Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Targeted Delivery of Diphtheria Toxin into VEGFR1/VEGFR2 Overexpressing Cells Induces Anti-angiogenesis Activity

Author(s): Fatemeh Kazemi-Lomedasht*, Farzad Taghizadeh-Hesary, Zahra Faal and Mahdi Behdani

Volume 25, Issue 7, 2024

Published on: 19 March, 2024

Page: [567 - 576] Pages: 10

DOI: 10.2174/0113892037292385240222074908

Price: $65

Abstract

Background: Vascular Endothelial Growth Factor Receptors (VEGFR1 and VEGFR2) are tyrosine kinase receptors expressed on endothelial cells and tumor vessels and play an important role in angiogenesis. In this study, three repeats of VEGFR1 and VEGFR2 binding peptide (VGB3) were genetically fused to the truncated diphtheria toxin (TDT), and its in vitro activity was evaluated.

Methods: The recombinant construct (TDT-triVGB3) was expressed in bacteria cells and purified with nickel affinity chromatography. The binding capacity and affinity of TDT-triVGB3 were evaluated using the enzyme-linked immunosorbent assay. The inhibitory activity of TDT-triVGB3 on viability, migration, and tube formation of human endothelial cells was evaluated using MTT, migration, and tube formation assays.

Results: TDT-triVGB3 selectively detected VEGFR1 and VEGFR2 with high affinity in an enzyme- linked immunosorbent assay and significantly inhibited viability, migration, and tube formation of human endothelial cells.

Conclusion: The developed TDT-triVGB3 is potentially a novel agent for targeting VEGFR1/ VEGFR2 over-expressing cancer cells.

Graphical Abstract

[1]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[2]
Mercurio, A. VEGF/neuropilin signaling in cancer stem cells. Int. J. Mol. Sci., 2019, 20(3), 490.
[http://dx.doi.org/10.3390/ijms20030490] [PMID: 30678134]
[3]
Fearnley, G.W.; Smith, G.A.; Abdul-Zani, I.; Yuldasheva, N.; Mughal, N.A.; Homer-Vanniasinkam, S.; Kearney, M.T.; Zachary, I.C.; Tomlinson, D.C.; Harrison, M.A.; Wheatcroft, S.B.; Ponnambalam, S. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol. Open, 2016, 5(5), 571-583.
[http://dx.doi.org/10.1242/bio.017434] [PMID: 27044325]
[4]
Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of ligands and receptors: Review. Blood Cells Mol. Dis., 2007, 38(3), 258-268.
[http://dx.doi.org/10.1016/j.bcmd.2006.12.003] [PMID: 17344076]
[5]
Karkkainen, M.J.; Petrova, T.V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene, 2000, 19(49), 5598-5605.
[http://dx.doi.org/10.1038/sj.onc.1203855] [PMID: 11114740]
[6]
Lu, D.; Jimenez, X.; Zhang, H.; Wu, Y.; Bohlen, P.; Witte, L.; Zhu, Z. Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res., 2001, 61(19), 7002-7008.
[PMID: 11585724]
[7]
Fischer, C.; Jonckx, B.; Mazzone, M.; Zacchigna, S.; Loges, S.; Pattarini, L.; Chorianopoulos, E.; Liesenborghs, L.; Koch, M.; De Mol, M.; Autiero, M.; Wyns, S.; Plaisance, S.; Moons, L.; van Rooijen, N.; Giacca, M.; Stassen, J.M.; Dewerchin, M.; Collen, D.; Carmeliet, P. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell, 2007, 131(3), 463-475.
[http://dx.doi.org/10.1016/j.cell.2007.08.038] [PMID: 17981115]
[8]
Wu, Y.; Zhong, Z.; Huber, J.; Bassi, R.; Finnerty, B.; Corcoran, E.; Li, H.; Navarro, E.; Balderes, P.; Jimenez, X.; Koo, H.; Mangalampalli, V.R.M.; Ludwig, D.L.; Tonra, J.R.; Hicklin, D.J. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin. Cancer Res., 2006, 12(21), 6573-6584.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0831] [PMID: 17085673]
[9]
Fan, F.; Schimming, A.; Jaeger, D.; Podar, K. Targeting the tumor microenvironment: Focus on angiogenesis. J. Oncol., 2012, 2012, 1-16.
[http://dx.doi.org/10.1155/2012/281261] [PMID: 21876693]
[10]
Su, J-L.; Yen, C-J.; Chen, P-S.; Chuang, S-E.; Hong, C-C.; Kuo, I-H.; Chen, H-Y.; Hung, M-C.; Kuo, M-L. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br. J. Cancer, 2007, 96(4), 541-545.
[http://dx.doi.org/10.1038/sj.bjc.6603487] [PMID: 17164762]
[11]
Sala, R.; Jefferies, W.A.; Walker, B.; Yang, J.; Tiong, J.; Law, S.K.A.; Carlevaro, M.F.; Di Marco, E.; Vacca, A.; Cancedda, R.; Cancedda, F.D.; Ribatti, D. The human melanoma associated protein melanotransferrin promotes endothelial cell migration and angiogenesis in vivo. Eur. J. Cell Biol., 2002, 81(11), 599-607.
[http://dx.doi.org/10.1078/0171-9335-00280] [PMID: 12494997]
[12]
Ferrara, N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS, 2005, 94(94), 209-231.
[http://dx.doi.org/10.1007/3-7643-7311-3_15] [PMID: 15617481]
[13]
Brown, L.F.; Berse, B.; Jackman, R.W.; Tognazzi, K.; Guidi, A.J.; Dvorak, H.F.; Senger, D.R.; Connolly, J.L.; Schnitt, S.J. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol., 1995, 26(1), 86-91.
[http://dx.doi.org/10.1016/0046-8177(95)90119-1] [PMID: 7821921]
[14]
Papetti, M.; Herman, I.M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol., 2002, 282(5), C947-C970.
[http://dx.doi.org/10.1152/ajpcell.00389.2001] [PMID: 11940508]
[15]
Brown, L.F.; Berse, B.; Jackman, R.W.; Tognazzi, K.; Manseau, E.J.; Dvorak, H.F.; Senger, D.R. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol., 1993, 143(5), 1255-1262.
[PMID: 8238242]
[16]
Olson, T.A.; Mohanraj, D.; Carson, L.F.; Ramakrishnan, S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res., 1994, 54(1), 276-280.
[PMID: 8261452]
[17]
Weidner, N.; Carroll, P.R.; Flax, J.; Blumenfeld, W.; Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol., 1993, 143(2), 401-409.
[PMID: 7688183]
[18]
Sadremomtaz, A.; Ali, A.M.; Jouyandeh, F.; Balalaie, S.; Navari, R.; Broussy, S.; Mansouri, K.; Groves, M.R.; Asghari, S.M. Molecular docking, synthesis and biological evaluation of Vascular Endothelial Growth Factor (VEGF) B based peptide as antiangiogenic agent targeting the second domain of the Vascular Endothelial Growth Factor Receptor 1 (VEGFR1D2) for anticancer application. Signal Transduct. Target. Ther., 2020, 5(1), 76.
[http://dx.doi.org/10.1038/s41392-020-0177-z] [PMID: 32499505]
[19]
Zanjanchi, P.; Asghari, S.M.; Mohabatkar, H.; Shourian, M.; Shafiee Ardestani, M. Conjugation of VEGFR1/R2-targeting peptide with gold nanoparticles to enhance antiangiogenic and antitumoral activity. J. Nanobiotechnology, 2022, 20(1), 7.
[http://dx.doi.org/10.1186/s12951-021-01198-4] [PMID: 34980143]
[20]
Bennett, M.J.; Eisenberg, D. Refined structure of monomelic diphtheria toxin at 2.3 Å resolution. Protein Sci., 1994, 3(9), 1464-1475.
[http://dx.doi.org/10.1002/pro.5560030912] [PMID: 7833808]
[21]
Kazemi-Lomedasht, F.; Behdani, M.; Pooshang Bagheri, K.; Habibi Anbouhi, M.; Abolhassani, M.; Khanahmad, H.; Shahbazzadeh, D.; Mirzahoseini, H. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv. Pharm. Bull., 2014, 4(4), 323-328.
[PMID: 25436186]
[22]
Zheng, W. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Meth., 2021, 1(3), 100014.
[http://dx.doi.org/10.1016/j.crmeth.2021.100014]
[23]
Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res., 2017, 45(W1), W291-W299.
[http://dx.doi.org/10.1093/nar/gkx366] [PMID: 28472402]
[24]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[25]
Roshan, R.; Naderi, S.; Behdani, M.; Cohan, R.A.; Ghaderi, H.; Shokrgozar, M.A.; Golkar, M.; Kazemi-Lomedasht, F. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol. Immunol., 2021, 129, 70-77.
[http://dx.doi.org/10.1016/j.molimm.2020.10.021] [PMID: 33183767]
[26]
Ahadi, M.; Ghasemian, H.; Behdani, M.; Kazemi-Lomedasht, F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J. Immunotoxicol., 2019, 16(1), 34-42.
[http://dx.doi.org/10.1080/1547691X.2018.1526234] [PMID: 30409071]
[27]
Beatty, J.D.; Beatty, B.G.; Vlahos, W.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J. Immunol. Methods, 1987, 100(1-2), 173-179.
[http://dx.doi.org/10.1016/0022-1759(87)90187-6] [PMID: 2439600]
[28]
Shajari, S.; Farajollahi, M.M.; Behdani, M.; Tarighi, P. Production and conjugation of truncated recombinant diphtheria toxin to VEGFR-2 Specific nanobody and evaluation of its cytotoxic effect on PC-3 cell line. Mol. Biotechnol., 2022, 64(11), 1218-1226.
[http://dx.doi.org/10.1007/s12033-022-00485-1] [PMID: 35478310]
[29]
Baharlou, R.; Tajik, N.; Behdani, M.; Shokrgozar, M.A.; Tavana, V.; Kazemi-Lomedasht, F.; Faraji, F.; Habibi-Anbouhi, M. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization. Immunopharmacol. Immunotoxicol., 2018, 40(5), 368-374.
[http://dx.doi.org/10.1080/08923973.2018.1505907] [PMID: 30183441]
[30]
Havaei, S.M.; Aucoin, M.G.; Jahanian-Najafabadi, A. Pseudomonas exotoxin-based immunotoxins: Over three decades of efforts on targeting cancer cells with the toxin. Front. Oncol., 2021, 11, 781800.
[http://dx.doi.org/10.3389/fonc.2021.781800] [PMID: 34976821]
[31]
Behdani, M.; Zeinali, S.; Karimipour, M.; Khanahmad, H.; Schoonooghe, S.; Aslemarz, A.; Seyed, N.; Moazami-Godarzi, R.; Baniahmad, F.; Habibi-Anbouhi, M.; Hassanzadeh-Ghassabeh, G.; Muyldermans, S. Development of VEGFR2-specific nanobody pseudomonas exotoxin a conjugated to provide efficient inhibition of tumor cell growth. N. Biotechnol., 2013, 30(2), 205-209.
[http://dx.doi.org/10.1016/j.nbt.2012.09.002] [PMID: 23031816]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy