Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Trends in the Synthesis of Antimicrobial Derivatives by using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) Reactions

Author(s): Kaushal Naithani and Subhendu Bhowmik*

Volume 20, Issue 7, 2024

Published on: 20 March, 2024

Page: [663 - 688] Pages: 26

DOI: 10.2174/0115734064282699240315042428

Price: $65

conference banner
Abstract

Background: Multicomponent reactions are highly useful in synthesizing natural products and bioactive molecules. Out of several MCRs, although utilized widely, some remain neglected in review articles. The Gewald and Groebke-Blackburn-Bienaymé (GBB) reactions are two such reactions. This comprehensive review assimilates applications of Gewald and Groebke-Blackburn- Bienayme reactions in synthesizing novel antimicrobial agents. It presents the antimicrobial properties of the synthesized molecules, providing an overview of their potential druggability.

Objective: Developing novel antimicrobial agents is the need of the hour. Toward this objective, the scientific community is developing new methods for constructing novel architectures with potential antimicrobial properties. This review will showcase the usefulness of the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions in synthesizing antimicrobial molecules.

Methods: The articles are searched by using the Sci-finder search tool and summarize the chemistry of their synthesis and antimicrobial evaluation of the molecules.

Results: This review focuses on synthesizing antimicrobial molecules using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions. The antimicrobial activities of the synthesized molecules are also summarized in tables.

Conclusion: This review will briefly overview the application of the Gewald, Strecker, and Groebke- Blackburn-Bienaymé (GBB) reactions in synthesizing novel antimicrobial molecules. It contains several molecules with promising activity against resistant and non-resistant microbial strains. These promising molecules could be studied further to develop novel antibiotics.

Next »
Graphical Abstract

[1]
A one health priority research agenda for antimicrobial resistance WHO Antimicrobial resistance team, 2023.
[2]
EU action on antimicrobial resistance. 2023. Available from: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en 28th Aug. 2023.
[3]
Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist., 2019, 12, 3903-3910.
[http://dx.doi.org/10.2147/IDR.S234610] [PMID: 31908502]
[4]
John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front., 2021, 8(15), 4237-4287.
[http://dx.doi.org/10.1039/D0QO01480J]
[5]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[6]
Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[7]
Shaaban, S.; Abdel-Wahab, B.F. Groebke–blackburn–bienaymé multicomponent reaction: Emerging chemistry for drug discovery. Mol. Divers., 2016, 20(1), 233-254.
[http://dx.doi.org/10.1007/s11030-015-9602-6] [PMID: 26016721]
[8]
Boltjes, A.; Dömling, A. The groebke-blackburn-bienaymé reaction. Eur. J. Org. Chem., 2019, 2019(42), 7007-7049.
[http://dx.doi.org/10.1002/ejoc.201901124] [PMID: 34012704]
[9]
Devi, N.; Rawal, R.K.; Singh, V. Diversity-oriented synthesis of fused-imidazole derivatives via groebke–blackburn–bienayme reaction: A review. Tetrahedron, 2015, 71(2), 183-232.
[http://dx.doi.org/10.1016/j.tet.2014.10.032]
[10]
Krasavin, M.; Dar’in, D.; Balalaie, S. Post-condensational modifications of the groebke-blackburn-bienaymé reaction products for scaffold-oriented synthesis. Tetrahedron Lett., 2021, 86, 153521.
[http://dx.doi.org/10.1016/j.tetlet.2021.153521]
[11]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[12]
Aljeldah, M.M. Antimicrobial resistance and its spread is a global threat. Antibiotics, 2022, 11(8), 1082.
[http://dx.doi.org/10.3390/antibiotics11081082] [PMID: 36009948]
[13]
The 10 x ’20 initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin. Infect. Dis., 2010, 50(8), 1081-1083.
[http://dx.doi.org/10.1086/652237] [PMID: 20214473]
[14]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[15]
Rossen, K.; Pye, P.J.; DiMichele, L.M.; Volante, R.P.; Reider, P.J. An efficient asymmetric hydrogenation approach to the synthesis of the Crixivan® piperazine intermediate. Tetrahedron Lett., 1998, 39(38), 6823-6826.
[http://dx.doi.org/10.1016/S0040-4039(98)01484-1]
[16]
Liu, H.; William, S.; Herdtweck, E.; Botros, S.; Dömling, A. MCR synthesis of praziquantel derivatives. Chem. Biol. Drug Des., 2012, 79(4), 470-477.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01288.x] [PMID: 22151001]
[17]
Borthwick, A.D.; Liddle, J.; Davies, D.E.; Exall, A.M.; Hamlett, C.; Hickey, D.M.; Mason, A.M.; Smith, I.E.D.; Nerozzi, F.; Peace, S.; Pollard, D.; Sollis, S.L.; Allen, M.J.; Woollard, P.M.; Pullen, M.A.; Westfall, T.D.; Stanislaus, D.J. Pyridyl-2,5-diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists: Synthesis, pharmacokinetics, and in vivo potency. J. Med. Chem., 2012, 55(2), 783-796.
[http://dx.doi.org/10.1021/jm201287w] [PMID: 22239250]
[18]
Sarges, R. Hydantoin therapeutic agents. US Patent 4130714., 1978.
[19]
Oliverio, M.; Costanzo, P.; Nardi, M.; Rivalta, I.; Procopio, A. Facile ecofriendly synthesis of monastrol and its structural isomers via Biginelli reaction. ACS Sustain. Chem.& Eng., 2014, 2(5), 1228-1233.
[http://dx.doi.org/10.1021/sc5000682]
[20]
Flick, A.C.; Leverett, C.A.; Ding, H.X.; McInturff, E.; Fink, S.J.; Helal, C.J.; DeForest, J.C.; Morse, P.D.; Mahapatra, S.; O’Donnell, C.J. Synthetic approaches to new drugs approved during 2018. J. Med. Chem., 2020, 63(19), 10652-10704.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00345] [PMID: 32338902]
[21]
Bozorov, K.; Nie, L.F.; Zhao, J.; Aisa, H.A. 2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. Eur. J. Med. Chem., 2017, 140, 465-493.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.039] [PMID: 28987607]
[22]
Cores, Á.; Clerigué, J.; Orocio-Rodríguez, E.; Menéndez, J.C. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals, 2022, 15(8), 1009.
[http://dx.doi.org/10.3390/ph15081009] [PMID: 36015157]
[23]
El-Borai, M.A.; Rizk, H.F.; Ibrahim, S.A.; Fares, A.K. An eco-friendly synthesis and biological screening of fused heterocyclic compounds containing a thiophene moiety via gewald reaction. J. Heterocycl. Chem., 2019, 56(10), 2787-2795.
[http://dx.doi.org/10.1002/jhet.3658]
[24]
Mishra, R.; Tomar, I.; Kumar, S. Synthesis and antimicrobial evaluation of novel thiophene derivatives. Pharm. Sin., 2012, 3(3), 332-336.
[25]
Arora, M.; Saravanan, J.; Mohan, S.; Bhattacharjee, S. Synthesis, characterization and antimicrobial activity of some schiff bases of 2-amino-N-(p-acetamidophenyl carboxamido)- 4,5,6,7-Tetramethylene thiophenes. Int. J. Pharm. Pharm. Sci., 2013, 5(1), 315-319.
[26]
Das, B.; Srivastava, S.; Dinda, S.C.; Prasad, Y.R. Synthesis of 2-[(substituted benzylidene)imino]-3-N-propylcarboxamido-6-N-methyl piperidino thiophenes for in vitro anti-inflammatory and antimicrobial evaluation. Pharma Chem., 2013, 5(2), 256-262.
[27]
Srivastava, S.; Das, B. Synthesis and evaluation of some novel thiophenes as potential antibacterial and mycolytic agents. Pharma Chem., 2011, 3(6), 103-111.
[28]
Ahmed, E.M.; Marzouk, N.A.; Hessien, S.A.; Ali, A.M. Synthesis, reactions and antimicrobial activity of some new thienopyridine and theinopyrimidine derivatives. World. J. Chem., 2011, 6(1), 25-31.
[29]
Haswani, N.G.; Bari, S.B. Synthesis and antimicrobial activity of novel 2-(pyridin-2-yl)thieno[2,3-d]pyrimidin-4 (3H)-ones. Turk. J. Chem., 2011, 35, 915-924.
[http://dx.doi.org/10.3906/kim-1012-888]
[30]
Abu-Hashem, A.A.; Abu-Zied, K.M.; El-Shehry, M.F. Synthetic utility of bifunctional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents. Monatsh. Chem., 2011, 142(5), 539-545.
[http://dx.doi.org/10.1007/s00706-011-0456-z]
[31]
Khatri, T.T.; Shah, V.H. Effective microwave synthesis of bioactive thieno[2,3-d]pyrtmidines. J. Chil. Chem. Soc., 2017, 62(1), 3354-3358.
[http://dx.doi.org/10.4067/S0717-97072017000100010]
[32]
Yalagala, K.; Chunduri, V.R. Design, synthesis and biological evaluation of 3, 4-dihydroselenophene[2,3-d] pyrimidine sulphonamides as potential antimicrobial agents. Int J Pharm Bio Sci, 2013, 4(2), 912-922.
[33]
Sarı, N.; Şahin, S.Ç.; Öğütcü, H.; Dede, Y.; Yalcin, S.; Altundaş, A.; Doğanay, K. Ni(II)-tetrahedral complexes: Characterization, antimicrobial properties, theoretical studies and a new family of charge-transfer transitions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 106, 60-67.
[http://dx.doi.org/10.1016/j.saa.2012.12.078]
[34]
Rossetti, A.; Bono, N.; Candiani, G.; Meneghetti, F.; Roda, G.; Sacchetti, A. Synthesis and antimicrobial evaluation of novel chiral 2-amino- 4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives. Chem. Biodivers., 2019, 16(6), e1900097.
[http://dx.doi.org/10.1002/cbdv.201900097] [PMID: 30942951]
[35]
Pansuriya, D.; Menpara, K.; Kachhadiya, N.; Menpara, J.; Ladva, K. Synthesis, characterization and antimicrobial evaluation of tetrahydrothiazolo[5,4-c]pyridine derivatives. Pharma Chem., 2015, 7(11), 328-333.
[36]
Grygorenko, O.O. Synthesis of saturated nitrogen heterocycles by Strecker reaction – nucleophilic cyclization. Tetrahedron Lett., 2020, 61(12), 151645.
[http://dx.doi.org/10.1016/j.tetlet.2020.151645]
[37]
Masamba, W. Petasis vs. strecker amino acid synthesis: Convergence, divergence and opportunities in organic synthesis. Molecules, 2021, 26(6), 1707.
[http://dx.doi.org/10.3390/molecules26061707] [PMID: 33803879]
[38]
Shaikh, I.N.; Hosamani, K.M.; Kurjogi, M.M. Design, synthesis, and evaluation of new α‐aminonitrile-based benzimidazole biomolecules as potent antimicrobial and antitubercular agents. Arch. Pharm. (Weinheim), 2018, 351(2), 1700205.
[http://dx.doi.org/10.1002/ardp.201700205] [PMID: 29356105]
[39]
Jeyanthi, P.; Sheela, K.; Pazhanisamy, P. Synthesis and Biological activities of 2-(α-p -Substituted phenyl-α-benzimidazolo) methyl benzoxazole. J. Pharm. Sci. & Res, 2011, 3(11), 1561-1565.
[40]
Al-Amery, M. Synthesis and characterization of new complexes of 2-(6- Methoxybenzo[d]thiazol-2-ylamino)-2-phenyl acetonitrile ligand with manganese (II), Cobalt (II), Nickel (II), Copper (II), Zinc (II) Cadmium (II) and Mercury (II) divalent transition metal ions. IOSR J. Appl. Chem., 2013, 4(5), 29-34.
[http://dx.doi.org/10.9790/5736-0452934]
[41]
Al-Amery, M.H.A.; Abdullah, N.N.; Ahmed, H. Synthesis, characterization and antibacterial studies of new complexes of 2-(4-Chlorophenyl)-2-[(2,4-Dimethylphenyl) amino] acetonitrile with some metal ions. Res. J. Biotechnol., 2019, 14, 208-225.
[42]
Al-Amery, M.H.A.; Alabdali, A.J. Synthesis, thermal study and biological activity of Cobalt (II) and Copper (II) mixed ligand complexes using (N-4-Methoxy Phenyl) Amino phenyl acetonitrile and histidine ligands. J. Pharm. Sci. & Res., 2019, 11(1), 155-158.
[43]
Mitachi, K.; Aleiwi, B.A.; Schneider, C.M.; Siricilla, S.; Kurosu, M. Stereocontrolled total synthesis of muraymycin d1 having a dual mode of action against Mycobacterium tuberculosis. J. Am. Chem. Soc., 2016, 138(39), 12975-12980.
[http://dx.doi.org/10.1021/jacs.6b07395] [PMID: 27617631]
[44]
Buron, F.; Hiebel, M-A.; Mérour, J-Y.; Plé, K.; Routier, S. The chemistry of sulfur-containing [5,5]-fused ring systems with a bridgehead nitrogen. Adv. Heterocycl. Chem., 2018, 125, 301-356.
[http://dx.doi.org/10.1016/bs.aihch.2017.10.003]
[45]
Santos, G.; Anjos, N.; Gibeli, M.; Silva, G.; Fernandes, P.; Fiorentino, E.; Longo, L., Jr A comparative study on the groebke-blackburn-bienaymé three-component reaction catalyzed by rare earth triflates under microwave heating. J. Braz. Chem. Soc., 2020, 31(7), 1434-1444.
[http://dx.doi.org/10.21577/0103-5053.20200028]
[46]
Murlykina, M.V.; Kornet, M.N.; Desenko, S.M.; Shishkina, S.V.; Shishkin, O.V.; Brazhko, A.A.; Musatov, V.I.; Van der Eycken, E.V.; Chebanov, V.A. New tricks of well-known aminoazoles in isocyanide-based multicomponent reactions and antibacterial activity of the compounds synthesized. Beilstein J. Org. Chem., 2017, 13, 1050-1063.
[http://dx.doi.org/10.3762/bjoc.13.104] [PMID: 28684984]
[47]
Pedrola, M.; Jorba, M.; Jardas, E.; Jardi, F.; Ghashghaei, O.; Viñas, M.; Lavilla, R. Multicomponent reactions upon the known drug trimethoprim as a source of novel antimicrobial agents. Front Chem., 2019, 7, 475.
[http://dx.doi.org/10.3389/fchem.2019.00475] [PMID: 31334221]
[48]
Rashid, U.; Ahmad, W.; Hassan, S.F.; Qureshi, N.A.; Niaz, B.; Muhammad, B.; Imdad, S.; Sajid, M. Design, synthesis, antibacterial activity and docking study of some new trimethoprim derivatives. Bioorg. Med. Chem. Lett., 2016, 26(23), 5749-5753.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.051] [PMID: 28327306]
[49]
Claudio-Catalán, M.Á.; Pharande, S.G.; Quezada-Soto, A.; Kishore, K.G.; Rentería-Gómez, A.; Padilla-Vaca, F.; Gámez-Montaño, R. Solvent- and catalyst-free one-pot green bound-type fused bis-heterocycles synthesis via groebke–blackburn–bienaymé reaction/S N Ar/Ring-Chain azido-tautomerization strategy. ACS Omega, 2018, 3(5), 5177-5186.
[http://dx.doi.org/10.1021/acsomega.8b00170] [PMID: 30023908]
[50]
Kishore, K.G.; Islas-Jácome, A.; Rentería-Gómez, A.; Conejo, A.S.; Basavanag, U.M.V.; Wrobel, K.; Gámez-Montaño, R. Synthesis of unsymmetrical bis-heterocycles containing the imidazo[2,1-b]thiazole framework and their benzo[d]fused analogues by an acid-free Groebke–Blackburn–Bienaymé reaction. Tetrahedron Lett., 2016, 57(31), 3556-3560.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.120]
[51]
Al-Tel, T.H.; Al-Qawasmeh, R.A. Post Groebke–Blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(12), 5848-5855.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.049] [PMID: 20934788]
[52]
Jilloju, P.C.; Shyam, P.; Raju, C.; Vedula, R.R. An efficient one-pot synthesis of 6-Phenyl-3-(1 H -Pyrazol-1-yl)-[1,2,4]Triazolo [3,4- b][1,3,4]Thiadiazole derivatives and their antimicrobial evaluation and molecular docking studies. Polycycl. Aromat. Compd., 2022, 42(7), 4240-4254.
[http://dx.doi.org/10.1080/10406638.2021.1886127]
[53]
Aouali, M.; Mhalla, D.; Allouche, F.; El Kaim, L.; Tounsi, S.; Trigui, M.; Chabchoub, F. Synthesis, antimicrobial and antioxidant activities of imidazotriazoles and new multicomponent reaction toward 5-amino-1-phenyl[1,2,4]triazole derivatives. Med. Chem. Res., 2015, 24(6), 2732-2741.
[http://dx.doi.org/10.1007/s00044-015-1322-z]
[54]
Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202]
[55]
Rashamuse, T.J.; Harrison, A.T.; Mosebi, S.; van Vuuren, S.; Coyanis, E.M.; Bode, M.L. Design, synthesis and biological evaluation of imidazole and oxazole fragments as HIV-1 integrase-LEDGF/p75 disruptors and inhibitors of microbial pathogens. Bioorg. Med. Chem., 2020, 28(1), 115210.
[http://dx.doi.org/10.1016/j.bmc.2019.115210] [PMID: 31753802]
[56]
Prabhala, P.; Savanur, H.M.; Sutar, S.M.; Naik, K.N.; Mittal, M.K.; Kalkhambkar, R.G. In silico molecular docking and In vitro antimicrobial evaluation of some C5-substituted imidazole analogues. Eur. J. Med. Chem. Rep., 2021, 3, 100015.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy