Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Application of Nanotechnological Therapeutic Platforms against Gynecological Cancers

Author(s): Vahideh Keyvani, Samaneh Mollazadeh, Espanta Riahi, Reihaneh Alsadat Mahmoudian, Masoomeh Tabari, Elmira Lagzian, Elnaz Ghorbani, Hamed Akbarzade, Amir-Sadra Gholami, Ibrahim Saeed Gataa, Seyed Mahdi Hassanian, Gordon A. Ferns, Majid Khazaei, Amir Avan* and Kazem Anvari*

Volume 30, Issue 13, 2024

Published on: 18 March, 2024

Page: [975 - 987] Pages: 13

DOI: 10.2174/0113816128291955240306112558

Price: $65

Abstract

Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal- based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.

« Previous
[1]
Keyvani V, Kheradmand N, Navaei ZN, Mollazadeh S, Esmaeili SA. Epidemiological trends and risk factors of gynecological cancers: An update. Med Oncol 2023; 40(3): 93.
[http://dx.doi.org/10.1007/s12032-023-01957-3] [PMID: 36757546]
[2]
Keyvani V, Riahi E, Yousefi M, et al. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front Pharmacol 2022; 13: 823572.
[http://dx.doi.org/10.3389/fphar.2022.823572] [PMID: 35250573]
[3]
Piechocki M, Koziołek W, Sroka D, et al. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980-2018). Clin Epidemiol 2022; 14: 95-114.
[http://dx.doi.org/10.2147/CLEP.S330081] [PMID: 35115839]
[4]
Gultekin M, Dundar S, Kucukyildiz I, et al. Survival of gynecological cancers in Turkey: Where are we at? J Gynecol Oncol 2017; 28(6): e85.
[http://dx.doi.org/10.3802/jgo.2017.28.e85] [PMID: 29027403]
[5]
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5(1): 137.
[http://dx.doi.org/10.1038/s41392-020-0199-6] [PMID: 32728057]
[6]
Bejar FG, Oaknin A, Williamson C, et al. Novel therapies in gynecologic cancer. Am Soc Clin Oncol Educ Book 2022; 42: 1-17.
[PMID: 35594502]
[7]
Zheng F, Xiong W, Sun S, Zhang P, Zhu JJ. Recent advances in drug release monitoring. Nanophotonics 2019; 8(3): 391-413.
[http://dx.doi.org/10.1515/nanoph-2018-0219]
[8]
Wang T, Jiang K, Wang Y, et al. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines. Chem Sci 2024; 15(5): 1829-39.
[http://dx.doi.org/10.1039/D3SC05887E] [PMID: 38303939]
[9]
Malik A, Tahir Butt T, Zahid S, et al. Use of magnetic nanoparticles as targeted therapy: Theranostic approach to treat and diagnose cancer. J Nanotechnol 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/1098765]
[10]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med Appl 2020; pp. 61-91.
[http://dx.doi.org/10.1201/9780429399039-2]
[11]
Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR- Cas gene editing. Nat Mater 2021; 20(5): 701-10.
[http://dx.doi.org/10.1038/s41563-020-00886-0] [PMID: 33542471]
[12]
Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev 2015; 115(19): 11147-90.
[http://dx.doi.org/10.1021/acs.chemrev.5b00116] [PMID: 26088284]
[13]
Yang T, Zhai J, Hu D, et al. “Targeting design” of nanoparticles in tumor therapy. Pharmaceutics 2022; 14(9): 1919.
[http://dx.doi.org/10.3390/pharmaceutics14091919] [PMID: 36145668]
[14]
Dutta B, Nema A, Shetake NG, et al. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Mater Sci Eng C 2020; 112: 110915.
[http://dx.doi.org/10.1016/j.msec.2020.110915] [PMID: 32409067]
[15]
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14(1): 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[16]
Mare R, Paolino D, Celia C, Molinaro R, Fresta M, Cosco D. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. Int J Pharm 2018; 552(1-2): 414-21.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.028] [PMID: 30316001]
[17]
Qi Z, Yin L, Xu Y, Wang F. Pegylated liposomal-paclitaxel induces ovarian cancer cell apoptosis via TNF-induced ERK/AKT signaling pathway. Mol Med Rep 2018; 17(6): 7497-504.
[http://dx.doi.org/10.3892/mmr.2018.8811] [PMID: 29620264]
[18]
Krieger ML, Eckstein N, Schneider V, et al. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 2010; 389(1-2): 10-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.061] [PMID: 20060458]
[19]
Shaikh IM, Tan KB, Chaudhury A, et al. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J Control Release 2013; 172(3): 852-61.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.025] [PMID: 24459693]
[20]
Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004; 213(2): 165-72.
[http://dx.doi.org/10.1016/j.canlet.2003.12.028] [PMID: 15327831]
[21]
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45(5): 1457-501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[22]
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571.
[http://dx.doi.org/10.3390/jpm11060571] [PMID: 34207137]
[23]
Hamdy NM, Eskander G, Basalious EB. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. Int J Nanomed 2022; 17: 6131-55.
[http://dx.doi.org/10.2147/IJN.S386037] [PMID: 36514378]
[24]
Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018; 156: 217-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.024] [PMID: 29207323]
[25]
Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017; 11(11): 10992-1004.
[http://dx.doi.org/10.1021/acsnano.7b04924] [PMID: 29039917]
[26]
Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett 2020; 11(6): 1069-73.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00075] [PMID: 32550978]
[27]
Zhao X, Yang CX, Chen LG, Yan XP. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun 2017; 8(1): 14998.
[http://dx.doi.org/10.1038/ncomms14998] [PMID: 28524865]
[28]
Zhang J, Lin Y, Lin Z, et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv Sci 2022; 9(5): 2103444.
[http://dx.doi.org/10.1002/advs.202103444] [PMID: 34927373]
[29]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[30]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[31]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[32]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[33]
Michy T, Massias T, Bernard C, et al. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers (Basel) 2019; 11(11): 1760.
[http://dx.doi.org/10.3390/cancers11111760] [PMID: 31717427]
[34]
Han S, Dwivedi P, Mangrio FA, et al. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 957-67.
[http://dx.doi.org/10.1080/21691401.2019.1576705] [PMID: 30892967]
[35]
Hanafy N, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018; 10(7): 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[36]
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 2013; 5(1): 96-107.
[http://dx.doi.org/10.1039/c2ib20135f] [PMID: 22869005]
[37]
Mutlu-Agardan NB, Sarisozen C, Torchilin VP. Cytotoxicity of novel redox sensitive PEG 2000-SS-PTX micelles against drug-resistant ovarian and breast cancer cells. Pharm Res 2020; 37(3): 65.
[http://dx.doi.org/10.1007/s11095-020-2759-4] [PMID: 32166361]
[38]
Li G, Xu W, Shi Y, Chen M, Peng D. Construction of a new dual-responsive nano-drug delivery system for matrix metalloproteinases and adenosine triphosphate in ovarian cancer using nanomicelles. J Biomed Nanotechnol 2022; 18(3): 718-28.
[http://dx.doi.org/10.1166/jbn.2022.3303] [PMID: 35715904]
[39]
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: Synthesis, characterization and pharmacokinetic study. Int J Polym Mater 2021; 70(14): 1012-26.
[http://dx.doi.org/10.1080/00914037.2020.1776282]
[40]
Wu Y, Lv S, Li Y, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci 2020; 8(3): 949-59.
[http://dx.doi.org/10.1039/C9BM01662G] [PMID: 31840696]
[41]
Groo AC, Hedir S, Since M, et al. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. Int J Pharm 2020; 587: 119655.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119655] [PMID: 32712252]
[42]
Ganta S, Singh A, Patel NR, et al. Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer. Pharm Res 2014; 31(9): 2490-502.
[http://dx.doi.org/10.1007/s11095-014-1345-z] [PMID: 24643932]
[43]
Sahib Abed H, Zarearki P, Khojasteh V, Karimi E, Shahrokhabadi K, Rastegar Moghaddam Poorbagher M. Inhibition the growth of human ovarian cancer cells (A2780) via cell proliferation and angiogenesis by viola odorata essential oil nanoemulsion. Waste Biomass Valoriz 2023; 1-10.
[http://dx.doi.org/10.1007/s12649-023-02314-1]
[44]
Zheng N, Gao Y, Ji H, et al. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J Drug Target 2016; 24(7): 663-9.
[http://dx.doi.org/10.3109/1061186X.2015.1135335] [PMID: 26710274]
[45]
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol 2022; 20(1): 501.
[http://dx.doi.org/10.1186/s12951-022-01650-z] [PMID: 36434667]
[46]
Taheri-Ledari R, Zolfaghari E, Zarei-Shokat S, Kashtiaray A, Maleki A. A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH)2 and taxotere in ovarian cancer cells. Commun Biol 2022; 5(1): 995.
[http://dx.doi.org/10.1038/s42003-022-03966-w] [PMID: 36130999]
[47]
Ma X, Zhou W, Zhang R, et al. Minimally invasive injection of biomimetic Nano@Microgel for in situ ovarian cancer treatment through enhanced photodynamic reactions and photothermal combined therapy. Mater Today Bio 2023; 20: 100663.
[http://dx.doi.org/10.1016/j.mtbio.2023.100663] [PMID: 37273798]
[48]
Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 2017; 22(2): 314-26.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[49]
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J Biol Eng 2022; 16(1): 18.
[http://dx.doi.org/10.1186/s13036-022-00298-5] [PMID: 35879774]
[50]
Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules 2019; 9(8): 330.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[51]
Cai L, Xu G, Shi C, Guo D, Wang X, Luo J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2015; 37: 456-68.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.044] [PMID: 25453973]
[52]
Cruz A, Mota P, Ramos C, et al. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants 2020; 9(2): 133.
[http://dx.doi.org/10.3390/antiox9020133] [PMID: 32028640]
[53]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[54]
Haggag YA, Ibrahim RR, Hafiz AA. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomed 2020; 15: 1625-42.
[http://dx.doi.org/10.2147/IJN.S241428] [PMID: 32210557]
[55]
Wang JTW, Spinato C, Klippstein R, et al. Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon 2020; 162: 410-22.
[http://dx.doi.org/10.1016/j.carbon.2020.02.060]
[56]
Staffhorst RWHM, van der Born K, Erkelens CAM, et al. Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anticancer Drugs 2008; 19(7): 721-7.
[http://dx.doi.org/10.1097/CAD.0b013e328304355f] [PMID: 18594214]
[57]
Vergara D, Bellomo C, Zhang X, et al. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine 2012; 8(6): 891-9.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 22100754]
[58]
Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res 2020; 22(1): 5.
[http://dx.doi.org/10.1007/s11051-019-4735-7]
[59]
İnce İ, Yıldırım Y, Güler G, et al. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem 2020; 324(1): 71-85.
[http://dx.doi.org/10.1007/s10967-020-07058-z]
[60]
Fraguas-Sánchez AI, Torres-Suárez AI, Cohen M, et al. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and in ovo assessment. Pharmaceutics 2020; 12(5): 439.
[http://dx.doi.org/10.3390/pharmaceutics12050439] [PMID: 32397428]
[61]
Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, et al. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater Sci Eng C 2020; 116: 111196.
[http://dx.doi.org/10.1016/j.msec.2020.111196] [PMID: 32806317]
[62]
Song M, Fang Z, Wang J, Liu K. A nano-targeted co-delivery system based on gene regulation and molecular blocking strategy for synergistic enhancement of platinum chemotherapy sensitivity in ovarian cancer. Int J Pharm 2023; 640: 123022.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123022] [PMID: 37156306]
[63]
Wang Z, Guo B, Yue S, Zhao S, Meng F, Zhong Z. HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis. Int J Pharm 2022; 625: 122126.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122126] [PMID: 35995316]
[64]
Dana P, Bunthot S, Suktham K, et al. Active targeting liposome- PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces 2020; 196: 111270.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111270] [PMID: 32777659]
[65]
Wang L, Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020; 10(1): 54.
[http://dx.doi.org/10.1186/s13568-020-00990-z] [PMID: 32185543]
[66]
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4(1): 40-56.
[http://dx.doi.org/10.7150/ntno.37738] [PMID: 31911893]
[67]
Singh P, Choudhury S, Kulanthaivel S, et al. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma. Colloids Surf B Biointerfaces 2018; 162: 202-11.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.035] [PMID: 29195229]
[68]
Shariare MH, Khan MA, Al-Masum A, Khan JH, Uddin J, Kazi M. Development of stable liposomal drug delivery system of thymoquinone and its in vitro anticancer studies using breast cancer and cervical cancer cell lines. Molecules 2022; 27(19): 6744.
[http://dx.doi.org/10.3390/molecules27196744] [PMID: 36235288]
[69]
Parveen S, Kumar S, Pal S, Yadav NP, Rajawat J, Banerjee M. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery. Int J Pharm 2023; 643: 123212.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123212] [PMID: 37429561]
[70]
Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer. AAPS PharmSciTech 2023; 24(5): 123.
[http://dx.doi.org/10.1208/s12249-023-02583-y] [PMID: 37226039]
[71]
Eslamian F, Keshtmand Z, Hesampour A. Preparation of Artemisia turcomanic encapsulated niosomal nanocarriers and evaluation of anticancer activities and apoptosis gene expression analysis in hela cells. Chem Biodivers 2023; 20(5): e202201160.
[http://dx.doi.org/10.1002/cbdv.202201160] [PMID: 37026601]
[72]
Solanki R, Jangid AK, Jadav M, Kulhari H, Patel S. Folate functionalized and evodiamine-loaded pluronic nanomicelles for augmented cervical cancer cell killing. Macromol Biosci 2023; 23(9): 2300077.
[http://dx.doi.org/10.1002/mabi.202300077] [PMID: 37163974]
[73]
Liao J, Peng H, Wei X, et al. A bio-responsive 6-mercaptopurine/doxorubicin based “Click Chemistry” polymeric prodrug for cancer therapy. Mater Sci Eng C 2020; 108: 110461.
[http://dx.doi.org/10.1016/j.msec.2019.110461] [PMID: 31924029]
[74]
Frank LA, Gazzi RP, Mello PA, et al. Anti-HPV nanoemulsified-imiquimod: A new and potent formulation to treat cervical cancer. AAPS PharmSciTech 2020; 21(2): 54.
[http://dx.doi.org/10.1208/s12249-019-1558-x] [PMID: 31907712]
[75]
AlMotwaa SM. Coupling Ifosfamide to nanoemulsion-based clove oil enhances its toxicity on malignant breast cancer and cervical cancer cells. Pharmacia 2021; 68(4): 779-87.
[http://dx.doi.org/10.3897/pharmacia.68.e68291]
[76]
Periasamy VS, Subash-Babu P, Muthukumaran VR, Akbarsha MA, Alshatwi AA. In vitro cytotoxic effect of formulated semecarpus ghee nanoemulsion on human cervical cancer (SiHa) cells. Adv Sci Lett 2012; 6(1): 75-9.
[http://dx.doi.org/10.1166/asl.2012.2037]
[77]
Saffari I, Motallebi Moghanjoghi A, Sharafati Chaleshtori R, Ataee M, Khaledi A. Nanoemulsification of rose (Rosa damascena) essential oil: Characterization, anti-Salmonella, in vitro cytotoxicity to cancer cells, and advantages in sheep meat application. J Food Qual 2023; 2023: 1-15.
[78]
De Matos RPA, Calmon MF, Amantino CF, et al. Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. Biomed Res Int 2018; 2018: 4057959.
[http://dx.doi.org/10.1155/2018/4057959]
[79]
Banerjee SL, Khamrai M, Sarkar K, Singha NK, Kundu PP. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Int J Biol Macromol 2016; 85: 157-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.068] [PMID: 26724687]
[80]
Mousavi SBS, Dehpour HA, Farkhande P. Effects of cytotoxicity of nanoparticles of Ag/Si_O_P/Gelatin on uterus cancer cell lines. Anim Biol J 2015; 7(3): 67-72.
[81]
Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S. Synthesis and characterization of zinc oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol Trace Elem Res 2022; 200(6): 2684-97.
[http://dx.doi.org/10.1007/s12011-021-02898-6] [PMID: 34448982]
[82]
Svenningsen SW, Janaszewska A, Ficker M, Petersen JF, Klajnert-Maculewicz B, Christensen JB. Two for the price of one: PAMAM-dendrimers with mixed Phosphoryl choline and oligomeric poly (caprolactone) surfaces. Bioconjug Chem 2016; 27(6): 1547-57.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00213] [PMID: 27244598]
[83]
Luong D, Kesharwani P, Killinger BA, et al. Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. J Colloid Interface Sci 2016; 484: 33-43.
[http://dx.doi.org/10.1016/j.jcis.2016.08.061] [PMID: 27585998]
[84]
Lee SR, Kim YJ. Hydrophilic chlorin e6-poly (amidoamine) dendrimer nanoconjugates for enhanced photodynamic therapy. Nanomaterials 2018; 8(6): 445.
[http://dx.doi.org/10.3390/nano8060445] [PMID: 29912159]
[85]
Yadav N, Tripathi A, Parveen A, Parveen S, Banerjee M. PLGA- quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics 2022; 14(7): 1326.
[http://dx.doi.org/10.3390/pharmaceutics14071326] [PMID: 35890222]
[86]
Kavya KV, Vargheese S, Shukla S, et al. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B Biointerfaces 2022; 216: 112584.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112584] [PMID: 35617878]
[87]
Liao J, Zheng H, Hu R, et al. Hyaluronan based tumor-targeting and pH-responsive shell cross-linkable nanoparticles for the controlled release of doxorubicin. J Biomed Nanotechnol 2018; 14(3): 496-509.
[http://dx.doi.org/10.1166/jbn.2018.2510] [PMID: 29663922]
[88]
Saha B, Choudhury N, Seal S, Ruidas B, De P. Aromatic nitrogen mustard-based autofluorescent amphiphilic brush copolymer as ph-responsive drug delivery vehicle. Biomacromolecules 2019; 20(1): 546-57.
[http://dx.doi.org/10.1021/acs.biomac.8b01468] [PMID: 30521313]
[89]
Frank LA, Gazzi RP, de Andrade Mello P, Buffon A, Pohlmann AR, Guterres SS. Imiquimod-loaded nanocapsules improve cytotoxicity in cervical cancer cell line. Eur J Pharm Biopharm 2019; 136: 9-17.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.001] [PMID: 30630060]
[90]
Fong P, Cheong C, Mak K, et al. Effects of cordycepin, gold nanostar, and their combination on endometrial cancer cells. Nat Prod Commun 2020; 15(8): 1934578X20946939.
[91]
Zhu B, Xie N, Yue L, et al. Formulation and characterization of a novel anti-human endometrial cancer supplement by gold nanoparticles green-synthesized using Spinacia oleracea L. leaf aqueous extract. Arab J Chem 2022; 15(3): 103576.
[http://dx.doi.org/10.1016/j.arabjc.2021.103576]
[92]
Taghavi F, Saljooghi AS, Gholizadeh M, Ramezani M. Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent. MedChemComm 2016; 7(12): 2290-8.
[http://dx.doi.org/10.1039/C6MD00293E]
[93]
Gong X, Pu X, Wang J, et al. Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/Parkin-mediated mitophagy. Int J Nanomed 2021; 16: 6661-79.
[http://dx.doi.org/10.2147/IJN.S329341] [PMID: 34616150]
[94]
Edwards K, Yao S, Pisano S, et al. Hyaluronic acid-functionalized nanomicelles enhance SAHA efficacy in 3D endometrial cancer models. Cancers 2021; 13(16): 4032.
[http://dx.doi.org/10.3390/cancers13164032] [PMID: 34439185]
[95]
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater 2017; 29(32): 1700996.
[http://dx.doi.org/10.1002/adma.201700996] [PMID: 28643452]
[96]
Bergs JW, Wacker MG, Hehlgans S, et al. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta 2015; 1856(1): 130-43.
[PMID: 26142869]
[97]
Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22(28): 285101.
[http://dx.doi.org/10.1088/0957-4484/22/28/285101] [PMID: 21654036]
[98]
Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010; 3(1): 11.
[http://dx.doi.org/10.1186/1757-2215-3-11] [PMID: 20429876]
[99]
Hu R, Zheng M, Wu J, et al. Core-shell magnetic gold nanoparticles for magnetic field-enhanced radio-photothermal therapy in cervical cancer. Nanomaterials 2017; 7(5): 111.
[http://dx.doi.org/10.3390/nano7050111] [PMID: 28492507]
[100]
Maury P, Mondini M, Chargari C, et al. Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework. Nanomedicine 2023; 50: 102676.
[http://dx.doi.org/10.1016/j.nano.2023.102676] [PMID: 37084803]
[101]
Geng F, Xing JZ, Chen J, et al. Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer. J Biomed Nanotechnol 2014; 10(7): 1205-16.
[http://dx.doi.org/10.1166/jbn.2014.1855] [PMID: 24804541]
[102]
Zhang XD, Chen J, Min Y, et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater 2014; 24(12): 1718-29.
[http://dx.doi.org/10.1002/adfm.201302312]
[103]
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm 2019; 16(1): 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[104]
Aguilar-Pérez KM, Avilés-Castrillo JI, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. Sci Total Environ 2021; 779: 146465.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146465] [PMID: 34030232]
[105]
Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success. Taylor & Francis 2013; pp. 151-5.
[106]
Rasool M, Malik A, Waquar S, et al. New challenges in the use of nanomedicine in cancer therapy. Bioengineered 2022; 13(1): 759-73.
[http://dx.doi.org/10.1080/21655979.2021.2012907] [PMID: 34856849]
[107]
Gurunathan S, Qasim M, Park CH, et al. Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3). Nanomaterials 2019; 9(5): 787.
[http://dx.doi.org/10.3390/nano9050787] [PMID: 31121951]
[108]
Yuan Y-G, Zhang S, Hwang J-Y, Kong I-K. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 2018; 2018: 6121328.
[http://dx.doi.org/10.1155/2018/6121328]
[109]
Baharara J, Ramezani T, Divsalar A, Mousavi M, Seyedarabi A. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J Med Biotechnol 2016; 8(2): 75-83.
[PMID: 27141266]
[110]
Mills KA, Quinn JM, Roach ST, et al. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci Rep 2019; 9(1): 4762.
[http://dx.doi.org/10.1038/s41598-019-41122-3] [PMID: 30886159]
[111]
Medina-Gutiérrez E, García-León A, Gallardo A, et al. Potent anticancer activity of CXCR4-targeted nanostructured toxins in aggressive endometrial cancer models. Cancers 2022; 15(1): 85.
[http://dx.doi.org/10.3390/cancers15010085] [PMID: 36612081]
[112]
Lv Y, Zou Y, Yang L. Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery. Forsch Ingwes 2012; 76(1-2): 41-50.
[http://dx.doi.org/10.1007/s10010-012-0153-z]
[113]
Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159-65.
[http://dx.doi.org/10.1093/toxsci/kfj122] [PMID: 16443688]
[114]
Kratz F. A clinical update of using albumin as a drug vehicle - A commentary. J Control Release 2014; 190: 331-6.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.013] [PMID: 24637463]
[115]
Alberts DS, Blessing JA, Landrum LM, et al. Phase II trial of nab- paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: A gynecologic oncology group study. Gynecol Oncol 2012; 127(3): 451-5.
[http://dx.doi.org/10.1016/j.ygyno.2012.09.008] [PMID: 22986144]
[116]
Fu S, Naing A, Moulder SL, et al. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: Toxicity, pharmacokinetics, and activity. Mol Cancer Ther 2011; 10(7): 1300-7.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0259] [PMID: 21571911]
[117]
Jasrotia R, Dhanjal DS, Bhardwaj S, et al. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022; 71: 103351.
[http://dx.doi.org/10.1016/j.jddst.2022.103351]
[118]
Kour S, Biswas I, Sheoran S, et al. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives. J Drug Deliv Sci Technol 2023; 83: 104392.
[http://dx.doi.org/10.1016/j.jddst.2023.104392]
[119]
Zafar A, Alruwaili NK, Imam SS, et al. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021; 61: 102198.
[http://dx.doi.org/10.1016/j.jddst.2020.102198]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy