Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Metabotropic Glutamate Receptors Type 3 and 5 Feature the “NeuroTransmitter-type” of Glioblastoma: A Bioinformatic Approach

Author(s): Matteo Caridi, Marika Alborghetti, Valeria Pellicelli, Rosamaria Orlando, Francesco Ernesto Pontieri, Giuseppe Battaglia* and Antonietta Arcella

Volume 22, Issue 11, 2024

Published on: 20 March, 2024

Page: [1923 - 1939] Pages: 17

DOI: 10.2174/1570159X22666240320112926

Price: $65

Abstract

Background: Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal.

Objective: Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine.

Methods: Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas.

Results: The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature.

Conclusion: Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.

« Previous
Graphical Abstract

[1]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[2]
de Almeida Sassi, F.; Lunardi Brunetto, A.; Schwartsmann, G.; Roesler, R.; Abujamra, A.L. Glioma revisited: From neu-rogenesis and cancer stem cells to the epigenetic regulation of the niche. J. Oncol., 2012, 2012, 537861.
[http://dx.doi.org/10.1155/2012/537861] [PMID: 22973309]
[3]
Prager, B.C.; Bhargava, S.; Mahadev, V.; Hubert, C.G.; Rich, J.N. Glioblastoma stem cells: Driving resilience through cha-os. Trend Cancer, 2020, 6(3), 223-235.
[http://dx.doi.org/10.1016/j.trecan.2020.01.009] [PMID: 32101725]
[4]
van den Bent, M.J.; Smits, M.; Kros, J.M.; Chang, S.M. Diffuse infiltrating oligodendroglioma and astrocytoma. J. Clin. Oncol., 2017, 35(21), 2394-2401.
[http://dx.doi.org/10.1200/JCO.2017.72.6737] [PMID: 28640702]
[5]
Caccese, M.; Padovan, M.; D’Avella, D.; Chioffi, F.; Gardiman, M.P.; Berti, F.; Busato, F.; Bellu, L.; Bergo, E.; Zoccarato, M.; Fassan, M.; Zagonel, V.; Lombardi, G. Anaplastic Astrocytoma: State of the art and future directions. Crit. Rev. Oncol. Hematol., 2020, 153, 103062.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103062] [PMID: 32717623]
[6]
Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tri-bolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.C.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[7]
Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y.; Ye, W.; Zeng, W.; Liu, Z.; Cheng, Q. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39.
[http://dx.doi.org/10.1186/s12943-022-01513-z] [PMID: 35135556]
[8]
Khasraw, M.; Fujita, Y.; Lee-Chang, C.; Balyasnikova, I.V.; Najem, H.; Heimberger, A.B. New approaches to glioblastoma. Annu. Rev. Med., 2022, 73(1), 279-292.
[http://dx.doi.org/10.1146/annurev-med-042420-102102] [PMID: 34665646]
[9]
Julio-Pieper, M.; Flor, P.J.; Dinan, T.G.; Cryan, J.F. Exciting times beyond the brain: Metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol. Rev., 2011, 63(1), 35-58.
[http://dx.doi.org/10.1124/pr.110.004036] [PMID: 21228260]
[10]
Nicoletti, F.; Battaglia, G.; Storto, M.; Ngomba, R.T.; Iacovelli, L.; Arcella, A.; Gradini, R.; Sale, P.; Rampello, L.; De Vita, T.; Di Marco, R.; Melchiorri, D.; Bruno, V. Metabotropic glutamate receptors: Beyond the regulation of synaptic transmission. Psychoneuroendocrinology, 2007, 32(1), S40-S45.
[http://dx.doi.org/10.1016/j.psyneuen.2007.04.015] [PMID: 17651904]
[11]
Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabo-tropic glutamate receptors: From the workbench to the bed-side. Neuropharmacology, 2011, 60(7-8), 1017-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[12]
Ali, S.; Shourideh, M.; Koochekpour, S. Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues. PLoS One, 2014, 9(7), e103204.
[http://dx.doi.org/10.1371/journal.pone.0103204] [PMID: 25062106]
[13]
Banda, M.; Speyer, C.L.; Semma, S.N.; Osuala, K.O.; Koun-alakis, N.; Torres Torres, K.E.; Barnard, N.J.; Kim, H.J.; Sloane, B.F.; Miller, F.R.; Goydos, J.S.; Gorski, D.H. Metabo-tropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One, 2014, 9(1), e81126.
[http://dx.doi.org/10.1371/journal.pone.0081126] [PMID: 24404125]
[14]
Namkoong, J.; Shin, S.S.; Lee, H.J.; Marín, Y.E.; Wall, B.A.; Goydos, J.S.; Chen, S. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res., 2007, 67(5), 2298-2305.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3665] [PMID: 17332361]
[15]
Nicoletti, F.; Arcella, A.; Iacovelli, L.; Battaglia, G.; Giangas-pero, F.; Melchiorri, D. Metabotropic glutamate receptors: New targets for the control of tumor growth? Trends Pharmacol. Sci., 2007, 28(5), 206-213.
[http://dx.doi.org/10.1016/j.tips.2007.03.008] [PMID: 17433452]
[16]
Stepulak, A.; Luksch, H.; Gebhardt, C.; Uckermann, O.; Mar-zahn, J.; Sifringer, M.; Rzeski, W.; Staufner, C.; Brocke, K.S.; Turski, L.; Ikonomidou, C. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol., 2009, 132(4), 435-445.
[http://dx.doi.org/10.1007/s00418-009-0613-1] [PMID: 19526364]
[17]
Iacovelli, L.; Orlando, R.; Rossi, A.; Spinsanti, P.; Melchiorri, D.; Nicoletti, F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr. Opin. Pharmacol., 2018, 38, 59-64.
[http://dx.doi.org/10.1016/j.coph.2018.02.005] [PMID: 29525720]
[18]
Albasanz, J.L.; Ros, M.; Martín, M. Characterization of metabotropic glutamate receptors in rat C6 glioma cells. Eur. J. Pharmacol., 1997, 326(1), 85-91.
[http://dx.doi.org/10.1016/S0014-2999(97)00154-4] [PMID: 9178659]
[19]
Condorelli, D.F.; Dell’Albani, P.; Corsaro, M.; Giuffrida, R.; Caruso, A. A, T.S.; Spinella, F.; Nicoletti, F.; Albanese, V.; Stella, A.M.G. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res., 1997, 22(9), 1127-1133.
[http://dx.doi.org/10.1023/A:1027317319166] [PMID: 9251103]
[20]
Corti, C.; Clarkson, R.W.E.; Crepaldi, L.; Sala, C.F.; Xuereb, J.H.; Ferraguti, F. Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J. Biol. Chem., 2003, 278(35), 33105-33119.
[http://dx.doi.org/10.1074/jbc.M212380200] [PMID: 12783878]
[21]
Aronica, E.; Gorter, J.A.; Ijlst-Keizers, H.; Rozemuller, A.J.; Yankaya, B.; Leenstra, S.; Troost, D. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur. J. Neurosci., 2003, 17(10), 2106-2118.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02657.x] [PMID: 12786977]
[22]
Arcella, A.; Carpinelli, G.; Battaglia, G.; D’Onofrio, M.; Santo-ro, F.; Ngomba, R.T.; Bruno, V.; Casolini, P.; Giangaspero, F.; Nicoletti, F. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neurooncol., 2005, 7(3), 236-245.
[http://dx.doi.org/10.1215/S1152851704000961] [PMID: 16053698]
[23]
Zhang, C.; Yuan, X.; Li, H.; Zhao, Z.; Liao, Y.; Wang, X.; Su, J.; Sang, S.; Liu, Q. Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: Involvement of PI3K/Akt/mTOR pathway. Cell. Physiol. Biochem., 2015, 35(2), 419-432.
[http://dx.doi.org/10.1159/000369707] [PMID: 25613036]
[24]
Dalley, C.B.; Wroblewska, B.; Wolfe, B.B.; Wroblewski, J.T. The role of metabotropic glutamate receptor 1 dependent signaling in glioma viability. J. Pharmacol. Exp. Ther., 2018, 367(1), 59-70.
[http://dx.doi.org/10.1124/jpet.118.250159] [PMID: 30054311]
[25]
Pollock, P.M.; Cohen-Solal, K.; Sood, R.; Namkoong, J.; Mar-tino, J.J.; Koganti, A.; Zhu, H.; Robbins, C.; Makalowska, I.; Shin, S.S.; Marin, Y.; Roberts, K.G.; Yudt, L.M.; Chen, A.; Cheng, J.; Incao, A.; Pinkett, H.W.; Graham, C.L.; Dunn, K.; Crespo-Carbone, S.M.; Mackason, K.R.; Ryan, K.B.; Sinsimer, D.; Goydos, J.; Reuhl, K.R.; Eckhaus, M.; Meltzer, P.S.; Pavan, W.J.; Trent, J.M.; Chen, S. Melanoma mouse model implicates metabotropic glutamate signaling in melano-cytic neoplasia. Nat. Genet., 2003, 34(1), 108-112.
[http://dx.doi.org/10.1038/ng1148] [PMID: 12704387]
[26]
Liu, B.; Zhao, S.; Qi, C.; Zhao, X.; Liu, B.; Hao, F.; Zhao, Z. Inhibition of metabotropic glutamate receptor 5 facilitates hy-poxia-induced glioma cell death. Brain Res., 2019, 1704, 241-248.
[http://dx.doi.org/10.1016/j.brainres.2018.10.021] [PMID: 30347216]
[27]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[28]
Ciceroni, C.; Arcella, A.; Mosillo, P.; Battaglia, G.; Mastrantoni, E.; Oliva, M.A.; Carpinelli, G.; Santoro, F.; Sale, P.; Ricci-Vitiani, L.; De Maria, R.; Pallini, R.; Giangaspero, F.; Nicoletti, F.; Melchiorri, D. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor sig-naling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology, 2008, 55(4), 568-576.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.064] [PMID: 18621067]
[29]
Ciceroni, C.; Bonelli, M.; Mastrantoni, E.; Niccolini, C.; Lau-renza, M.; Larocca, L.M.; Pallini, R.; Traficante, A.; Spinsanti, P.; Ricci-Vitiani, L.; Arcella, A.; De Maria, R.; Nicoletti, F.; Battaglia, G.; Melchiorri, D. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ., 2013, 20(3), 396-407.
[http://dx.doi.org/10.1038/cdd.2012.150] [PMID: 23175182]
[30]
Zhou, K.; Song, Y.; Zhou, W.; Zhang, C.; Shu, H.; Yang, H.; Wang, B. mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells. Cell Biol. Int., 2014, 38(4), 426-434.
[http://dx.doi.org/10.1002/cbin.10207] [PMID: 24482010]
[31]
Wirsching, H.G.; Silginer, M.; Ventura, E.; Macnair, W.; Burghardt, I.; Claassen, M.; Gatti, S.; Wichmann, J.; Riemer, C.; Schneider, H.; Weller, M. Negative allosteric modulators of metabotropic glutamate receptor 3 target the stem-like phenotype of glioblastoma. Mol. Ther. Oncolytics, 2021, 20, 166-174.
[http://dx.doi.org/10.1016/j.omto.2020.12.009] [PMID: 33575479]
[32]
Maier, J.P.; Ravi, V.M.; Kueckelhaus, J.; Behringer, S.P.; Garrelfs, N.; Will, P.; Sun, N.; von Ehr, J.; Goeldner, J.M.; Pfeifer, D.; Follo, M.; Hannibal, L.; Walch, A.K.; Hofmann, U.G.; Beck, J.; Heiland, D.H.; Schnell, O.; Joseph, K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis., 2021, 12(8), 723.
[http://dx.doi.org/10.1038/s41419-021-03937-9] [PMID: 34290229]
[33]
Jantas, D.; Grygier, B.; Gołda, S.; Chwastek, J.; Zatorska, J.; Tertil, M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett., 2018, 432, 1-16.
[http://dx.doi.org/10.1016/j.canlet.2018.06.004] [PMID: 29885518]
[34]
Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; Bruno, V.; Battaglia, G.; Conn, P.J.; Nicoletti, F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.026] [PMID: 29079293]
[35]
Grzmil, M.; Morin, P., Jr; Lino, M.M.; Merlo, A.; Frank, S.; Wang, Y.; Moncayo, G.; Hemmings, B.A. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res., 2011, 71(6), 2392-2402.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3112] [PMID: 21406405]
[36]
Schulte, A.; Günther, H.S.; Phillips, H.S.; Kemming, D.; Mar-tens, T.; Kharbanda, S.; Soriano, R.H.; Modrusan, Z.; Zapf, S.; Westphal, M.; Lamszus, K. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia, 2011, 59(4), 590-602.
[http://dx.doi.org/10.1002/glia.21127] [PMID: 21294158]
[37]
Günther, H.S.; Schmidt, N.O.; Phillips, H.S.; Kemming, D.; Kharbanda, S.; Soriano, R.; Modrusan, Z.; Meissner, H.; Westphal, M.; Lamszus, K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to mo-lecular and phenotypic criteria. Oncogene, 2008, 27(20), 2897-2909.
[http://dx.doi.org/10.1038/sj.onc.1210949] [PMID: 18037961]
[38]
Zamykal, M.; Martens, T.; Matschke, J.; Günther, H.S.; Ka-thagen, A.; Schulte, A.; Peters, R.; Westphal, M.; Lamszus, K. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-oncol., 2015, 17(8), 1076-1085.
[http://dx.doi.org/10.1093/neuonc/nou344] [PMID: 25543125]
[39]
Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.A.; Jones, D.T.W.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S.; Kool, M.; Zapatka, M.; Becker, N.; Zucknick, M.; Hielscher, T.; Liu, X.Y.; Fontebasso, A.M.; Ryzhova, M.; Al-brecht, S.; Jacob, K.; Wolter, M.; Ebinger, M.; Schuhmann, M.U.; van Meter, T.; Frühwald, M.C.; Hauch, H.; Pekrun, A.; Radlwimmer, B.; Niehues, T.; von Komorowski, G.; Dürken, M.; Kulozik, A.E.; Madden, J.; Donson, A.; Foreman, N.K.; Drissi, R.; Fouladi, M.; Scheurlen, W.; von Deimling, A.; Monoranu, C.; Roggendorf, W.; Herold-Mende, C.; Unterberg, A.; Kramm, C.M.; Felsberg, J.; Hartmann, C.; Wiestler, B.; Wick, W.; Milde, T.; Witt, O.; Lindroth, A.M.; Schwartzentruber, J.; Faury, D.; Fleming, A.; Zakrzewska, M.; Liberski, P.P.; Zakrzewski, K.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Morrissy, S.; Cavalli, F.; Taylor, M.D.; van Sluis, P.; Koster, J.; Versteeg, R.; Volckmann, R.; Mikkelsen, T.; Aldape, K.; Reifenberger, G.; Collins, V.P.; Majewski, J.; Korshunov, A.; Lichter, P.; Plass, C.; Jabado, N.; Pfister, S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 2012, 22(4), 425-437.
[http://dx.doi.org/10.1016/j.ccr.2012.08.024] [PMID: 23079654]
[40]
Reifenberger, G.; Weber, R.G.; Riehmer, V.; Kaulich, K.; Willscher, E.; Wirth, H.; Gietzelt, J.; Hentschel, B.; Westphal, M.; Simon, M.; Schackert, G.; Schramm, J.; Matschke, J.; Sabel, M.C.; Gramatzki, D.; Felsberg, J.; Hartmann, C.; Steinbach, J.P.; Schlegel, U.; Wick, W.; Radlwimmer, B.; Pietsch, T.; Tonn, J.C.; von Deimling, A.; Binder, H.; Weller, M.; Loeffler, M. Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptomewide profiling. Int. J. Cancer, 2014, 135(8), 1822-1831.
[http://dx.doi.org/10.1002/ijc.28836] [PMID: 24615357]
[41]
Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315.
[http://dx.doi.org/10.1093/bioinformatics/btg405]
[42]
Wu, J; Irizarry, R. Gcrma: Background Adjustment Using Sequence Information. R package version 2.60.0. 2020. Available from: https://rdrr.io/bioc/gcrma/
[43]
Hastie, T; Tibshirani, R; Narasimhan, B; Chu, G Impute: impute: Imputation for microarray data. R package version 1.62.0. 2020. Available from: https://www.researchgate.net/publication/288009004_Impute_Imputation_for_microarray_data
[44]
Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse. J. Open Source Softw., 2019, 4(43), 1686.
[http://dx.doi.org/10.21105/joss.01686]
[45]
Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4. 2022. Available from: https://CRAN.R-project.org/package=cluster
[46]
Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available from: https://CRAN.R-project.org/package=factoextra
[47]
Chouleur, T.; Tremblay, M.L.; Bikfalvi, A. Mechanisms of invasion in glioblastoma. Curr. Opin. Oncol., 2020, 32(6), 631-639.
[http://dx.doi.org/10.1097/CCO.0000000000000679] [PMID: 32852310]
[48]
Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Sala-ma, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; Anjum, S.; Wang, J.; Manyam, G.; Zoppoli, P.; Ling, S.; Rao, A.A.; Grifford, M.; Cherniack, A.D.; Zhang, H.; Poisson, L.; Carlotti, C.G., Jr; Tirapelli, D.P.C.; Rao, A.; Mikkelsen, T.; Lau, C.C.; Yung, W.K.A.; Rabadan, R.; Huse, J.; Brat, D.J.; Lehman, N.L.; Barnholtz-Sloan, J.S.; Zheng, S.; Hess, K.; Rao, G.; Meyerson, M.; Beroukhim, R.; Cooper, L.; Akbani, R.; Wrensch, M.; Haussler, D.; Aldape, K.D.; Laird, P.W.; Gutmann, D.H.; Noushmehr, H.; Iavarone, A.; Verhaak, R.G.W.; Anjum, S.; Arachchi, H.; Auman, J.T.; Balasundaram, M.; Balu, S.; Barnett, G.; Baylin, S.; Bell, S.; Benz, C.; Bir, N.; Black, K.L.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bristow, C.A.; Butterfield, Y.S.N.; Chen, Q-R.; Chin, L.; Cho, J.; Chuah, E.; Chudamani, S.; Coetzee, S.G.; Cohen, M.L.; Colman, H.; Couce, M.; D’Angelo, F.; Davidsen, T.; Davis, A.; Demchok, J.A.; Devine, K.; Ding, L.; Duell, R.; Elder, J.B.; Eschbacher, J.M.; Fehrenbach, A.; Ferguson, M.; Frazer, S.; Fuller, G.; Fulop, J.; Gabriel, S.B.; Garofano, L.; Gastier-Foster, J.M.; Gehlenborg, N.; Gerken, M.; Getz, G.; Giannini, C.; Gibson, W.J.; Hadjipanayis, A.; Hayes, D.N.; Heiman, D.I.; Hermes, B.; Hilty, J.; Hoadley, K.A.; Hoyle, A.P.; Huang, M.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Ju, Z.; Kastl, A.; Kendler, A.; Kim, J.; Kucherlapati, R.; Lai, P.H.; Lawrence, M.S.; Lee, S.; Leraas, K.M.; Lichtenberg, T.M.; Lin, P.; Liu, Y.; Liu, J.; Ljubimova, J.Y.; Lu, Y.; Ma, Y.; Maglinte, D.T.; Mahadeshwar, H.S.; Marra, M.A.; McGraw, M.; McPherson, C.; Meng, S.; Mieczkowski, P.A.; Miller, C.R.; Mills, G.B.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Naresh, R.; Naska, T.; Neder, L.; Noble, M.S.; Noss, A.; O’Neill, B.P.; Ostrom, Q.T.; Palmer, C.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Perou, C.M.; Pierson, C.R.; Pihl, T.; Protopopov, A.; Radenbaugh, A.; Ramirez, N.C.; Rathmell, W.K.; Ren, X.; Roach, J.; Robertson, A.G.; Saksena, G.; Schein, J.E.; Schumacher, S.E.; Seidman, J.; Senecal, K.; Seth, S.; Shen, H.; Shi, Y.; Shih, J.; Shimmel, K.; Sicotte, H.; Sifri, S.; Silva, T.; Simons, J.V.; Singh, R.; Skelly, T.; Sloan, A.E.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Souza, C.; Staugaitis, S.M.; Sun, H.; Sun, C.; Tan, D.; Tang, J.; Tang, Y.; Thorne, L.; Trevisan, F.A.; Triche, T.; Van Den Berg, D.J.; Veluvolu, U.; Voet, D.; Wan, Y.; Wang, Z.; Warnick, R.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Williams, F.; Wise, L.; Wolinsky, Y.; Wu, J.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zenklusen, J.C.; Zhang, J.; Zhang, W.; Zhang, J.; Zmuda, E. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3), 550-563.
[http://dx.doi.org/10.1016/j.cell.2015.12.028] [PMID: 26824661]
[49]
Madhavan, S.; Zenklusen, J.C.; Kotliarov, Y.; Sahni, H.; Fine, H.A.; Buetow, K. Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res., 2009, 7(2), 157-167.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0435] [PMID: 19208739]
[50]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[http://dx.doi.org/10.1038/nature07385] [PMID: 18772890]
[51]
Bowman, R.L.; Wang, Q.; Carro, A.; Verhaak, R.G.W.; Squatrito, M. GlioVis data portal for visualization and analy-sis of brain tumor expression datasets. Neuro-oncol., 2017, 19(1), 139-141.
[http://dx.doi.org/10.1093/neuonc/now247] [PMID: 28031383]
[52]
Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci., 2020, 21(6), 1932.
[http://dx.doi.org/10.3390/ijms21061932] [PMID: 32178267]
[53]
Onken, J.; Moeckel, S.; Leukel, P.; Leidgens, V.; Baumann, F.; Bogdahn, U.; Vollmann-Zwerenz, A.; Hau, P. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J. Neurooncol., 2014, 120(1), 73-83.
[http://dx.doi.org/10.1007/s11060-014-1545-8] [PMID: 25064688]
[54]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers, 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[55]
Duman, C.; Yaqubi, K.; Hoffmann, A.; Acikgöz, A.A.; Korshunov, A.; Bendszus, M.; Herold-Mende, C.; Liu, H.K.; Alfonso, J. Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab., 2019, 30(2), 274-289.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.04.004] [PMID: 31056285]
[56]
Kant, S.; Kesarwani, P.; Prabhu, A.; Graham, S.F.; Buelow, K.L.; Nakano, I.; Chinnaiyan, P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis., 2020, 11(4), 253.
[http://dx.doi.org/10.1038/s41419-020-2449-5] [PMID: 32312953]
[57]
Lee, H.; Kim, D.; Youn, B. Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int. J. Mol. Sci., 2022, 23(22), 13818.
[http://dx.doi.org/10.3390/ijms232213818] [PMID: 36430293]
[58]
Kou, Y.; Geng, F.; Guo, D. Lipid metabolism in glioblastoma: From De Novo synthesis to storage. Biomedicines, 2022, 10(8), 1943.
[http://dx.doi.org/10.3390/biomedicines10081943] [PMID: 36009491]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy