Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Association of UGT1A Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients

Author(s): Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan*, Min Gu* and Zhengkai Huang*

Volume 25, Issue 3, 2024

Published on: 19 March, 2024

Page: [188 - 196] Pages: 9

DOI: 10.2174/0113892002282727240307072255

Price: $65

Abstract

Background: BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.

Material/Methods: The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.

Results: A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).

Conclusions: We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.

[1]
Ambalathingal, G.R.; Francis, R.S.; Smyth, M.J.; Smith, C.; Khanna, R. Bk polyomavirus: Clinical aspects, immune regulation, and emerging therapies. Clin. Microbiol. Rev., 2017, 30(2), 503-528.
[http://dx.doi.org/10.1128/CMR.00074-16] [PMID: 28298471]
[2]
Blackard, J.T.; Davies, S.M.; Laskin, B.L. BK polyomavirus diversity—Why viral variation matters. Rev. Med. Virol., 2020, 30(4), e2102.
[http://dx.doi.org/10.1002/rmv.2102] [PMID: 32128960]
[3]
Kean, J.M.; Rao, S.; Wang, M.; Garcea, R.L. Seroepidemiology of human polyomaviruses. PLoS Pathog., 2009, 5(3), e1000363.
[http://dx.doi.org/10.1371/journal.ppat.1000363] [PMID: 19325891]
[4]
Rahimi Baghi, F.; Harzandi, N.; Moniri, A.; Nadji, S.A. Phylogenetic analysis of BKV genetic variations, based on the whole sequence of the genome and different genomic sections. J. Med. Virol., 2022, 94(8), 3930-3945.
[http://dx.doi.org/10.1002/jmv.27791] [PMID: 35437782]
[5]
Borriello, M.; Ingrosso, D.; Perna, A.F.; Lombardi, A.; Maggi, P.; Altucci, L.; Caraglia, M. Bk virus infection and bk-virus-associated nephropathy in renal transplant recipients. Genes, 2022, 13(7), 1290.
[http://dx.doi.org/10.3390/genes13071290] [PMID: 35886073]
[6]
Furmaga, J.; Kowalczyk, M.; Zapolski, T.; Furmaga, O.; Krakowski, L.; Rudzki, G.; Jaroszynski, A.; Jakubczak, A. Bk polyomavirus-biology, genomic variation and diagnosis. Viruses., 2021, 13(8), 1502.
[7]
Zhou, X.; Zhu, C.; Li, H. BK polyomavirus: Latency, reactivation, diseases and tumorigenesis. Front. Cell. Infect. Microbiol., 2023, 13, 1263983.
[http://dx.doi.org/10.3389/fcimb.2023.1263983] [PMID: 37771695]
[8]
Hu, C.; Huang, Y.; Su, J.; Wang, M.; Zhou, Q.; Zhu, B. The prevalence and isolated subtypes of BK polyomavirus reactivation among patients infected with human immunodeficiency virus-1 in southeastern China. Arch. Virol., 2018, 163(6), 1463-1468.
[http://dx.doi.org/10.1007/s00705-018-3724-y] [PMID: 29435709]
[9]
Prezioso, C.; Pietropaolo, V. BK virus and transplantation. Viruses, 2021, 13(5), 733.
[10]
Nankivell, B.J.; Renthawa, J.; Sharma, R.N.; Kable, K.; O’Connell, P.J.; Chapman, J.R. Bk virus nephropathy: Histological evolution by sequential pathology. Am. J. Transplant., 2017, 17(8), 2065-2077.
[http://dx.doi.org/10.1111/ajt.14292] [PMID: 28371308]
[11]
Mitterhofer, A.P.; Tinti, F.; Pietropaolo, V.; Umbro, I.; Anzivino, E.; Bellizzi, A.; Zavatto, A.; Poli, L.; Berloco, P.B.; Taliani, G. Role of BK virus infection in end-stage renal disease patients waiting for kidney transplantation - viral replication dynamics from pre- to post-transplant. Clin. Transplant., 2014, 28(3), 299-306.
[http://dx.doi.org/10.1111/ctr.12312] [PMID: 24506672]
[12]
Blazquez-Navarro, A.; Dang-Heine, C.; Wittenbrink, N.; Bauer, C.; Wolk, K.; Sabat, R.; Westhoff, T.H.; Sawitzki, B.; Reinke, P.; Thomusch, O.; Hugo, C.; Or-Guil, M.; Babel, N. Bkv, cmv, and ebv interactions and their effect on graft function one year post-renal transplantation: Results from a large multi-centre study. EBioMedicine, 2018, 34, 113-121.
[http://dx.doi.org/10.1016/j.ebiom.2018.07.017] [PMID: 30072213]
[13]
Ramos, E.; Drachenberg, C.B.; Wali, R.; Hirsch, H.H. The decade of polyomavirus BK-associated nephropathy: State of affairs. Transplantation, 2009, 87(5), 621-630.
[http://dx.doi.org/10.1097/TP.0b013e318197c17d] [PMID: 19295303]
[14]
van Aalderen, M.C.; Heutinck, K.M.; Huisman, C.; ten Berge, I.J. BK virus infection in transplant recipients: Clinical manifestations, treatment options and the immune response. Neth. J. Med., 2012, 70(4), 172-183.
[PMID: 22641625]
[15]
Krejci, K.; Tichy, T.; Bednarikova, J.; Zamboch, K.; Zadrazil, J. BK virus-induced renal allograft nephropathy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2018, 162(3), 165-177.
[http://dx.doi.org/10.5507/bp.2018.018] [PMID: 29765170]
[16]
Chong, S.; Antoni, M.; Macdonald, A.; Reeves, M.; Harber, M.; Magee, C.N. BK virus: Current understanding of pathogenicity and clinical disease in transplantation. Rev. Med. Virol., 2019, 29(4), e2044.
[http://dx.doi.org/10.1002/rmv.2044] [PMID: 30958614]
[17]
Drachenberg, C.B.; Papadimitriou, J.C.; Chaudhry, M.R.; Ugarte, R.; Mavanur, M.; Thomas, B.; Cangro, C.; Costa, N.; Ramos, E.; Weir, M.R.; Haririan, A. Histological evolution of bk virus-associated nephropathy: Importance of integrating clinical and pathological findings. Am. J. Transplant., 2017, 17(8), 2078-2091.
[http://dx.doi.org/10.1111/ajt.14314] [PMID: 28422412]
[18]
Funahashi, Y. Bk virus-associated nephropathy after renal transplantation. Pathogens, 2021, 10(2), 150.
[http://dx.doi.org/10.3390/pathogens10020150] [PMID: 33540802]
[19]
Mbianda, C.; El-Meanawy, A.; Sorokin, A. Mechanisms of BK virus infection of renal cells and therapeutic implications. J. Clin. Virol., 2015, 71, 59-62.
[http://dx.doi.org/10.1016/j.jcv.2015.08.003] [PMID: 26295751]
[20]
Pajenda, S.; Gerges, D.A.; Freire, R.; Wagner, L.; Hevesi, Z.; Aiad, M.; Eder, M.; Schmidt, A.; Winnicki, W.; Eskandary, F.A. Acute kidney injury and bk polyomavirus in urine sediment cells. Int. J. Mol. Sci., 2023, 24(24), 17511.
[http://dx.doi.org/10.3390/ijms242417511] [PMID: 38139342]
[21]
Agrawal, A.; Ison, M.G.; Isakov, D.L. Long-term infectious complications of kidney transplantation. Clin. J. Am. Soc. Nephrol., 2022, 17(2), 286-295.
[http://dx.doi.org/10.2215/CJN.15971020] [PMID: 33879502]
[22]
Schaub, S.; Hirsch, H.H.; Dickenmann, M.; Steiger, J.; Mihatsch, M.J.; Hopfer, H.; Mayr, M. Reducing immunosuppression preserves allograft function in presumptive and definitive polyomavirus-associated nephropathy. Am. J. Transplant., 2010, 10(12), 2615-2623.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03310.x] [PMID: 21114642]
[23]
Hardinger, K.L.; Koch, M.J.; Bohl, D.J.; Storch, G.A.; Brennan, D.C. BK-virus and the impact of pre-emptive immunosuppression reduction: 5-year results. Am. J. Transplant., 2010, 10(2), 407-415.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02952.x] [PMID: 20055811]
[24]
Demey, B.; Descamps, V.; Presne, C.; Helle, F.; Francois, C.; Duverlie, G.; Castelain, S.; Brochot, E. Bk polyomavirus micro-rnas: Time course and clinical relevance in kidney transplant recipients. Viruses, 2021, 13(2), 351.
[25]
Pham, P.T.; Schaenman, J.; Pham, P.C. BK virus infection following kidney transplantation. Curr. Opin. Organ Transplant., 2014, 19(4), 401-412.
[http://dx.doi.org/10.1097/MOT.0000000000000101] [PMID: 25010062]
[26]
Kurašová, E.; Štěpán, J.; Krejčí, K.; Mrázek, F.; Sauer, P.; Janečková, J.; Tichý, T. Current status, prevention and treatment of bk virus nephropathy. Acta Med., 2022, 65(4), 119-124.
[http://dx.doi.org/10.14712/18059694.2023.1] [PMID: 36942701]
[27]
Wunderink, H.F.; van der Meijden, E.; van der Blij-de Brouwer, C.S.; Mallat, M.J.K.; Haasnoot, G.W.; van Zwet, E.W.; Claas, E.C.J.; de Fijter, J.W.; Kroes, A.C.M.; Arnold, F.; Touzé, A.; Claas, F.H.J.; Rotmans, J.I.; Feltkamp, M.C.W. Pretransplantation donor-recipient pair seroreactivity against bk polyomavirus predicts viremia and nephropathy after kidney transplantation. Am. J. Transplant., 2017, 17(1), 161-172.
[http://dx.doi.org/10.1111/ajt.13880] [PMID: 27251361]
[28]
Demey, B.; Tinez, C.; François, C.; Helle, F.; Choukroun, G.; Duverlie, G.; Castelain, S.; Brochot, E. Risk factors for BK virus viremia and nephropathy after kidney transplantation: A systematic review. J. Clin. Virol., 2018, 109, 6-12.
[http://dx.doi.org/10.1016/j.jcv.2018.10.002] [PMID: 30343190]
[29]
Fang, Y.; Zhang, C.; Wang, Y.; Yu, Z.; Wu, Z.; Zhou, Y.; Yan, Z.; Luo, J.; Xia, R.; Zeng, W.; Deng, W.; Xu, J.; Chen, Z.; Miao, Y. Dynamic risk prediction of BK polyomavirus reactivation after renal transplantation. Front. Immunol., 2022, 13, 971531.
[http://dx.doi.org/10.3389/fimmu.2022.971531] [PMID: 36059544]
[30]
Verghese, P.S.; Schmeling, D.O.; Knight, J.A.; Matas, A.J.; Balfour, H.H., Jr The impact of donor viral replication at transplant on recipient infections posttransplant: A prospective study. Transplantation, 2015, 99(3), 602-608.
[http://dx.doi.org/10.1097/TP.0000000000000354] [PMID: 25148381]
[31]
Chan, B.D.; Wong, G.; Jiang, Q.; Lee, M.M.L.; Wong, W.Y.; Chen, F.; Wong, W.T.; Zhu, L.; Wong, F.K.M.; Tai, W.C.S. Longitudinal study of BK Polyomavirus outcomes, risk factors, and kinetics in renal transplantation patients. Microb. Pathog., 2020, 142, 104036.
[http://dx.doi.org/10.1016/j.micpath.2020.104036] [PMID: 32017958]
[32]
Shen, C.L.; Wu, B.S.; Lien, T.J.; Yang, A.H.; Yang, C.Y. Bk polyomavirus nephropathy in kidney transplantation: Balancing rejection and infection. Viruses, 2021, 13(3), 487.
[33]
Benavides, C.A.; Pollard, V.B.; Mauiyyedi, S.; Podder, H.; Knight, R.; Kahan, B.D. BK virus-associated nephropathy in sirolimus-treated renal transplant patients: incidence, course, and clinical outcomes. Transplantation, 2007, 84(1), 83-88.
[http://dx.doi.org/10.1097/01.tp.0000268524.27506.39] [PMID: 17627242]
[34]
Prince, O.; Savic, S.; Dickenmann, M.; Steiger, J.; Bubendorf, L.; Mihatsch, M.J. Risk factors for polyoma virus nephropathy. Nephrol. Dial. Transplant., 2009, 24(3), 1024-1033.
[http://dx.doi.org/10.1093/ndt/gfn671] [PMID: 19073658]
[35]
Shen, C.L.; Yang, A.H.; Lien, T.J.; Tarng, D.C.; Yang, C.Y. Tacrolimus blood level fluctuation predisposes to coexisting BK virus nephropathy and acute allograft rejection. Sci. Rep., 2017, 7(1), 1986.
[http://dx.doi.org/10.1038/s41598-017-02140-1] [PMID: 28512328]
[36]
Dong, Y.; Xu, Q.; Li, R.; Tao, Y.; Zhang, Q.; Li, J.; Ma, Z.; Shen, C.; Zhong, M.; Wang, Z.; Qiu, X. CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in recipients rather than donors influence tacrolimus concentrations in the early stages after liver transplantation. Gene, 2022, 809, 146007.
[http://dx.doi.org/10.1016/j.gene.2021.146007] [PMID: 34688813]
[37]
Kirubakaran, R.; Stocker, S.L.; Hennig, S.; Day, R.O.; Carland, J.E. Population pharmacokinetic models of tacrolimus in adult transplant recipients: A systematic review. Clin. Pharmacokinet., 2020, 59(11), 1357-1392.
[http://dx.doi.org/10.1007/s40262-020-00922-x] [PMID: 32783100]
[38]
Loer, H.L.H.; Feick, D.; Rüdesheim, S.; Selzer, D.; Schwab, M.; Teutonico, D.; Frechen, S.; van der Lee, M.; Moes, D.J.A.R.; Swen, J.J.; Lehr, T. Physiologically based pharmacokinetic modeling of tacrolimus for FOOD–DRUG and CYP3A DRUG–DRUG–GENE interaction predictions. CPT Pharmacometrics Syst. Pharmacol., 2023, 12(5), 724-738.
[http://dx.doi.org/10.1002/psp4.12946] [PMID: 36808892]
[39]
Liu, B.; Chen, W.; Chen, Z.; Huang, J.; Liao, Z.; Liu, Q.; Zheng, Z.; Song, Y.; Wang, W.; Hu, S. The effects of cyp3a5 genetic polymorphisms on serum tacrolimus dose-adjusted concentrations and long-term prognosis in chinese heart transplantation recipients. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(6), 771-776.
[http://dx.doi.org/10.1007/s13318-019-00563-x] [PMID: 31087280]
[40]
Urzì Brancati, V.; Scarpignato, C.; Minutoli, L.; Pallio, G. Use of pharmacogenetics to optimize immunosuppressant therapy in kidney-transplanted patients. Biomedicines, 2022, 10(8), 1798.
[http://dx.doi.org/10.3390/biomedicines10081798] [PMID: 35892699]
[41]
Xie, X.; Li, J.; Wang, H.; Li, H.; Liu, J.; Fu, Q.; Huang, J.; Zhu, C.; Zhong, G.; Wang, X.; Sun, P.; Huang, M.; Wang, C.; Li, J. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol. Sin., 2015, 36(5), 644-650.
[http://dx.doi.org/10.1038/aps.2015.7] [PMID: 25864649]
[42]
Wang, X.; Wang, H.; Shen, B.; Overholser, B.R.; Cooper, B.R.; Lu, Y.; Tang, H.; Zhou, C.; Sun, X.; Zhong, L.; Favus, M.J.; Decker, B.S.; Liu, W.; Peng, Z. 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10. Transl. Res., 2016, 178, 54-62.e6.
[http://dx.doi.org/10.1016/j.trsl.2016.07.006] [PMID: 27496319]
[43]
Ciftci, H.S.; Demir, E.; Karadeniz, M.S.; Tefik, T.; Nane, I.; Oguz, F.S.; Aydin, F.; Turkmen, A. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant. Ren. Fail., 2018, 40(1), 395-402.
[http://dx.doi.org/10.1080/0886022X.2018.1489285] [PMID: 30012031]
[44]
Jiang, Z.; Hu, N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics, 2021, 22(15), 1019-1040.
[http://dx.doi.org/10.2217/pgs-2021-0087] [PMID: 34581204]
[45]
Laverdière, I.; Caron, P.; Harvey, M.; Lévesque, É.; Guillemette, C. In vitro investigation of human UDP-glucuronosyltransferase isoforms responsible for tacrolimus glucuronidation: Predominant contribution of UGT1A4. Drug Metab. Dispos., 2011, 39(7), 1127-1130.
[http://dx.doi.org/10.1124/dmd.111.039040] [PMID: 21487055]
[46]
Wang, Z.; Yang, H.; Si, S.; Han, Z.; Tao, J.; Chen, H.; Ge, Y.; Guo, M.; Wang, K.; Tan, R.; Wei, J.F.; Gu, M. Polymorphisms of nucleotide factor of activated T cells cytoplasmic 2 and 4 and the risk of acute rejection following kidney transplantation. World J. Urol., 2018, 36(1), 111-116.
[http://dx.doi.org/10.1007/s00345-017-2117-2] [PMID: 29103109]
[47]
Gui, Z.; Li, W.; Fei, S.; Guo, M.; Chen, H.; Sun, L.; Han, Z.; Tao, J.; Ju, X.; Yang, H.; Wei, J.F.; Tan, R.; Gu, M. Single nucleotide polymorphisms of ubiquitin-related genes were associated with allograft fibrosis of renal transplant fibrosis. Ann. Transplant., 2019, 24, 553-568.
[http://dx.doi.org/10.12659/AOT.917767] [PMID: 31582715]
[48]
Warnes, G GWLF: Genetics: Population genetics, 2021. 2021. Available from: https://cran.r-project.org/web/packages/genetics/index.html
[49]
Moreno, V Snpassoc: Snps-based whole genome. 2022. Available from: https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf
[50]
Redondo, N.; Goncer, R.I.; Parra, P.; Medrano, L.F.; González, E.; Hernández, A.; Trujillo, H.; Ruiz-Merlo, T.; San Juan, R.; Folgueira, M.D.; Andrés, A.; Aguado, J.M.; Ruiz, F.M. Genetic polymorphisms in TLR3, IL10 and CD209 influence the risk of BK polyomavirus infection after kidney transplantation. Sci. Rep., 2022, 12(1), 11338.
[http://dx.doi.org/10.1038/s41598-022-15406-0] [PMID: 35790769]
[51]
Vu, D.; Sakharkar, P.; Shah, T.; Naraghi, R.; Yasir, Q.; Hutchinson, I.; Min, D. Association of interferon gamma gene polymorphisms with BK virus infection among Hispanic renal allograft recipients. Transplantation, 2014, 97(6), 660-667.
[http://dx.doi.org/10.1097/01.TP.0000438115.20198.89] [PMID: 24642663]
[52]
Moon, J.; Chang, Y.; Shah, T.; Min, D.I. Effects of intravenous immunoglobulin therapy and Fc gamma receptor polymorphisms on BK virus nephropathy in kidney transplant recipients. Transpl. Infect. Dis., 2020, 22(4), e13300.
[http://dx.doi.org/10.1111/tid.13300] [PMID: 32323406]
[53]
Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; Leeder, J.S.; van Schaik, R.H.N.; Thummel, K.E.; Klein, T.E.; Caudle, K.E.; MacPhee, I.A.M. Clinical pharmacogenetics implementation consortium (cpic) guidelines for cyp3a5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther., 2015, 98(1), 19-24.
[http://dx.doi.org/10.1002/cpt.113] [PMID: 25801146]
[54]
Tron, C.; Petitcollin, A.; Verdier, M.C.; Rayar, M.; Beaurepaire, J.M.; Boudjema, K.; Bellissant, E.; Lemaitre, F. Tacrolimus: Does direct glucuronidation matter? An analytical and pharmacological perspective. Pharmacol. Res., 2017, 124, 164-166.
[http://dx.doi.org/10.1016/j.phrs.2017.03.027] [PMID: 28366836]
[55]
Gately, R.; Milanzi, E.; Lim, W.; Pinto, T.A.; Clayton, P.; Isbel, N.; Johnson, D.W.; Hawley, C.; Campbell, S.; Wong, G. Incidence, risk factors, and outcomes of kidney transplant recipients with bk polyomavirus-associated nephropathy. Kidney Int. Rep., 2023, 8(3), 531-543.
[http://dx.doi.org/10.1016/j.ekir.2022.12.020] [PMID: 36938086]
[56]
Shenagari, M.; Monfared, A.; Eghtedari, H.; Pourkazemi, A.; Hasandokht, T.; Khosravi, M.; Asharfkhani, B. BK virus replication in renal transplant recipients: Analysis of potential risk factors may contribute in reactivation. J. Clin. Virol., 2017, 96, 7-11.
[http://dx.doi.org/10.1016/j.jcv.2017.09.004] [PMID: 28915452]
[57]
Chen, X.T.; Li, J.; Deng, R.H.; Yang, S.C.; Chen, Y.Y.; Chen, P.S.; Wang, Z.Y.; Huang, Y.; Wang, C.X.; Huang, G. The therapeutic effect of switching from tacrolimus to low-dose cyclosporine a in renal transplant recipients with bk virus nephropathy. In: Biosci Rep; , 2019; 39, p. (2)BSR20182058.
[58]
Li, P.; Cheng, D.; Wen, J.; Xie, K.; Li, X.; Ni, X.; Ji, S.; Chen, J. Risk factors for BK virus infection in living-donor renal transplant recipients: A single-center study from China. Ren. Fail., 2018, 40(1), 442-446.
[http://dx.doi.org/10.1080/0886022X.2018.1489843] [PMID: 30052479]
[59]
Boukoum, H.; Nahdi, I.; Sahtout, W.; Skiri, H.; Aloui, S.; Achour, A.; Segondy, M.; Aouni, M. BK and JC polyomavirus infections in Tunisian renal transplant recipients. J. Med. Virol., 2015, 87(10), 1788-1795.
[http://dx.doi.org/10.1002/jmv.24234] [PMID: 25952258]
[60]
Hirsch, H.H.; Yakhontova, K.; Lu, M.; Manzetti, J. Bk polyomavirus replication in renal tubular epithelial cells is inhibited by sirolimus, but activated by tacrolimus through a pathway involving fkbp-12. Am. J. Transplant., 2016, 16(3), 821-832.
[http://dx.doi.org/10.1111/ajt.13541] [PMID: 26639422]
[61]
Thölking, G.; Schmidt, C.; Koch, R.; Nuetgen, S.K.; Pabst, D.; Wolters, H.; Kabar, I.; Hüsing, A.; Pavenstädt, H.; Reuter, S.; Suwelack, B. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation. Sci. Rep., 2016, 6(1), 32273.
[http://dx.doi.org/10.1038/srep32273] [PMID: 27573493]
[62]
Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; Parkinson, H. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res., 2014, 42(D1), D1001-D1006.
[http://dx.doi.org/10.1093/nar/gkt1229] [PMID: 24316577]
[63]
Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci., 2009, 106(23), 9362-9367.
[http://dx.doi.org/10.1073/pnas.0903103106] [PMID: 19474294]
[64]
Wang, R.; Li, R.; Liu, R. An intron SNP rs2069837 in IL-6 is associated with osteonecrosis of the femoral head development. BMC Med. Genom., 2022, 15(1), 5.
[http://dx.doi.org/10.1186/s12920-021-01142-3] [PMID: 34986839]
[65]
Rose, A.B. Introns as gene regulators: A brick on the accelerator. Front. Genet., 2019, 9, 672.
[http://dx.doi.org/10.3389/fgene.2018.00672] [PMID: 30792737]
[66]
Petrillo, E. Do not panic: An intron-centric guide to alternative splicing. Plant Cell, 2023, 35(6), 1752-1761.
[http://dx.doi.org/10.1093/plcell/koad009] [PMID: 36648241]
[67]
Jacob, A.G.; Smith, C.W.J. Intron retention as a component of regulated gene expression programs. Hum. Genet., 2017, 136(9), 1043-1057.
[http://dx.doi.org/10.1007/s00439-017-1791-x] [PMID: 28391524]
[68]
Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol., 2017, 91(Pt B), 145-155.
[http://dx.doi.org/10.1016/j.biocel.2017.06.016] [PMID: 28673892]
[69]
Dwyer, K.; Agarwal, N.; Pile, L.; Ansari, A. Gene architecture facilitates intron-mediated enhancement of transcription. Front. Mol. Biosci., 2021, 8, 669004.
[http://dx.doi.org/10.3389/fmolb.2021.669004] [PMID: 33968994]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy