; Yin, H.; Shi, X.; Su, S.; Che, B.; Li, Y.; Yang, J. Gut flora-targeted photobiomodulation therapy improves senile dementia in an Aß-induced Alzheimer’s disease animal model. J. Photochem. Photobiol. B, 2021, 216, 112152.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112152] [PMID: 33610085]
[16]
Gomez-Amaya, S.M.; Barbe, M.F.; Lamarre, N.S.; Brown, J.M.; Braverman, A.S.; Ruggieri, M.R., Sr Neuromuscular nicotinic receptors mediate bladder contractions following bladder reinnervation with somatic to autonomic nerve transfer after decentralization by spinal root transection. J. Urol., 2015, 193(6), 2138-2145.
[http://dx.doi.org/10.1016/j.juro.2014.10.046] [PMID: 25444958]
[17]
Jonsson, M.; Gurley, D.; Dabrowski, M.; Larsson, O.; Johnson, E.C.; Eriksson, L.I. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: A possible explanation for the train-of-four fade. Anesthesiology, 2006, 105(3), 521-533.
[http://dx.doi.org/10.1097/00000542-200609000-00016] [PMID: 16931985]
[18]
Paterson, D.; Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol., 2000, 61(1), 75-111.
[http://dx.doi.org/10.1016/S0301-0082(99)00045-3] [PMID: 10759066]
[19]
Kleeman, E.; Nakauchi, S.; Su, H.; Dang, R.; Wood, M.A.; Sumikawa, K. Impaired function of α2-containing nicotinic acetylcholine receptors on oriens-lacunosum moleculare cells causes hippocampus-dependent memory impairments. Neurobiol. Learn. Mem., 2016, 136, 13-20.
[http://dx.doi.org/10.1016/j.nlm.2016.09.010] [PMID: 27660076]
[20]
Charpantier, E.; Besnard, F.; Graham, D.; Sgard, F. Diminution of nicotinic receptor alpha 3 subunit mRNA expression in aged rat brain. Brain Res. Dev. Brain Res., 1999, 118(1-2), 153-158.
[http://dx.doi.org/10.1016/S0165-3806(99)00157-1] [PMID: 10611514]
[21]
Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J. Interactions of atropine with heterologously expressed and native alpha 3 subunit-containing nicotinic acetylcholine receptors. Br J Pharmacol, 2003, 138(5), 801-810.
[http://dx.doi.org/10.1038/sj.bjp.0705124]
[22]
Poth, K.; Nutter, T.J.; Cuevas, J.; Parker, M.J.; Adams, D.J.; Luetje, C.W. Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci, 1997, 17(2), 586-596.
[http://dx.doi.org/10.1523/JNEUROSCI.17-02-00586.1997]
[23]
Dallanoce, C.; Matera, C.; Amici, M.D.E.; Rizzi, L.; Pucci, L.; Gotti, C.; Clementi, F.; Micheli, C.D.E.; Farmaceutiche, S.; Pratesi, P. The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24(7), 543-551.
[24]
Gao, Y.; Kuwabara, H.; Spivak, C.E.; Xiao, Y.; Kellar, K.; Ravert, H.T.; Kumar, A.; Alexander, M.; Hilton, J.; Wong, D.F.; Dannals, R.F.; Horti, A.G. Discovery of (-)-7-methyl-2-exo-[3′-(6-[18F]fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (alpha4β2-nAChR) with optimal positron emission tomography imaging properties. J. Med. Chem., 2008, 51(15), 4751-4764.
[http://dx.doi.org/10.1021/jm800323d] [PMID: 18605717]
[25]
Vincler, M.; Mcintosh, J.M. Targeting the alpha9alpha10 nicotinic acetylcholine receptor to treat severe pain. Expert. Opin. Ther. Targets, 2007, 11(7), 891-877.
[26]
Bagdas, D.; AlSharari, S.D.; Freitas, K.; Tracy, M.; Damaj, M.I. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem. Pharmacol., 2015, 97(4), 590-600.
[http://dx.doi.org/10.1016/j.bcp.2015.04.013] [PMID: 25931144]
[27]
Bloem, B.; Poorthuis, R.B.; Mansvelder, H.D. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front. Neural Circuits, 2014, 8, 17.
[http://dx.doi.org/10.3389/fncir.2014.00017] [PMID: 24653678]
[28]
Brown, R.W.B.; Collins, A.C.; Lindstrom, J.M.; Whiteaker, P. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem, 2007, 103(1), 204-215.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04700.x]
[29]
Collingridge, G.L.; Olsen, R.W.; Peters, J.; Spedding, M.; Neuropharmacology, A. A nomenclature for ligand-gated ion channels. Neuropharmacology, 2009, 56(1), 2-5.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.063] [PMID: 18655795]
[30]
Quik, M.; Perez, X.A.; Grady, S.R. Role of a 6 nicotinic receptors in CNS dopaminergic function. Relevan. Addict. Neurolog. Disord., 2011, 82, 873-882.
[http://dx.doi.org/10.1016/j.bcp.2011.06.001] [PMID: 21684266]
[31]
Tietje, K.R.; Anderson, D.J.; Bitner, R.S.; Blomme, E.A.; Brackemeyer, P.J.; Briggs, C.A.; Browman, K.E.; Bury, D.; Curzon, P.; Drescher, K.U. Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther, 2008, 14(1), 65-82.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00037.x]
[32]
Lykhmus, O.; Voytenko, L.P.; Lips, K.S.; Bergen, I. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front Cell Neurosci, 2017, 11, 282.
[http://dx.doi.org/10.3389/fncel.2017.00282]
[33]
Vincler, M.; Mcintosh, J.M.; Absalom, N.; Chebib, M.; Bele, A. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol, 2009, 78(7), 693-702.
[http://dx.doi.org/10.1016/j.bcp.2009.05.020]
[34]
Kellar, J.; Yasuda, R.P.; Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J.; Perez, D.M.; Barabino, B.; Vailati, S.; Moretti, M. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity A4β2, and increases A5α4β2, nicotinic receptor surface expression. PLoS One, 2008, 11, 519-528.
[http://dx.doi.org/10.1523/JNEUROSCI.3666-07.2008]
[35]
Freed, A.S.; Schwarz, A.C.; Brei, B.K.; Candadai, C.S.V.; Thies, J.; Mah, J.K.; Chabra, S.; Wang, L.; Innes, A.M.; Bennett, J.T. CHRNB1-associated congenital myasthenia syndrome: Expanding the clinical spectrum. Am. J. Med. Genet. A., 2021, 185(3), 827-835.
[http://dx.doi.org/10.1002/ajmg.a.62011] [PMID: 33296147]
[36]
Levin, E.D. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem. Pharmacol., 2013, 86(8), 1145-1152.
[http://dx.doi.org/10.1016/j.bcp.2013.07.021] [PMID: 23928190]
[37]
Nichols, W.A.; Henderson, B.J.; Marotta, C.B.; Yu, C.Y.; Richards, C.; Dougherty, D.A.; Lester, H.A.; Cohen, B.N. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLoS One, 2016, 11(6), e0158032.
[http://dx.doi.org/10.1371/journal.pone.0158032] [PMID: 27336596]
[38]
Samochocki, M.; Zerlin, M.; Jostock, R.; Pj, G.K. Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand Suppl, 2000, 176, 68-73.
[39]
Gharpure, A.; Teng, J.; Zhuang, Y.; Noviello, C.M.; Walsh, R.M., Jr; Cabuco, R.; Howard, R.J.; Zaveri, N.T.; Lindahl, E.; Hibbs, R.E. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron, 2019, 104(3), 501-511.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.07.030] [PMID: 31488329]
[40]
Skok, V.I. Nicotinic acetylcholine receptors in autonomic Ganglia. Auton Neurosci, 2002, 97, 1-11.
[41]
Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.H.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs, 2000, 32(S1), 1-112, 1-112.
[http://dx.doi.org/10.1080/02791072.2000.10736099] [PMID: 11280926]
[42]
Lee, S.H.; Barrie, E.S.; Sadee, W.; Smith, R.M. Nicotine Dependence and the CHRNA5/CHRNA3/CHRNB4 Nicotinic Receptor Regulome; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-813035-3.00043-5]
[43]
Spindle, M.S.; Parsa, P.V.; Bowles, S.G.; D’Souza, R.D.; Vijayaraghavan, S. A dominant role for the beta 4 nicotinic receptor subunit in nicotinic modulation of glomerular microcircuits in the mouse olfactory bulb. J. Neurophysiol., 2018, 120(4), 2036-2048.
[http://dx.doi.org/10.1152/jn.00925.2017] [PMID: 30089021]
[44]
Grailhe, R.; De Carvalho, L.P.; Paas, Y.; Le Poupon, C.; Soudant, M.; Bregestovski, P.; Changeux, J.P.; Corringer, P.J. Distinct subcellular targeting of fluorescent nicotinic α3β4 and serotoninergic 5-HT3A receptors in hippocampal neurons. Eur. J. Neurosci., 2004, 19(4), 855-862.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03153.x] [PMID: 15009132]
[45]
Yang, K.; Jin, G.; Wu, J. Mysterious A6-containing NAChRs. Funct. Pharmacolog. Pathophysiol.., 2009, 30, 740-751.
[http://dx.doi.org/10.1038/aps.2009.63] [PMID: 19498417]
[46]
Deligia, F.; Murineddu, G.; Gotti, C.; Ragusa, G.; Fasoli, F.; Sciaccaluga, M.; Plutino, S.; Fucile, S.; Loriga, G.; Asproni, B.; Pinna, G.A. Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors. Eur. J. Med. Chem., 2018, 152, 401-416.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.026] [PMID: 29751234]
[47]
Barabino, B.; Vailati, S.; Moretti, M.; Mcintosh, J.M.; Longhi, R.; Clementi, F.; Gotti, C. An alpha4beta4 nicotinic receptor subtype is present in chick retina: identification, characterization and pharmacological comparison with the transfected alpha4beta4 and alpha6beta4 subtypes. Mol Pharmacol, 2001, 59(6), 1410-1417.
[48]
Evans, N.M.; Bose, S.; Benedetti, G.; Zwart, R.; Pearson, K.H.; Mcphie, G.I.; Craig, P.J.; Benton, J.P.; Volsen, S.G.; Sher, E. Expression and functional characterisation of a human chimeric nicotinic receptor with alpha6beta4 properties. Eur J Pharmacol, 2003, 466(1-2), 31-39.
[http://dx.doi.org/10.1016/S0014-2999(03)01540-1]
[49]
Yang, K.; Jin, G.; Wu, J. Mysterious α6-containing nAChRs: Function, pharmacology, and pathophysiology. Acta Pharmacol. Sin., 2009, 30(6), 740-751.
[http://dx.doi.org/10.1038/aps.2009.63] [PMID: 19498417]
[50]
Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.; Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol., 2009, 78(7), 703-711.
[http://dx.doi.org/10.1016/j.bcp.2009.05.024] [PMID: 19481063]
[51]
Moretti, M.; Zoli, M.; George, A.A.; Lukas, R.J.; Pistillo, F.; Maskos, U.; Whiteaker, P.; Gotti, C. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: Biochemical and pharmacological characterization. Mol. Pharmacol., 2014, 86(3), 306-317.
[http://dx.doi.org/10.1124/mol.114.093377] [PMID: 25002271]
[52]
Thomsen, M.S.; Zwart, R.; Ursu, D.; Jensen, M.M.; Pinborg, L.H.; Gilmour, G.; Wu, J.; Sher, E.; Mikkelsen, J.D. α7 and β2 nicotinic acetylcholine receptor subunits form heteromeric receptor complexes that are expressed in the human cortex and display distinct pharmacological properties. PLoS One, 2015, 10(6), e0130572.
[http://dx.doi.org/10.1371/journal.pone.0130572] [PMID: 26086615]
[53]
Shao, X.M.; Tan, W.; Xiu, J.; Puskar, N.; Fonck, C.; Lester, H.A.; Feldman, J.L. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J. Neurosci., 2008, 28(2), 519-528.
[http://dx.doi.org/10.1523/JNEUROSCI.3666-07.2008] [PMID: 18184794]
[54]
Mesulam, M.M.; Mufson, E.J.; Levey, A.I.; Wainer, B.H. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol., 1983, 214(2), 170-197.
[http://dx.doi.org/10.1002/cne.902140206] [PMID: 6841683]
[55]
Woolf, N. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol., 1991, 37(6), 475-524.
[http://dx.doi.org/10.1016/0301-0082(91)90006-M] [PMID: 1763188]
[56]
Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 2016, 91(6), 1199-1218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006] [PMID: 27657448]
[57]
Maurer, S.V.; Williams, C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol., 2017, 8, 1489.
[http://dx.doi.org/10.3389/fimmu.2017.01489] [PMID: 29167670]
[58]
Yi, F.; Catudio-Garrett, E.; Gábriel, R.; Wilhelm, M.; Erdelyi, F.; Szabo, G.; Deisseroth, K.; Lawrence, J. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front. Synaptic Neurosci., 2015, 7, 4.
[http://dx.doi.org/10.3389/fnsyn.2015.00004] [PMID: 25798106]
[59]
Blusztajn, J.K.; Rinnofner, J. Intrinsic cholinergic neurons in the hippocampus: Fact or artifact? Front. Synaptic Neurosci., 2016, 8, 6-11.
[http://dx.doi.org/10.3389/fnsyn.2016.00006] [PMID: 27014052]
[60]
Dautan, D.; Bay, H.H.; Bolam, J.P.; Gerdjikov, T.V.; Segovia, M.J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1-10.
[http://dx.doi.org/10.3389/fnana.2016.00001] [PMID: 26834571]
[61]
Erskine, D.; Taylor, J.P.; Bakker, G.; Brown, A.J.H.; Tasker, T.; Nathan, P.J. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov. Today, 2019, 24(12), 2307-2314.
[http://dx.doi.org/10.1016/j.drudis.2019.08.009] [PMID: 31499186]
[62]
Agostinelli, L.J.; Geerling, J.C.; Scammell, T.E. Basal forebrain subcortical projections. Brain Struct. Funct., 2019, 224(3), 1097-1117.
[http://dx.doi.org/10.1007/s00429-018-01820-6] [PMID: 30612231]
[63]
Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28.
[http://dx.doi.org/10.1016/j.brainresbull.2013.12.004] [PMID: 24333192]
[64]
Zaborszky, L.; Duque, A.; Gielow, M.; Gombkoto, P.; Nadasdy, Z.; Somogyi, J. Organization of the basal forebrain cholinergic projection system: Specific or diffuse? The Rat Nervous System, 2015, , 491-507.
[http://dx.doi.org/10.1016/B978-0-12-374245-2.00019-X]
[65]
Simon, P.A.; Jazat, P.F.; Dutar, P.; Epelbaum, J.; Bassant, M.H. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats. J. Neurosci., 2006, 26(35), 9038-9046.
[http://dx.doi.org/10.1523/JNEUROSCI.1401-06.2006] [PMID: 16943562]
[66]
Ahmed, N.Y.; Knowles, R.; Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci., 2019, 12, 204.
[http://dx.doi.org/10.3389/fnmol.2019.00204] [PMID: 31551706]
[67]
Gourgues, H.F.; Jegouic, K.; Vaucher, E. Topographic organization of cholinergic innervation from the basal forebrain to the visual cortex in the rat. Front. Neural Circuits, 2018, 12, 19.
[http://dx.doi.org/10.3389/fncir.2018.00019] [PMID: 29662442]
[68]
Kondo, H.; Zaborszky, L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol., 2016, 524(12), 2503-2515.
[http://dx.doi.org/10.1002/cne.23967] [PMID: 26780730]
[69]
Cantero, J.L.; Atienza, M.; Lage, C.; Zaborszky, L.; Vilaplana, E.; Garcia, L.S.; Pozueta, A.; Rodriguez, R.E.; Blesa, R.; Alcolea, D.; Lleo, A.; Juan, S.P.; Fortea, J. Atrophy of basal forebrain initiates with tau pathology in individuals at risk for alzheimer’s disease. Cereb. Cortex, 2020, 30(4), 2083-2098.
[http://dx.doi.org/10.1093/cercor/bhz224] [PMID: 31799623]
[70]
Ohno, M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res. Bull., 2016, 126(Pt 2), 183-198.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.007] [PMID: 27093940]
[71]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[72]
Tiwari, P.; Dwivedi, S.; Singh, M.P.; Mishra, R.; Chandy, A. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2013, 3(5), 413-420.
[http://dx.doi.org/10.1016/S2222-1808(13)60094-8]
[73]
Van der Zee, E.A.; Luiten, P.G.M. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: A review of immunocytochemical localization in relation to learning and memory. Prog. Neurobiol., 1999, 58(5), 409-471.
[http://dx.doi.org/10.1016/S0301-0082(98)00092-6] [PMID: 10380240]
[74]
Ishii, M.; Kurachi, Y. Muscarinic acetylcholine receptors. Curr. Pharm. Des., 2006, 12(28), 3573-3581.
[http://dx.doi.org/10.2174/138161206778522056]
[75]
Graef, S.; Schönknecht, P.; Sabri, O.; Hegerl, U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology, 2011, 215(2), 205-229.
[http://dx.doi.org/10.1007/s00213-010-2153-8] [PMID: 21212938]
[76]
Smail, M.A.; Soles, J.L.; Karwoski, T.E.; Rubin, R.T.; Rhodes, M.E. Sexually diergic hypothalamic-pituitary-adrenal axis responses to selective and non-selective muscarinic antagonists prior to cholinergic stimulation by physostigmine in rats. Brain Res. Bull., 2018, 137, 23-34.
[http://dx.doi.org/10.1016/j.brainresbull.2017.11.002] [PMID: 29122691]
[77]
Bock, A.; Schrage, R.; Mohr, K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology, 2018, 136(Pt C), 427-437.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.024] [PMID: 28935216]
[78]
Zenko, D.; Hislop, J.N.S.C. Regulation and trafficking of muscarinic acetylcholine receptors. Neuropharmacology, 2017, 136(Pt C), 374-382.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.017] [PMID: 29138081]
[79]
Drever, B.D.; Riedel, G.; Platt, B. The cholinergic system and hippocampal plasticity. Behav. Brain Res., 2011, 221(2), 505-514.
[http://dx.doi.org/10.1016/j.bbr.2010.11.037] [PMID: 21130117]
[80]
Thal, D.M.; Sun, B.; Feng, D.; Nawaratne, V.; Leach, K.; Felder, C.C.; Bures, M.G.; Evans, D.A.; Weis, W.I.; Bachhawat, P.; Kobilka, T.S.; Sexton, P.M.; Kobilka, B.K.; Christopoulos, A. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531(7594), 335-340.
[http://dx.doi.org/10.1038/nature17188] [PMID: 26958838]
[81]
Marsango, S.; Ward, R.J.; Curto, A.E.; Milligan, G.S.C. Muscarinic receptor oligomerization. Neuropharmacology, 2017, 136(Pt C), 401-410.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.023] [PMID: 29146505]
[82]
van der Westhuizen, E.T.; Choy, K.H.C.; Valant, C.; Nickson, M.S.; Bradley, S.J.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front. Pharmacol., 2021, 11, 606656.
[http://dx.doi.org/10.3389/fphar.2020.606656] [PMID: 33584282]
[83]
Schledwitz, A.; Sundel, M.H.; Alizadeh, M.; Hu, S.; Xie, G.; Raufman, J. Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int. J. Mol. Sci., 2021, 22(23), 13153.
[84]
Saternos, H.C.; Almarghalani, D.A.; Gibson, H.M.; Meqdad, M.A.; Antypas, R.B.; Lingireddy, A.; Aboualaiwi, W.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomi., 2022, 50(1), 1-9.
[http://dx.doi.org/10.1152/physiolgenomics.00062.2017]
[85]
Naganawa, M.; Nabulsi, N.; Henry, S.; Matuskey, D.; Lin, S.; Navarro, A.; Gao, H.; Ropchan, J.; Labaree, D.; Carson, R.E. First-in-human assessment of 11C-LSN3172176, an M1 muscarinic acetylcholine receptor PET radiotracer. J. Nucl. Med., 2020, 62(4), 553-560.
[http://dx.doi.org/10.2967/jnumed.120.246967]
[86]
Moran, S.P.; Maksymetz, J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci., 2020, 40, 1006-1020.
[http://dx.doi.org/10.1016/j.tips.2019.10.007.Targeting]
[87]
Scarpa, M.; Hesse, S.; Bradley, S.J. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease- modifying effects in Alzheimer’s disease? Adv. Pharmacol., 2020, 88, 277-310.
[http://dx.doi.org/10.1016/bs.apha.2019.12.003] [PMID: 32416870]
[88]
Uslaner, J.M.; Kuduk, S.D.; Wittmann, M.; Lange, H.S.; Fox, S.V.; Min, C.; Pajkovic, N.; Harris, D.; Cilissen, C.; Mahon, C.; Mostoller, K.; Warrington, S.; Beshore, D.C. Preclinical to human translational pharmacology of the novel M 1 positive allosteric modulator MK-7622. J. Pharmacol. Exp. Ther., 2018, 365(3), 556-566.
[http://dx.doi.org/10.1124/jpet.117.245894] [PMID: 29563325]
[89]
Sales, M.E.; Español, A.J.; Salem, A.R.; Pulido, P.M.; Sanchez, Y.; Sanchez, F. Role of muscarinic acetylcholine receptors in breast cancer: Design of metronomic chemotherapy. Curr Clin Pharmacol., 2019, 14(2), 91-100.
[http://dx.doi.org/10.2174/1574884714666181203095437]
[90]
Ruan, Y.; Patzak, A.; Pfeiffer, N.; Gericke, A. Muscarinic acetylcholine receptors in the retina—therapeutic implications. Int J Mol Sci., 2021, 22(9), 4989.
[91]
Xu, J.; Hu, Y.; Kaindl, J.; Gmeiner, P.; Jin, C.; Kobilka, B.K.; Maeda, S.; Niu, X.; Li, H. Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Mol. Cell, 2019, 75(1), 53-65.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.04.028]
[92]
Romberg, C. Impaired object-location learning and recognition memory but enhanced sustained attention in M2 muscarinic receptor-deficient mice. Psychopharmacology., 2018, 235(12), 3495-3508.
[http://dx.doi.org/10.1007/s00213-018-5065-7]
[93]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560.
[http://dx.doi.org/10.1038/nrd4295] [PMID: 24903776]
[94]
Wang, L.; Xu, J.; Xia, Y.; Yin, K.; Li, Z.; Li, B.; Wang, W.; Xu, H.; Yang, L. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer. Oncogenesis, 2018, 7(11), 88.
[http://dx.doi.org/10.1038/s41389-018-0099-6]
[95]
Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Wess, J.; Kobilka, B.K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482(7386), 552-556.
[http://dx.doi.org/10.1038/nature10867] [PMID: 22358844]
[96]
Suriyo, T.; Chotirat, S.; Auewarakul, C.U. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol Lett., 2019, 17(1), 1357-1362.
[http://dx.doi.org/10.3892/ol.2018.9663]
[97]
Costa, A.; Haage, V.; Yang, S.; Wegner, S.; Ugursu, B.; Rex, A.; Kronenberg, G.; Gertz, K.; Wolf, S.A.; Kettenmann, H. Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain Behav. Immun., 2020, 91, 89-104.
[http://dx.doi.org/10.1016/j.bbi.2020.09.008] [PMID: 32927021]
[98]
Hering, N.A.; Liu, V.; Kim, R.; Weixler, B.; Droeser, R.A.; Arndt, M.; Pozios, I.; Beyer, K.; Kreis, M.E.; Seeliger, H. Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers, 2021, 13(13), 3220.
[99]
Nicklas, P.R.; Kiefer, M.L.; Whalen, M.A.; Stewart, M.T.; Mosura, D.E.; Bennett, E.M.; Hawley, W.R.; McLaughlin, P.J. Muscarinic M1, but not M4, receptor antagonism impairs divided attention in male rats. Pharmacol. Biochem. Behav., 2021, 205, 173184.
[http://dx.doi.org/10.1016/j.pbb.2021.173184] [PMID: 33836220]
[100]
Wang, J.; Wu, M.; Wu, L.; Xu, Y.; Li, F.; Wu, Y.; Popov, P.; Wang, L.; Bai, F.; Zhao, S. The structural study of mutation-induced inactivation of human muscarinic receptor M4. IUCrJ, 2020, 7(Pt 2), 294-305.
[http://dx.doi.org/10.1107/S2052252520000597]
[101]
Paderina, D.Z.; Fedorenko, O.Y.; Tenin, G.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. Association of cholinergic muscarinic M4 receptor gene polymorphism with schizophrenia. Appl. Clin. Genet., 2020, 13, 97-105.
[102]
Takai, K.; Enomoto, T. Discovery and development of muscarinic acetylcholine m4 activators as promising therapeutic agents for CNS diseases. Chem. Pharm. Bull., 2018, 66(1), 37-44.
[103]
Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci., 2019, 116(51), 26001-26007.
[http://dx.doi.org/10.1073/pnas.1914446116]
[104]
Scherbaum, I.; Heidecke, H.; Bunte, K.; Peters, U.; Beikler, T. Autoantibodies against m 5 -muscarinic and beta 1 -adrenergic receptors in periodontitis patients. 2020, 12, 16609-16620.
[105]
Wen, J. Interactions of the Α3β2 nicotinic acetylcholine receptor interfaces with α-conotoxin LsIA and its carboxylated C-terminus analogue: Molecular dynamics simulations. Mar. Drugs., 2020, 18(7), 349.
[106]
Valentine, G.; Sofuoglu, M. Cognitive effects of nicotine: Recent progress. Curr Neuropharmacol, 2018, 16(4), 403-414.
[http://dx.doi.org/10.2174/1570159X15666171103152136]
[107]
Xu, M.; Zhu, X.; Yu, J.; Yu, J.; Luo, S.; Wang, X. The crystal structure of Ac-AChBP in complex with α-conotoxin Lvia reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell, 2017, 8(9), 675-685.
[http://dx.doi.org/10.1007/s13238-017-0426-2] [PMID: 28585176]
[108]
Alvin, V. Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tob Res., 2019, 21(3), 383-394.
[109]
Gharpure, A.; Noviello, C.M.; Hibbs, R.E. Progress in nicotinic receptor structural biology. Neuropharmacology, 2020, 171, 108086.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108086] [PMID: 32272141]
[110]
Kouvatsos, N.; Giastas, P.; Chroni-Tzartou, D.; Poulopoulou, C.; Tzartos, S.J. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Proc. Natl. Acad. Sci., 2016, 113(34), 9635-9640.
[http://dx.doi.org/10.1073/pnas.1602619113] [PMID: 27493220]
[111]
Ba, S.M.G.; Metherate, R. Enhanced sensory–cognitive processing by activation of nicotinic acetylcholine receptors. Nicotine Tob Res., 2019, 21(3), 377-382.
[http://dx.doi.org/10.1093/ntr/nty134]
[112]
Ween, H.; Thorin-Hagene, K.; Andersen, E.; Grønlien, J.H.; Lee, C.H.; Gopalakrishnan, M.; Malysz, J. α3 and α7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells. Neurochem. Int., 2010, 57(3), 269-277.
[http://dx.doi.org/10.1016/j.neuint.2010.06.005] [PMID: 20558224]
[113]
Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther., 2013, 137(1), 22-54.
[http://dx.doi.org/10.1016/j.pharmthera.2012.08.012] [PMID: 22925690]
[114]
Wu, T.; Wang, Y.; Shi, W.; Zhang, B.Q.; Raelson, J.; Yao, Y.M.; Wu, H.D.; Xu, Z.X.; Blanchet, M.F.C.; Ledoux, J.; Blunck, R.; Sheng, J.Z.; Hu, S.J.; Luo, H.; Wu, J. A variant in the nicotinic acetylcholine receptor alpha 3 subunit gene is associated with hypertension risks in hypogonadic patients. Front. Genet., 2020, 11, 539862.
[http://dx.doi.org/10.3389/fgene.2020.539862] [PMID: 33329690]
[115]
Baradaran, R.; Anbarkeh, F.R.; Delavar, A.; Khorasgani, E.M.; Rahimian, N.; Abbasi, Y.; Jaberi, N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J. Chem. Neuroanat., 2021, 116, 101977.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101977] [PMID: 34052301]
[116]
Yu, W.F.; Nordberg, A.; Ravid, R.; Guan, Z.Z. Correlation of oxidative stress and the loss of the nicotinic receptor alpha4 subunit in the temporal cortex of patients with Alzheimer’s disease. Neurosci. Lett., 2003, 338(1), 13-16.
[http://dx.doi.org/10.1016/S0304-3940(02)01361-7] [PMID: 12565129]
[117]
Quijano Cardé, N.A.; Shaw, J.; Carter, C.; Kim, S.; Stitzel, J.A.; Venkatesh, S.K.; Ramchandani, V.A.; De Biasi, M. Mutation of the α5 nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology, 2022, 216, 109170.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109170] [PMID: 35752273]
[118]
Sun, H.; Ma, X. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells. Exp. Toxicol. Pathol., 2015, 67(9), 477-482.
[http://dx.doi.org/10.1016/j.etp.2015.07.001] [PMID: 26205096]
[119]
Zhang, Y.; Jia, Y.; Li, P. Reciprocal activation of A5-NAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J. Genet. Genomics, 2017, 44, 355-362.
[http://dx.doi.org/10.1016/j.jgg.2017.03.003] [PMID: 28750889]
[120]
Jia, Y.; Zhang, Q.; Liu, Z.; Pan, P.; Jia, Y.; Zhu, P.; Jiao, Y.; Kang, G.; Ma, X. The role of α5-nicotinic acetylcholine receptor/NLRP3 signaling pathway in lung adenocarcinoma cell proliferation and migration. Toxicology, 2022, 469, 153120.
[http://dx.doi.org/10.1016/j.tox.2022.153120] [PMID: 35131329]
[121]
Gu, S.; Matta, J.A.; Davini, W.B.; Dawe, G.B.; Lord, B.; Bredt, D.S. α6-Containing nicotinic acetylcholine receptor reconstitution involves mechanistically distinct accessory components. Cell Rep., 2019, 26(4), 866-874.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.12.103] [PMID: 30673609]
[122]
Cardenas, A.; Elabd, M.; Lotfipour, S. Specificity of a rodent alpha(α)6 nicotinic acetylcholine receptor subunit antibody. Psychopharmacology, 2020, 237(1), 283-285.
[http://dx.doi.org/10.1007/s00213-019-05413-x] [PMID: 31786649]
[123]
Gao, F.; Chen, D.; Ma, X.; Sudweeks, S.; Jordan, T.; Gao, M.; Turner, D.; Eaton, J.B.; Michael, J.; Lukas, R.J. Version of Record, 2019. Available from: Https://Www.Sciencedirect.Com/Science/Article/Pii/S002839081830772X
[124]
Tofighi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology, 2021, 85, 245-253.
[http://dx.doi.org/10.1016/j.neuro.2021.06.002] [PMID: 34111468]
[125]
Li, H.; Gao, J.; Chang, Y.; Li, K.; Wang, L.; Ju, C.; Zhang, F. JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF- κB-mediated inflammation. Int. Immunopharmacol., 2021, 96, 107726.
[http://dx.doi.org/10.1016/j.intimp.2021.107726] [PMID: 33975230]
[126]
Yang, T.; Xiao, T.; Sun, Q.; Wang, K. The current agonists and positive allosteric modulators of α 7 nAChR for CNS indications in clinical trials. Acta Pharm. Sin. B, 2017, 7(6), 611-622.
[http://dx.doi.org/10.1016/j.apsb.2017.09.001] [PMID: 29159020]
[127]
Potasiewicz, A.; Faron-Gorecka, A.; Popik, P.; Nikiforuk, A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav. Brain Res., 2021, 409, 113338.
[http://dx.doi.org/10.1016/j.bbr.2021.113338] [PMID: 33940049]
[128]
Liu, Q.; Tang, Z.; Gan, Y.; Wu, W.; Kousari, A.; La Cava, A.; Shi, F.D. Genetic deficiency of β2-containing nicotinic receptors attenuates brain injury in ischemic stroke. Neuroscience, 2014, 256, 170-177.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.049] [PMID: 24184117]
[129]
Kamens, H.M.; Miyamoto, J.; Powers, M.S.; Ro, K.; Soto, M.; Cox, R.; Stitzel, J.A.; Ehringer, M.A. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology, 2015, 99, 639-649.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.035] [PMID: 26318101]
[130]
Jackson, A.B.; Toma, W.; Contreras, K.M.; Alkhlaif, Y.; Damaj, M.I. The β3 subunit of the nicotinic acetylcholine receptor is required for nicotine withdrawal-induced affective but not physical signs or nicotine reward in mice. Pharmacol. Biochem. Behav., 2019, 183, 1-5.
[http://dx.doi.org/10.1016/j.pbb.2019.05.003] [PMID: 31145916]
[131]
Semenova, S.; Contet, C.; Roberts, A.J.; Markou, A. Mice lacking the β4 subunit of the nicotinic acetylcholine receptor show memory deficits, altered anxiety- and depression-like behavior, and diminished nicotine-induced analgesia. Nicotine Tob. Res., 2012, 14(11), 1346-1355.
[http://dx.doi.org/10.1093/ntr/nts107] [PMID: 22573727]
[132]
Roberts, J.P.; Stokoe, S.A.; Sathler, M.F.; Nichols, R.A.; Kim, S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloid–induced synaptic dysfunction. J. Biol. Chem., 2021, 296, 100402.
[http://dx.doi.org/10.1016/j.jbc.2021.100402] [PMID: 33571523]
[133]
Jenny, L. Advances in the in vitro and in vivo pharmacology of alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology., 2020, 168, 108008.
[134]
Gallagher, R.; Qudah, T.; Balle, T.; Chebib, M.; McLeod, M.D. Novel methyllycaconitine analogues selective for the α4β2 over α7 nicotinic acetylcholine receptors. Bioorg. Med. Chem., 2021, 51, 116516.
[http://dx.doi.org/10.1016/j.bmc.2021.116516] [PMID: 34798380]
[135]
Hernández-Sámano, A.C.; Falcón, A.; Zamudio, F.; Arellano, O.M.A.; Vera, L.E.; Aguilar, M.B. A turripeptide from Polystira nobilis venom inhibits human α3β2 and α7 nicotinic acetylcholine receptors. Insect Biochem. Mol. Biol., 2020, 124, 103416.
[http://dx.doi.org/10.1016/j.ibmb.2020.103416] [PMID: 32592834]
[136]
Angelantonio, D.S.; De Stefano, M.E.; Piccioni, A.; Lombardi, L.; Gotti, C.; Paggi, P. Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiol. Dis., 2011, 41(2), 528-537.
[http://dx.doi.org/10.1016/j.nbd.2010.10.024] [PMID: 21056666]
[137]
Chang, Y.; Banerjee, J.; Dowell, C.; Wu, J.; Gyanda, R.; Houghten, R.A.; Toll, L.; Mcintosh, J.M.; Armishaw, C.J. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library. J Med Chem., 2014, 57(8), 3511-3521.
[138]
Perniss, A.; Latz, A.; Boseva, I.; Papadakis, T.; Dames, C.; Meisel, C.; Meisel, A.; Scholze, P.; Kummer, W.; Christ, K.G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int. Immunopharmacol., 2020, 84, 106496.
[http://dx.doi.org/10.1016/j.intimp.2020.106496] [PMID: 32304995]
[139]
Wu, J.; Liu, Q.; Tang, P.; Jens, D. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci, 2016, 37(7), 562-574.
[140]
Williams, G.; Murray, T.A. Louisiana Tech University; R. Grace Williams, 1542.
[141]
Tarasenko, O.; Voytenko, S.; Koval, L.; Lykhmus, O.; Kalashnyk, O.; Skok, M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int. Immunopharmacol., 2020, 82, 106373.
[http://dx.doi.org/10.1016/j.intimp.2020.106373] [PMID: 32163855]
[142]
Havekes, R.; Abel, T.; Van der Zee, E.A. The cholinergic system and neostriatal memory functions. Behav. Brain Res., 2011, 221(2), 412-423.
[http://dx.doi.org/10.1016/j.bbr.2010.11.047] [PMID: 21129408]
[143]
Campbell, B.A. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science., 1979, 205, 929-932.
[144]
Wilkerson, A.; Levin, E.D. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience., 1999, 89(3), 743-749.
[http://dx.doi.org/10.1016/S0306-4522(98)00346-7]
[145]
Neill, M.O.; Brown, V.J. The Effect of Striatal Dopamine Depletion and the Adenosine A 2A Antagonist KW-6002 on Reversal Learning in Rats. Neurobiol Learn Mem, 2007, 88(3), 75-81.
[http://dx.doi.org/10.1016/j.nlm.2007.03.003]
[146]
Korpi, E.R.; Gründer, G.; Lüddens, H. Drug interactions at GABA(A) receptors. Prog Neurobiol, 2002, 67(2), 113-159.
[147]
Govindpani, K.; Guzm, B.C.; Vinnakota, C.; Waldvogel, H.J.; Id, R.L.F.; Kwakowsky, A. Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci, 2017, 18(8), 1813.
[http://dx.doi.org/10.3390/ijms18081813]
[148]
Nakhate, K. Cognitive informatics, computer modeling, and cognitive science application to neural. Acad. Press, 2020, 2, 21-47.
[http://dx.doi.org/10.1016/B978-0-12-819445-4.00002-3]
[149]
Van Erum, J.; Van Dam, D.; Deyn, P.P. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci. Biobehav. Rev., 2019, 105, 72-80.
[http://dx.doi.org/10.1016/j.neubiorev.2019.07.019] [PMID: 31377219]
[150]
Charnay, Y. Pharmacological aspects. Dialogues Clin Neurosci, 2010, 12(4), 471-487.
[151]
Terry, A.V., Jr; Buccafusco, J.J.; Wilson, C. Cognitive dysfunction in neuropsychiatric disorders: Selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res., 2008, 195(1), 30-38.
[http://dx.doi.org/10.1016/j.bbr.2007.12.006] [PMID: 18241938]
[152]
Rodrı, J. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol, 2012, 99(1), 15-41.
[http://dx.doi.org/10.1016/j.pneurobio.2012.06.010]
[153]
Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function. HHS Public Access., 2018, 142, 111-121.
[http://dx.doi.org/10.1111/jnc.14052.Cholinergic]
[154]
Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell, 2019, 18(6), e13037.
[http://dx.doi.org/10.1111/acel.13037]
[155]
Wang, K.; Chen, Q.; Wu, N.; Li, Y.; Zhang, R.; Wang, J.; Gong, D.; Zou, X.; Liu, C.; Chen, J. Berberine ameliorates spatial learning memory impairment and modulates cholinergic anti-inflammatory pathway in diabetic rats. Front. Pharmacol., 2019, 10, 1003.
[http://dx.doi.org/10.3389/fphar.2019.01003] [PMID: 31551793]
[156]
Ma, S.; Leonard, C.S.; Wisden, W. Andrew dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci. Biobehav. Rev., 2018, 85, 21-33.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.009]
[157]
Callahan, P.M.; Terry, A.V., Jr; Peitsch, M.C.; Hoeng, J.; Koshibu, K. Differential effects of alkaloids on memory in rodents. Sci. Rep., 2021, 11(1), 9843.
[http://dx.doi.org/10.1038/s41598-021-89245-w] [PMID: 33972592]
[158]
Inayat, S.; Nazariahangarkolaee, M.; Singh, S.; Mcnaughton, B.L.; Whishaw, I.Q.; Mohajerani, M.H. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 2020, 43(6), zsz297.
[http://dx.doi.org/10.1093/sleep/zsz297]
[159]
Mineur, Y.S.; Picciotto, M.R. The role of acetylcholine in negative encoding bias: Too much of a good thing? Eur. J. Neurosci., 2021, 53, 114-125.
[http://dx.doi.org/10.1111/ejn.14641.The]
[160]
Solari, N.; Hangya, B. Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci., 2018, 48(5), 2199-2230.
[http://dx.doi.org/10.1111/ejn.14089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy