Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Molecular Docking, Anti-cholinesterase Activity, Theoretical Investigation, and Catalytic Effect of New Encumbered N-benzyladamantyl Substituted Imidazolidin-2-ylidene Carbene Pd-PEPPSI Complexes

Author(s): Sofiane Ikhlef*, Sarra Lasmari, Saber Mustapha Zendaoui, El Hassen Mokrani, Dahmane Tebbani, Nevin Gürbüz, Chawki Bensouici, Raouf Boulcina, Bachir Zouchoune and Ismail Özdemir

Volume 28, Issue 6, 2024

Published on: 18 March, 2024

Page: [472 - 487] Pages: 16

DOI: 10.2174/0113852728289791240222054306

Price: $65

conference banner
Abstract

This study aimed to describe the preparation of novel PEPPSI type Pd(II)-NHC complexes bearing N-benzyladamantyl substituted imidazolidin-2-ylidene group. All synthesized compounds were characterized by using 1H-NMR and 13C-NMR spectroscopies, FTIR, and elemental analysis techniques. One of the objectives of this study was the synthesis of Pd-NHC complexes with AChE/BChE inhibition activities. Among all the tested compounds, complexes 4b and 4c were found to have the most high potential AChE and BChE inhibitory activities with IC50 values of 21.57 ± 0.23 Mm and 15.78 ± 0.39 Mm, respectively. Conducting molecular docking studies helped us in gathering crucial information about the main binding interactions of inhibitors and enzymes, and the results were in agreement with the biological evaluation. The synthesized Pd-NHC complexes were employed for catalyzing the direct C2- and C5-arylation reaction between aryl (hetero) halide and a variety of heterocyclic systems. In both cases (C2 and C5-arylation), Pd-NHC complexes catalysts provided access to the arylated heterocycles in good to high yields in the presence of 1 mol% catalyst loading at 150°C. The DFT theoretical investigation showed that the Pd-NHC complexes were of ML2X2 type, where the the Pd(II) cation had a square planar geometry. The interaction energies obtained by energy decomposition analysis (EDA) demonstrated that the 4d and 4e complexes were more stable in the presence of more methyl substituents. The chemical indicators demonstrated that the less stable 4c complex was more reactive in regard to the chemical hardness, chemical potential, and electrophilicity values.

« Previous
Graphical Abstract

[1]
Herrmann, W.A. N-heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed., 2002, 41(8), 1290-1309.
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1290:AID-ANIE1290>3.0.CO;2-Y] [PMID: 19750753]
[2]
Kantchev, E.A.B.; O’Brien, C.J.; Organ, M.G. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions-a synthetic chemist’s perspective. Angew. Chem. Int. Ed., 2007, 46(16), 2768-2813.
[http://dx.doi.org/10.1002/anie.200601663] [PMID: 17410611]
[3]
Herrmann, W.A.; Öfele, K.; Preysing, D.V.; Schneider, S.K. Phospha-palladacycles and N-heterocyclic carbene palladium complexes: Efficient catalysts for CC-coupling reactions. J. Organomet. Chem., 2003, 687, 229-248.
[http://dx.doi.org/10.1016/j.jorganchem.2003.07.028]
[4]
Organ, M.; Chass, G.; Fang, D.C.; Hopkinson, A.; Valente, C. Pd-NHC (PEPPSI) complexes: Synthetic utility and computational studies into their reactivity. Synthesis, 2008, 2008(17), 2776-2797.
[http://dx.doi.org/10.1055/s-2008-1067225]
[5]
Öfele, K.; Herberhold, M. Tetracarbonyl‐bis(1,3‐dimethyl‐4‐imidazolin‐2‐yliden)‐chrom(0)[1]. Angew. Chem., 1970, 82(18), 775-776.
[http://dx.doi.org/10.1002/ange.19700821812]
[6]
Wanzlick, H.W.; Schönherr, H.J. Direkt‐synthese eines quecksilbersalz‐carben‐komplexes. Angew. Chem., 1968, 80(4), 154-154.
[http://dx.doi.org/10.1002/ange.19680800411]
[7]
O’Brien, C.J.; Kantchev, E.A.B.; Valente, C.; Hadei, N.; Chass, G.A.; Lough, A.; Hopkinson, A.C.; Organ, M.G. Easily prepared air- and moisture-stable Pd-NHC (NHC=N-heterocyclic carbene) complexes: A reliable, user-friendly, highly active palladium precatalyst for the Suzuki-Miyaura reaction. Chemistry, 2006, 12(18), 4743-4748.
[http://dx.doi.org/10.1002/chem.200600251] [PMID: 16568494]
[8]
Erdemir, F.; Barut Celepci, D. Aktaş, A.; Gök, Y. 2‐hydroxyethylsubstituted (NHC)PdI2 (pyridine) (Pd‐PEPPSI) complexes: Synthesis, characterization and the catalytic activity in the sonogashira cross‐coupling reaction. Chem. Sel.t, 2019, 4(19), 5585-5590.
[http://dx.doi.org/10.1002/slct.201901033]
[9]
Liu, Q.X.; Zhang, W.; Zhao, X.J.; Zhao, Z.X.; Shi, M.C.; Wang, X.G. NHC PdII complex bearing 1,6‐hexylene linker: Synthesis and catalytic activity in the Suzuki-Miyaura and Heck-Mizoroki reactions. Eur. J. Org. Chem., 2013, 2013(7), 1253-1261.
[http://dx.doi.org/10.1002/ejoc.201200954]
[10]
Suzuki, A. Cross-coupling reactions via organoboranes. J. Organomet. Chem., 2002, 653(1-2), 83-90.
[http://dx.doi.org/10.1016/S0022-328X(02)01269-X]
[11]
Felpin, F.X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E. Recent advances in the Heck-Matsuda reaction in heterocyclic chemistry. Tetrahedron, 2011, 67(16), 2815-2831.
[http://dx.doi.org/10.1016/j.tet.2011.02.051]
[12]
Organ, M.G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E.A.B.; O’Brien, C.J.; Valente, C. A user-friendly, all-purpose Pd-NHC (NHC=N-heterocyclic carbene) precatalyst for the negishi reaction: A step towards a universal cross-coupling catalyst. Chemistry, 2006, 12(18), 4749-4755.
[http://dx.doi.org/10.1002/chem.200600206] [PMID: 16568493]
[13]
Yang, L.; Guan, P.; He, P.; Chen, Q.; Cao, C.; Peng, Y.; Shi, Z.; Pang, G.; Shi, Y. Synthesis and characterization of novel chiral NHC-palladium complexes and their application in copper-free Sonogashira reactions. Dalton Trans., 2012, 41(16), 5020-5025.
[http://dx.doi.org/10.1039/c2dt12391f] [PMID: 22415100]
[14]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[15]
Dowlut, M.; Mallik, D.; Organ, M.G. An efficient low-temperature Stille-Migita cross-coupling reaction for heteroaromatic compounds by Pd-PEPPSI-IPent. Chemistry, 2010, 16(14), 4279-4283.
[http://dx.doi.org/10.1002/chem.200903337] [PMID: 20209529]
[16]
Organ, M.G.; Abdel-Hadi, M.; Avola, S.; Hadei, N.; Nasielski, J.; O’Brien, C.J.; Valente, C. Biaryls made easy: PEPPSI and the kumada-tamao-corriu reaction. Chemistry, 2007, 13(1), 150-157.
[http://dx.doi.org/10.1002/chem.200601360] [PMID: 17143919]
[17]
Kaloğlu, M.; Kaloğlu, N.; Yıldırım, İ.; Özdemir, N.; Özdemir, İ. Palladium-carbene catalyzed direct arylation of five-membered heteroaromatics. J. Mol. Struct., 2020, 1206, 127668.
[http://dx.doi.org/10.1016/j.molstruc.2019.127668]
[18]
Gokanapalli, A.; Motakatla, V.K.R.; Peddiahgari, V.G.R. Benzimidazole bearing Pd-PEPPSI complexes catalyzed direct C2‐arylation/heteroarylation of N‐substituted benzimidazoles. Appl. Organomet. Chem., 2020, 34(10), e5869.
[http://dx.doi.org/10.1002/aoc.5869]
[19]
Kaloğlu, M.; Özdemir, İ. Palladium(II)-N-heterocyclic carbene-catalyzed direct C2- or C5-arylation of thiazoles with aryl bromides. Tetrahedron, 2018, 74(23), 2837-2845.
[http://dx.doi.org/10.1016/j.tet.2018.03.026]
[20]
Jayamoorthy, K.; Rajagopalan, N.R.; Prakash, S.M.; Subash, B.; Murugan, G.; Dhanalekshmi, K.I.; Suresh, S.; Sasikala, R.; Saravanan, K.; Venkatesh Perumal, M. Catalytic synthesis and characterization of aryl benzimidazole and its interaction with TiO2 nanoparticles: ESIPT process. Chem. Phy. Impact, 2023, 6, 100184.
[http://dx.doi.org/10.1016/j.chphi.2023.100184]
[21]
Rajasekar, T.S.; Navamani, P.; Jayamoorthy, K.; Srinivasan, N. 2-(4,5-Dimethyl-1-m-tolyl-1H-imidazol-2-yl)phenol as efficient chemosensor for on-off fluorescence system: Catalytic synthesis and nmr spectral studies. J. Inorg. Organomet. Polym. Mater., 2017, 27(4), 962-967.
[http://dx.doi.org/10.1007/s10904-017-0543-7]
[22]
Prakash, S.M.; Jayamoorthy, K.; Srinivasan, N.; Dhanalekshmi, K.I. Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol-ESIPT process. J. Lumin., 2016, 172, 304-308.
[http://dx.doi.org/10.1016/j.jlumin.2015.12.009]
[23]
Jayabharathi, J.; Sathishkumar, R.; Thanikachalam, V.; Jayamoorthy, K. High efficiency, blue emitting materials based on phenanthro[9,10-d]imidazole derivatives. J. Lumin., 2014, 153, 343-349.
[http://dx.doi.org/10.1016/j.jlumin.2014.03.060]
[24]
Suresh, S.; Jayamoorthy, K.; Saravanan, P.; Karthikeyan, S. Switch-Off fluorescence of 5-amino-2-mercapto benzimidazole with Ag3O4 nanoparticles: Experimental and theoretical investigations. Sens. Actuators B Chem., 2016, 225, 463-468.
[http://dx.doi.org/10.1016/j.snb.2015.11.056]
[25]
Jayabharathi, J.; Jayamoorthy, K.; Thanikachalam, V. Synthesis, photophysical and electroluminescent properties of green organic light emitting devices based on novel iridium complexes containing benzimidazole ligands. J. Organomet. Chem., 2014, 761, 74-83.
[http://dx.doi.org/10.1016/j.jorganchem.2014.03.002]
[26]
Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K.; Vinayagamoorthy, P. Benzimidazole based Ir(III) picolinate complexes as emitting materials and the fluorescent behavior of benzimidazole bound to Mn-TiO @ZnO core/shell nanospheres. Mat. Exp., 2014, 4(14), 279-292.
[27]
Jayabharathi, J.; Thanikachalam, V.; Kalaiarasi, V.; Jayamoorthy, K. Intramolecular excited charge transfer, radiative and radiationless charge recombination processes in donor-acceptor imidazole derivatives. J. Photochem. Photobiol. A. Chem., 2014, 275, 114-126.
[28]
Jayabharathi, J.; Thanikachalam, V.; Kalaiarasi, V.; Jayamoorthy, K. Optical properties of 1-(4,5-diphenyl-1-p-tolyl-1H-imidazol-2-yl)naphthalen-2-ol - ESIPT process. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 120, 389-394.
[http://dx.doi.org/10.1016/j.saa.2013.10.017] [PMID: 24211620]
[29]
Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K. Optical properties of 1,2-diaryl benzimidazole derivatives: A combined experimental and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 74-78.
[http://dx.doi.org/10.1016/j.saa.2013.06.001] [PMID: 23831981]
[30]
Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Benzimidazole: Dramatic luminescence turn-on by ZnO nanocrystals. Measurement, 2013, 46(10), 3883-3886.
[http://dx.doi.org/10.1016/j.measurement.2013.07.046]
[31]
Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sens. Actuators B Chem., 2013, 188, 207-211.
[http://dx.doi.org/10.1016/j.snb.2013.07.008]
[32]
Karunakaran, C.; Jayabharathi, J.; Jayamoorthy, K. Photoinduced electron transfer from benzimidazole to nano WO3, CuO and Fe2O3. A new approach on LUMO-CB energy-binding efficiency relationship. Sens. Actuators B Chem., 2013, 182, 514-520.
[http://dx.doi.org/10.1016/j.snb.2013.03.051]
[33]
Erdemir, F.; Celepci, D.B. Aktaş A.; Gök, Y.; Kaya, R.; Taslimi, P.; Demir, Y.; Gulçin, İ. Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg. Chem., 2019, 91, 103134.
[http://dx.doi.org/10.1016/j.bioorg.2019.103134] [PMID: 31374523]
[34]
Dahm, G.; Bailly, C.; Karmazin, L.; Bellemin-Laponnaz, S. Synthesis, structural characterization and in vitro anti-cancer activity of functionalized N-heterocyclic carbene platinum and palladium complexes. J. Organomet. Chem., 2015, 794, 115-124.
[http://dx.doi.org/10.1016/j.jorganchem.2015.07.003]
[35]
Akkoç, S. Kayser, V.; İlhan, İ.Ö.; Hibbs, D.E.; Gök, Y.; Williams, P.A.; Hawkins, B.; Lai, F. New compounds based on a benzimidazole nucleus: Synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J. Organomet. Chem., 2017, 839, 98-107.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.037]
[36]
Tariq, S.; Raza, A.R.; Khalid, M.; Rubab, S.L.; Khan, M.U.; Ali, A.; Tahir, M.N.; Braga, A.A.C. Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J. Mol. Struct., 2020, 1203, 127438.
[http://dx.doi.org/10.1016/j.molstruc.2019.127438]
[37]
Aktaş A.; Taslimi, P.; Gülçin, İ.; Gök, Y.; Novel, N.H.C. Novel NHC precursors: Synthesis, characterization, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Arch. Pharm., 2017, 350(6), e201700045.
[http://dx.doi.org/10.1002/ardp.201700045] [PMID: 28464340]
[38]
Sarı Y.; Aktaş A.; Taslimi, P.; Gök, Y.; Gulçin, İ. Novel N‐propyl-phthalimide‐ and 4‐vinylbenzyl‐substituted benzimidazole salts: Synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. J. Biochem. Mol. Toxicol., 2018, 32(1), e22009.
[http://dx.doi.org/10.1002/jbt.22009] [PMID: 29149534]
[39]
Erdemir, F.; Barut Celepci, D. Aktaş A.; Taslimi, P.; Gök, Y.; Karabıyık, H.; Gülçin, İ. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struct., 2018, 1155, 797-806.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.079]
[40]
Bursal, E.; Taslimi, P.; Gören, A.C. Gülçin, İ. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal. Agric. Biotechnol., 2020, 28, 101711.
[http://dx.doi.org/10.1016/j.bcab.2020.101711]
[41]
Genc Bilgicli, H.; Ergon, D.; Taslimi, P.; Tüzün, B. Akyazı Kuru, İ.; Zengin, M.; Gülçin, İ. Novel propanolamine derivatives attached to 2-metoxifenol moiety: Synthesis, characterization, biological properties, and molecular docking studies. Bioorg. Chem., 2020, 101, 103969.
[http://dx.doi.org/10.1016/j.bioorg.2020.103969] [PMID: 32474181]
[42]
Lolak, N.; Akocak, S. Türkeş C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897.
[http://dx.doi.org/10.1016/j.bioorg.2020.103897] [PMID: 32413628]
[43]
Taslimi, P.; Köksal, E.; Gören, A.C.; Bursal, E.; Aras, A. Kılıç, Ö.; Alwasel, S.; Gülçin, İ. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem., 2020, 13(3), 4528-4537.
[http://dx.doi.org/10.1016/j.arabjc.2019.10.002]
[44]
Shibahara, F.; Yamaguchi, E.; Murai, T. Direct arylation of simple azoles catalyzed by 1,10-phenanthroline containing palladium complexes: An investigation of C4 arylation of azoles and the synthesis of triarylated azoles by sequential arylation. J. Org. Chem., 2011, 76(8), 2680-2693.
[http://dx.doi.org/10.1021/jo200067y] [PMID: 21405095]
[45]
Li, B.J.; Yang, S.D.; Shi, Z.J. Recent advances in direct arylation via palladium-catalyzed aromatic C-H activation. Synlett, 2008, 7, 949-957.
[46]
Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev., 2011, 111(3), 2177-2250.
[http://dx.doi.org/10.1021/cr100346g] [PMID: 21391570]
[47]
Tsuji, J. Transition metal reagents and catalysis: Innovations in organic synthesis; John Wiley & Sons Ltd: Chichester, 2000.
[48]
Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619535]
[49]
Pu, L. Enantioselective fluorescent sensors: A tale of BINOL. Acc. Chem. Res., 2012, 45(2), 150-163.
[http://dx.doi.org/10.1021/ar200048d] [PMID: 21834528]
[50]
Mayr, M.; Wurst, K.; Ongania, K.H.; Buchmeiser, M.R. 1,3-dialkyl- and 1,3-diaryl-3,4,5,6-tetrahydropyrimidin-2-ylidene rhodium(i) and palladium(II) complexes: Synthesis, structure, and reactivity. Chemistry, 2004, 10(5), 1256-1266.
[http://dx.doi.org/10.1002/chem.200305437] [PMID: 15007815]
[51]
Zhong, G.X.; Chen, L.L.; Li, H.B.; Liu, F.J.; Hu, J.Q.; Hu, W.X. Synthesis and biological evaluation of amide derivatives of diflunisal as potential anti-tumor agents. Bioorg. Med. Chem. Lett., 2009, 19(15), 4399-4402.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.082] [PMID: 19515562]
[52]
Dadiboyena, S. Recent advances in the synthesis of raloxifene: A selective estrogen receptor modulator. Eur. J. Med. Chem., 2012, 51, 17-34.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.021] [PMID: 22405286]
[53]
Lasmari, S.; Gürbüz, N.; Boulcina, R.; Özdemir, N. Özdemir, İ. Synthesis of [PdBr2(benzimidazole-2-ylidene)(pyridine)] complexes and their catalytic activity in the direct C-H bond activation of 2-substituted heterocycles. Polyhedron, 2021, 199, 115091.
[http://dx.doi.org/10.1016/j.poly.2021.115091]
[54]
Kaloğlu, M.; Özdemir, İ.; Dorcet, V.; Bruneau, C.; Doucet, H. PEPPSI‐Type palladium-NHC complexes: Synthesis, characterization, and catalytic activity in the direct C5‐arylation of 2‐substituted thiophene derivatives with aryl halides. Eur. J. Inorg. Chem., 2017, 2017(10), 1382-1391.
[http://dx.doi.org/10.1002/ejic.201601452]
[55]
Kaloğlu, M.; Özdemir, İ. The direct C4-arylation of 3,5-dimethylisoxazole with aryl bromides catalyzed by imidazolidin-2-ylidene based palladium-PEPPSI complexes. Inorg. Chim. Acta, 2020, 504, 119454.
[http://dx.doi.org/10.1016/j.ica.2020.119454]
[56]
Benmachiche, A.; Zendaoui, S.M.; Bouaoud, S.E.; Zouchoune, B. Electronic structure and coordination chemistry of phenanthridine ligand in first‐row transition metal complexes: A DFT study. Int. J. Quantum Chem., 2013, 113(7), 985-996.
[http://dx.doi.org/10.1002/qua.24071]
[57]
Farah, S.; Bouchakri, N.; Zendaoui, S.M.; Saillard, J.Y.; Zouchoune, B. Electronic structure of bis-azepine transition-metal complexes: A DFT investigation. J. Mol. Struct. THEOCHEM, 2010, 953(1-3), 143-150.
[http://dx.doi.org/10.1016/j.theochem.2010.05.019]
[58]
Benhamada, N.; Bouchene, R.; Bouacida, S.; Zouchoune, B. Molecular structure, bonding analysis and redox properties of transition metal-Hapca [bis(3-aminopyrazine-2-carboxylic acid)] complexes: A theoretical study. Polyhedron, 2015, 91, 59-67.
[http://dx.doi.org/10.1016/j.poly.2014.12.042]
[59]
Chekkal, F.; Zendaoui, S.M.; Zouchoune, B.; Saillard, J.Y. Structural and spin diversity of M(indenyl)2 transition-metal complexes: A DFT investigation. New J. Chem., 2013, 37(8), 2293-2302.
[http://dx.doi.org/10.1039/c3nj00196b]
[60]
Drideh, S.; Zouchoune, B.; Zendaoui, S.M.; Saillard, J.Y. Electronic structure and structural diversity in indenyl in heterobinuclear transition-metal half-sandwich complexes. Theor. Chem. Acc., 2018, 137(7), 99.
[http://dx.doi.org/10.1007/s00214-018-2285-1]
[61]
Nemdili, H.; Zouchoune, B.; Saber Zendaoui, M.; Ferhati, A. Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32- and 33-electron and reduced 35- and 36-electron derivatives containing the indenyl fused π-system: A DFT overview. Polyhedron, 2019, 160, 219-228.
[http://dx.doi.org/10.1016/j.poly.2018.12.049]
[62]
Zouchoune, B.; Merzoug, M.; Bensalem, N. DFT investigation of homotrinuclear and heterotrinuclear [M3(Phz)2], [MM′2(Phz)2], [M3(CO)2(Phz)2], [MM′2(CO)2(Phz)2] sandwich complexes (M = Ti, Cr, Fe and Ni; M′ = V and Mn, Phz = C12H8N2): Predicted models and electronic structures. Struct. Chem., 2019, 30(5), 1859-1871.
[http://dx.doi.org/10.1007/s11224-019-01322-z]
[63]
Zouchoune, B. Stability and possible multiple metal-metal bonding in tetranuclear sandwich complexes of cyclooctatetraene ligand. Struct. Chem., 2018, 29(3), 937-945.
[http://dx.doi.org/10.1007/s11224-018-1077-5]
[64]
Johnson, B.G.; Gill, P.M.W.; Pople, J.A. The performance of a family of density functional methods. J. Chem. Phys., 1993, 98(7), 5612-5626.
[http://dx.doi.org/10.1063/1.464906]
[65]
Zouchoune, B.; Saiad, A. Ligands’ σ-donation and π-backdonation effects on metal-metal bonding in trinuclear [M3(Tr)2(L)3]2+ (M = Fe, Ni, Pd, Pt, Tr = tropylium and L = CO, HCN and C2H4) sandwich compounds: Theoretical investigation. Inorg. Chim. Acta, 2018, 473, 204-215.
[http://dx.doi.org/10.1016/j.ica.2018.01.004]
[66]
Fadli, S.; Zouchoune, B. Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct. Chem., 2017, 28(4), 985-997.
[http://dx.doi.org/10.1007/s11224-016-0905-8]
[67]
Shankar, R.; Radhika, R.; Thangamani, D.; Senthil Kumar, L.; Kolandaivel, P. Theoretical studies on interaction of anticancer drugs (dacarbazine, procarbazine and triethylenemelamine) with normal (AT and GC) and mismatch (GG, CC, AA and TT) base pairs. Mol. Simul., 2015, 41(8), 633-652.
[http://dx.doi.org/10.1080/08927022.2014.913098]
[68]
Vinnarasi, S.; Radhika, R.; Vijayakumar, S.; Shankar, R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, 38(2), 317-339.
[http://dx.doi.org/10.1080/07391102.2019.1574239] [PMID: 30794082]
[69]
Bouchouit, M.; Bouacida, S.; Zouchoune, B.; Merazig, H.; Bua, S.; Bouaziz, Z.; Le Borgne, M.; Supuran, C.T.; Bouraiou, A. Synthesis, X-ray structure, in silico calculation, and carbonic anhydrase inhibitory properties of benzylimidazole metal complexes. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1150-1159.
[http://dx.doi.org/10.1080/14756366.2018.1481404] [PMID: 30001665]
[70]
Mahdavifar, Z.; Samiee, S. Theoretical investigation of inclusion complex formation of gold (III) - Dimethyldithiocarbamate anticancer agents with cucurbit[n=5,6]urils. Arab. J. Chem., 2014, 7(4), 425-435.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.012]
[71]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[72]
a) Yaşar, S.; Özdemir, I.; Çetinkaya, B.; Renaud, J.L.; Bruneau, C. Benzylic imidazolidinium, 3,4,5,6‐tetrahydropyrimidinium and benzimidazolium salts: Applications in ruthenium‐catalyzed allylic substitution reactions. Eur. J. Org. Chem., 2008, 2008(12), 2142-2149.
[http://dx.doi.org/10.1002/ejoc.200800007];
b) Strand, R.B.; Helgerud, T.; Solvang, T.; Sperger, C.A.; Fiksdahl, A. Synthesis of amino acid derived imidazolidinium salts as new NHC precatalysts. Tetra. Asym., 2011, 22(23), 1994-2006.
[http://dx.doi.org/10.1016/j.tetasy.2011.11.015]
[73]
Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M. Karcı H.; Özdemir, İ.; Koç, A.; Özdemir, I.; Debache, A. New silver Nheterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J. Mol. Struct., 2021, 1238, 130399.
[http://dx.doi.org/10.1016/j.molstruc.2021.130399]
[74]
Şahin, N.; Serdaroğlu, G.; Düşünceli, S.D.; Tahir, M.N.; Arıcı, C.; Özdemir, İ. Direct arylation of heteroarenes by PEPPSI-type palladium-NHC complexes and representative quantum chemical calculations for the compound which the structure was determined by X-ray crystallography. J. Coord. Chem., 2019, 72(19-21), 3258-3284.
[http://dx.doi.org/10.1080/00958972.2019.1692202]
[75]
Yu, J.Q.; Shi, Z. Activation, C-H Springer Berlin Heidelberg., Available from: http://ndl.ethernet.edu.et/bitstream/123456789/50054/1/18.pdf
[76]
Arduengo, A.J. Iii; Goerlich, J.R.; Marshall, W.J. A stable diaminocarbene. J. Am. Chem. Soc., 1995, 117(44), 11027-11028.
[http://dx.doi.org/10.1021/ja00149a034]
[77]
a) Nolan, S.P. N-Heterocycliccarbenes in synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609451];
b) Normand, A.T.; Cavell, K.J. Donor‐functionalised n‐heterocyclic carbene complexes of group 9 and 10 metals in catalysis: Trends and directions. Eur. J. Inorg. Chem., 2008, 2008(18), 2781-2800.
[http://dx.doi.org/10.1002/ejic.200800323]
[78]
Pugh, D.; Danopoulos, A.A. Metal complexes with ‘pincer’-type ligands incorporating N-heterocyclic carbene functionalities. Coord. Chem. Rev., 2007, 251(5-6), 610-641.
[http://dx.doi.org/10.1016/j.ccr.2006.08.001]
[79]
a) Hahn, F.E.; Foth, M. Palladium complexes with bridged and unbridged benzimidazolin-2-ylidene ligands. J. Organomet. Chem., 1999, 585(2), 241-245.
[http://dx.doi.org/10.1016/S0022-328X(99)00219-3];
b) Han, Y.; Huynh, H.V.; Koh, L.L. Pd(II) complexes of a sterically bulky, benzannulated N-heterocyclic carbene and their catalytic activities in the Mizoroki-Heck reaction. J. Organomet. Chem., 2007, 692(17), 3606-3613.
[http://dx.doi.org/10.1016/j.jorganchem.2007.04.037];
c) Khramov, D.M.; Boydston, A.J.; Bielawski, C.W. Synthesis and study of Janus bis(carbene)s and their transition-metal complexes. Angew. Chem. Int. Ed., 2006, 45(37), 6186-6189.
[http://dx.doi.org/10.1002/anie.200601583] [PMID: 16906612]
[80]
Arduengo, A.J. Looking for stable carbenes: The difficulty in starting anew. Acc. Chem. Res., 1999, 32(11), 913-921.
[http://dx.doi.org/10.1021/ar980126p]
[81]
a) Regitz, M. Nucleophilic carbenes: An incredible renaissance. Angew. Chem. Int. Ed. Engl., 1996, 35(7), 725-728.
[http://dx.doi.org/10.1002/anie.199607251];
b) Herrmann, W.A.; Köcher, C. N‐heterocyclic carbenes. Angew. Chem. Int. Ed. Engl., 1997, 36(20), 2162-2187.
[http://dx.doi.org/10.1002/anie.199721621] [PMID: 19750753]
[82]
Arduengo, A.J., III; Harlow, R.L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc., 1991, 113(1), 361-363.
[http://dx.doi.org/10.1021/ja00001a054]
[83]
Hogan, B.; Albrecht, M. Reference Module in chemistry, molecular sciences and chemical engineering. In: Biochemistry; Elsevier, 2016.
[84]
Froese, R.D.J.; Lombardi, C.; Pompeo, M.; Rucker, R.P.; Organ, M.G. Designing Pd N-heterocyclic carbene complexes for high reactivity and selectivity for cross-coupling applications. Acc. Chem. Res., 2017, 50(9), 2244-2253.
[http://dx.doi.org/10.1021/acs.accounts.7b00249] [PMID: 28837317]
[85]
Touj, N.; Gürbüz, N.; Hamdi, N. Yaşar, S.; Özdemir, İ. Palladium PEPPSI complexes: Synthesis and catalytic activity on the Suzuki-Miyaura coupling reactions for aryl bromides at room temperature in aqueous media. Inorg. Chim. Acta, 2018, 478, 187-194.
[http://dx.doi.org/10.1016/j.ica.2018.04.018]
[86]
Zouchoune, B.; Mansouri, L. Electronic structure and UV-Vis spectra simulation of square planar Bis(1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M(L)2]x (M = Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT study. Struct. Chem., 2019, 30(3), 691-701.
[http://dx.doi.org/10.1007/s11224-018-1215-0]
[87]
Tabrizi, L.; Zouchoune, B.; Zaiter, A. Experimental and theoretical investigation of cyclometallated platinum(II) complex containing adamantanemethylcyanamide and 1,4-naphthoquinone derivative as ligands: Synthesis, characterization, interacting with guanine and cytotoxic activity. RSC Advances, 2019, 9(1), 287-300.
[http://dx.doi.org/10.1039/C8RA08739C] [PMID: 35521610]
[88]
Tabrizi, L.; Zouchoune, B.; Zaiter, A. Theoretical and experimental study of gold(III), palladium(II), and platinum(II) complexes with 3-((4-nitrophenyl)thio)phenylcyanamide and 2,2′-bipyridine ligands: Cytotoxic activity and interaction with 9-methylguanine. Inorg. Chim. Acta, 2020, 499, 119211.
[http://dx.doi.org/10.1016/j.ica.2019.119211]
[89]
Padmaja, L.; Ravikumar, C.; Sajan, D.; Hubert Joe, I.; Jayakumar, V.S.; Pettit, G.R.; Faurskov Nielsen, O. Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. J. Raman Spectrosc., 2009, 40(4), 419-428.
[http://dx.doi.org/10.1002/jrs.2145]
[90]
Pearson, R.G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ., 1987, 64(7), 561.
[http://dx.doi.org/10.1021/ed064p561]
[91]
Levine, I.N. In Quantum Chemistry; Prentice Hall; Inc: Englewood Cliffs, NJ, 1991, 43, pp. (3)439-441.
[92]
Koopmans, T. On the assignment of wave functions and eigenvalues to the individual electrons of an atom. Physica, 1934, 1(1-6), 104-113.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[93]
Tsuneda, T.; Song, J.W.; Suzuki, S.; Hirao, K. On Koopmans’ theorem in density functional theory. J. Chem. Phys., 2010, 133(17), 174101.
[http://dx.doi.org/10.1063/1.3491272] [PMID: 21054000]
[94]
Parr, R.; Yang, W. Density-functional theory of atoms and molecules; Oxford Univ, Press: New York, 1989.
[95]
Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[96]
Chattaraj, P.K.; Maiti, B.; Sarkar, U. Philicity: A unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A, 2003, 107(25), 4973-4975.
[http://dx.doi.org/10.1021/jp034707u]
[97]
Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity index. Chem. Rev., 2006, 106(6), 2065-2091.
[http://dx.doi.org/10.1021/cr040109f] [PMID: 16771443]
[98]
Gaber, M.; El-Ghamry, H.; Atlam, F.; Fathalla, S. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2′-hydroxynaphyhaline. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 919-929.
[http://dx.doi.org/10.1016/j.saa.2014.09.015] [PMID: 25282021]
[99]
Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Pople, J.A. Assessment of gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J. Chem. Phys., 1998, 109(1), 42-55.
[http://dx.doi.org/10.1063/1.476538]
[100]
Fleming, I. Frontier orbitals and organic chemical reactions; John Wiley and Sons: New York, 1976.
[101]
Saouli, S.; Selatnia, I.; Zouchoune, B.; Sid, A.; Zendaoui, S.M.; Bensouici, C.; Bendeif, E-E. Synthesis, spectroscopic characterization, crystal structure, DFT studies and biological activities of new hydrazone derivative: 1-(2,5-bis((E)-4-isopropylbenzylidene)cyclopentylidene)-2-(2,4-dinitrophenyl) hydrazine. J. Mol. Struct., 2020, 1213, 128203.
[http://dx.doi.org/10.1016/j.molstruc.2020.128203]
[102]
Zouchoune, B. How the ascorbic acid and hesperidin do improve the biological activities of the cinnamon: Theoretical investigation. Struct. Chem., 2020, 31(6), 2333-2340.
[http://dx.doi.org/10.1007/s11224-020-01594-w] [PMID: 32837117]
[103]
Zouchoune, B. Theoretical investigation on the biological activities of ginger and some of its combinations: An overview of the antioxidant activity. Struct. Chem., 2021, 32(4), 1659-1672.
[http://dx.doi.org/10.1007/s11224-021-01725-x]
[104]
Morokuma, K. Molecular orbital studies of hydrogen bonds. III. C=O···H-O hydrogen bond in H2CO···H2O and H2CO···2H2O. J. Chem. Phys., 1971, 55(3), 1236-1244.
[http://dx.doi.org/10.1063/1.1676210]
[105]
Ziegler, T.; Rauk, A. Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as sigma donors and pi acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg. Chem., 1979, 18(7), 1755-1759.
[http://dx.doi.org/10.1021/ic50197a006]
[106]
Ziegler, T.; Rauk, A. A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg. Chem., 1979, 18(6), 1558-1565.
[http://dx.doi.org/10.1021/ic50196a034]
[107]
Zaiter, A.; Zouchoune, B. Electronic structure and energy decomposition of binuclear transition metal complexes containing β-diketiminate and imido ligands: spin state and metal’s nature effects. Struct. Chem., 2018, 29(5), 1307-1320.
[http://dx.doi.org/10.1007/s11224-018-1112-6]
[108]
Khireche, M.; Zouchoune, B.; Ferhati, A.; Nemdili, H.; Zerizer, M.A. Understanding the chemical bonding in sandwich complexes of transition metals coordinated to nine-membered rings: Energy decomposition analysis and the donor-acceptor charge transfers. Theor. Chem. Acc., 2021, 140(9), 122.
[http://dx.doi.org/10.1007/s00214-021-02802-4]
[109]
Frenking, G.; Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev., 2000, 100(2), 717-774.
[http://dx.doi.org/10.1021/cr980401l] [PMID: 11749249]
[110]
Amine Zerizer, M.; Nemdili, H.; Zouchoune, B. Electron transfers’ assessment between stannol ring of triple-decker complexes and M(CO)5 (M = Cr, Mo, W), MnCp(CO)2 and CoCp(CO) metallic fragments: Bonding and energy decomposition analysis. Polyhedron, 2022, 223, 115960.
[http://dx.doi.org/10.1016/j.poly.2022.115960]
[111]
Mecheri, S.; Zouchoune, B.; Zendaoui, S.M. Bonding and electronic structures in dinuclear (X)[(Ind)M2L2] complexes (M = Ni, Pd, L = CO, PEt3, X = Cl, Allyl, Ind = indenyl, Cp = cyclopentadienyl): Analogy between four-electron donor ligands. Theor. Chem. Acc., 2020, 139(1), 12.
[http://dx.doi.org/10.1007/s00214-019-2526-y]
[112]
Mecheri, S.; Zouchoune, B. Terminal and bridginligand effects on M(I)-M(I) multiple bonding: A DFT investigation of the coordination in (X)[M2Cl]L2 complexes (M = Cr, Fe, L = CO, PEt3, X = Cl, allyl, Cp and indenyl). Inter. J. Quant. Chem., 2023, 27089.
[113]
Frenking, G.; Wichmann, K.; Fröhlich, N.; Grobe, J.; Golla, W.; Van, D.L.; Krebs, B.; Läge, M. Nature of the metal− ligand bond in M(CO)5PX3 complexes (M= Cr, Mo, W; X= H, Me, F, Cl): Synthesis, molecular structure, and quantum-chemical calculations. Organometallics, 2002, 21(14), 2921-2930.
[http://dx.doi.org/10.1021/om020311d]
[114]
Mokrane, Z.; Zouchoune, B.; Zaiter, A. Coordination’s preference and electronic structure of N-heterocyclic carbene-monometallic complexes: DFT evaluation of σ-bonding and π-backbonding interactions. Theor. Chem. Acc., 2020, 139(7), 114.
[http://dx.doi.org/10.1007/s00214-020-02628-6]
[115]
Cheung, J.; Gary, E.N.; Shiomi, K.; Rosenberry, T.L. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med. Chem. Lett., 2013, 4(11), 1091-1096.
[http://dx.doi.org/10.1021/ml400304w] [PMID: 24900610]
[116]
Wandhammer, M.; Carletti, E.; Van der Schans, M.; Gillon, E.; Nicolet, Y.; Masson, P.; Goeldner, M.; Noort, D.; Nachon, F. Structural study of the complex stereoselectivity of human butyrylcholinesterase for the neurotoxic V-agents. J. Biol. Chem., 2011, 286(19), 16783-16789.
[http://dx.doi.org/10.1074/jbc.M110.209569] [PMID: 21454498]
[117]
Mokrani, E.H.; Bensegueni, A.; Chaput, L.; Beauvineau, C.; Djeghim, H.; Mouawad, L. Identification of new potent acetylcholinesterase inhibitors using virtual screening and in vitro approaches. Mol. Inform., 2019, 38(5), 1800118.
[http://dx.doi.org/10.1002/minf.201800118] [PMID: 30725535]
[118]
Demmak, R.G.; Bordage, S.; Bensegueni, A.; Boutaghane, N.; Hennebelle, T.; Mokrani, E.H.; Sahpaz, S. Chemical constituents from Solenostemma argel and their cholinesterase inhibitory activity. Nat. Prod. Sci., 2019, 25(2), 115-121.
[http://dx.doi.org/10.20307/nps.2019.25.2.115]
[119]
Boualia, I.; Derabli, C.; Boulcina, R.; Bensouici, C.; Yildirim, M.; Birinci Yildirim, A.; Mokrani, E.H.; Debache, A. Synthesis, molecular docking studies, and biological evaluation of novel alkyl bis(4‐amino‐5‐cyanopyrimidine) derivatives. Arch. Pharm., 2019, 352(11), 1900027.
[http://dx.doi.org/10.1002/ardp.201900027] [PMID: 31448454]
[120]
Schrodinger suite 2009 protein preparation wizard. In: Epik version 2.0; Impact version 5.5; Prime version; Schrodinger, LLC: New York, 2009.
[121]
Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245(1), 43-53.
[http://dx.doi.org/10.1016/S0022-2836(95)80037-9] [PMID: 7823319]
[122]
Release, S. 2015-1: Maestro, version 10.1; Schrodinger, LLC: New York, 2015.
[123]
The PyMOL molecular graphics system version 2.2.3. Schrodinger, LLC. Available from: https://pymol.org
[124]
ADF2007. SCM theoretical chemistry, vrije universiteit, amsterdam, The netherlands. Available from: http://www.scm.com
[125]
Baerends, E.J.; Ellis, D.E.; Ros, P. Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure. Chem. Phys., 1973, 2(1), 41-51.
[http://dx.doi.org/10.1016/0301-0104(73)80059-X]
[126]
te Velde, G.; Baerends, E.J. Numerical integration for polyatomic systems. J. Comput. Phys., 1992, 99(1), 84-98.
[http://dx.doi.org/10.1016/0021-9991(92)90277-6]
[127]
Fonseca Guerra, C.; Snijders, J.G.; teVelde, G.; Baerends, E. Towards an order-N DFT method. Theor. Chem. Acc., 1998, 99, 391-403.
[128]
Bickelhaupt, F.M.; Baerends, E.J. Kohn‐Sham density functional theory: Predicting and understanding chemistry. Rev. Comput. Chem., 2000, 15, 1-86.
[http://dx.doi.org/10.1002/9780470125922.ch1]
[129]
te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem., 2001, 22(9), 931-967.
[http://dx.doi.org/10.1002/jcc.1056]
[130]
Vosko, S.D.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Chem., 1980, 58, 1200-1211.
[131]
Becke, A.D. Density functional calculations of molecular bond energies. J. Chem. Phys., 1986, 84(8), 4524-4529.
[http://dx.doi.org/10.1063/1.450025]
[132]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[133]
Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter, 1986, 33(12), 8822-8824.
[http://dx.doi.org/10.1103/PhysRevB.33.8822] [PMID: 9938299]
[134]
Perdew, J.P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter, 1986, 34(10), 7406.
[http://dx.doi.org/10.1103/PhysRevB.34.7406] [PMID: 9949100]
[135]
Becke, A.D. Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5642-5648.
[136]
Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[137]
Fan, L.; Ziegler, T. Application of density functional theory to infrared absorption intensity calculations on main group molecules. J. Chem. Phys., 1992, 96(12), 9005-9012.
[http://dx.doi.org/10.1063/1.462258]
[138]
Fan, L.; Ziegler, T. Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J. Phys. Chem., 1992, 96(17), 6937-6941.
[http://dx.doi.org/10.1021/j100196a016]
[139]
Flükiger, P.; Lüthi, H.P.; Portmann, S.; Weber, J. Available from: MOLEKEL, Version 4.3.win32, Swiss Center for Scientific Computing (CSCS), Switzerland, 2000–2001. http://www.cscs.ch/molekel/.
[140]
Wiberg, K.B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron, 1968, 24(3), 1083-1096.
[http://dx.doi.org/10.1016/0040-4020(68)88057-3]
[141]
Weinhold, F.; Landis, C.R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005.
[142]
Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Weinhold, F. Natural bond orbitals “analysis programs. Theoretical Chemistry Institute: University of Wisconsin, 2021, 812, 237-235.
[143]
a) Mosset, P.; Grée, R. Indium-catalyzed friedel-crafts alkylation of monosubstituted benzenes by 1-bromoadamantane. Synlett, 2013, 24(9), 1142-1146.
[http://dx.doi.org/10.1055/s-0032-1316909];
b) Dehimat, Z.I. Paşahan, A.; Tebbani, D.; Yaşar, S.; Özdemir, İ. Synthesis of sterically hindered N-benzyladamantyl substituted benzimidazol-2-ylidene palladium complexes and investigation of their catalytic activity in aqueous medium. Tetrahedron, 2017, 73(40), 5940-5945.
[http://dx.doi.org/10.1016/j.tet.2017.08.037]
[144]
Tebbani, D.; Silva, A.; Hocine, O. Synthesis of 1,4-disubstituted 1h-1,2,3-triazoles from 4-(1-adamantyl)benzyl azide through a 1,3-dipolar cycloaddition reaction. Synlett, 2018, 29(20), 2685-2688.
[http://dx.doi.org/10.1055/s-0037-1610323]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy