Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

conference banner
Abstract

Introduction: Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product.

Method: Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction.

Results: Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined.

Conclusion: Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.

« Previous
Graphical Abstract

[1]
Zolfagharian, H.; Mohajeri, M.; Babaie, M. Honey bee venom (apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J. Pharmacopuncture, 2015, 18(4), 7-11.
[http://dx.doi.org/10.3831/KPI.2015.18.031] [PMID: 26998384]
[2]
Aufschnaiter, A.; Kohler, V.; Khalifa, S.; Abd El-Wahed, A.; Du, M.; El-Seedi, H.; Büttner, S. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: limitations and possibilities. Toxins, 2020, 12(2), 66.
[http://dx.doi.org/10.3390/toxins12020066] [PMID: 31973181]
[3]
Hossen, M.S.; Gan, S.H.; Khalil, M.I. Melittin, a potential natural toxin of crude bee venom: Probable future arsenal in the treatment of diabetes mellitus. J. Chem., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/4035626]
[4]
Leandro, L.F.; Mendes, C.A.; Casemiro, L.A. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad. Bras. Cienc., 2015, 87, 147-155.
[5]
Jung, G.B.; Huh, J.E.; Lee, H.J.; Kim, D.; Lee, G.J.; Park, H.K.; Lee, J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express, 2018, 9(11), 5703-5718.
[http://dx.doi.org/10.1364/BOE.9.005703] [PMID: 30460157]
[6]
Lim, H.; Baek, S.; Jung, H. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules, 2019, 24(5), 929.
[http://dx.doi.org/10.3390/molecules24050929] [PMID: 30866426]
[7]
Zheng, J.; Lee, H.L.; Ham, Y.W.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget, 2015, 6(42), 44437-44451.
[http://dx.doi.org/10.18632/oncotarget.6295] [PMID: 26561202]
[8]
Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies: An updated review. Cancers, 2021, 13(17), 4287.
[http://dx.doi.org/10.3390/cancers13174287] [PMID: 34503097]
[9]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[10]
Martins, L.C.; Rezende, R.M.D.; Cordeiro, J.A.B.L.; Paula, H.S.C.; Bastos, D.R.; Costa, A.S.T.V.; Saddi, V.A.; Silva, A.M.T.C. Pattern of metastasis in triple negative breast cancer. Brazilian J. Mastol., 2017, 27(1), 8-14.
[http://dx.doi.org/10.5327/Z201700010003RBM]
[11]
Tavares, D.F.; Cardoso-Júnior, L.M.; Ribeiro, V.C.; Britto, R.L. The state of the art of immunotherapy in the treatment of triple-negative breast cancer: Main drugs, associations, mechanisms of action and future perspectives. Rev. Bras. Cancerol., 2021, 67(2), 061014.
[http://dx.doi.org/10.32635/2176-9745.RBC.2021v67n2.1014]
[12]
Daniluk, K.; Kutwin, M.; Grodzik, M.; Wierzbicki, M.; Strojny, B.; Szczepaniak, J.; Bałaban, J.; Sosnowska, M.; Chwalibog, A.; Sawosz, E.; Jaworski, S. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells. Materials, 2019, 13(1), 90.
[http://dx.doi.org/10.3390/ma13010090] [PMID: 31878020]
[13]
Choi, D.I.; Kim, J.; Lee, H.; Kim, J.; Sung, Y.; Choi, J.E.; Venkat, S.J.; Park, P.; Jung, H.; Kaang, B.K. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron, 2021, 109(17), 2717-2726.e3.
[http://dx.doi.org/10.1016/j.neuron.2021.07.003] [PMID: 34363751]
[14]
Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[http://dx.doi.org/10.1007/s10555-011-9339-3] [PMID: 22109081]
[15]
Elieh Ali Komi, D.; Shafaghat, F.; Zwiener, R.D. Immunology of bee venom. Clin. Rev. Allergy Immunol., 2018, 54(3), 386-396.
[http://dx.doi.org/10.1007/s12016-017-8597-4] [PMID: 28105558]
[16]
Ollert, M.; Blank, S. Anaphylaxis to insect venom allergens: Role of molecular diagnostics. Curr. Allergy Asthma Rep., 2015, 15(5), 26.
[http://dx.doi.org/10.1007/s11882-015-0527-z] [PMID: 26139335]
[17]
Hunt, P.R.; Camacho, J.A.; Sprando, R.L. Caenorhabditis elegans for predictive toxicology. Curr. Opin. Toxicol., 2020, 23-24, 23-28.
[http://dx.doi.org/10.1016/j.cotox.2020.02.004]
[18]
Huang, Z.; Ma, L.; Mishra, A.; Turnbull, J.E.; Tu, H. Editorial: C. elegans as an emerging model of pharmacological innovation. Front. Pharmacol., 2022, 13, 1029752.
[http://dx.doi.org/10.3389/fphar.2022.1029752] [PMID: 36238559]
[19]
Markaki, M.; Tavernarakis, N. Caenorhabditis elegans as a model system for human diseases. Curr. Opin. Biotechnol., 2020, 63, 118-125.
[http://dx.doi.org/10.1016/j.copbio.2019.12.011] [PMID: 31951916]
[20]
Zečić, A.; Braeckman, B.P. DAF-16/FoxO in caenorhabditis elegans and its role in metabolic remodeling. Cells, 2020, 9(1), 109.
[http://dx.doi.org/10.3390/cells9010109] [PMID: 31906434]
[21]
Uno, M.; Tani, Y.; Nono, M.; Okabe, E.; Kishimoto, S.; Takahashi, C.; Abe, R.; Kurihara, T.; Nishida, E. Neuronal DAF-16-to-intestinal DAF-16 communication underlies organismal lifespan extension in C. elegans. iScience, 2021, 24(7), 102706.
[http://dx.doi.org/10.1016/j.isci.2021.102706] [PMID: 34235410]
[22]
Back, P.; Braeckman, B.P.; Matthijssens, F. ROS in aging Caenorhabditis elegans: Damage or signaling? Oxid. Med. Cell. Longev., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/608478] [PMID: 22966416]
[23]
Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol., 2017, 37(1), 50-59.
[http://dx.doi.org/10.1002/jat.3357] [PMID: 27443595]
[24]
Cavalcanti, I.D.L.; Ximenes, R.M.; Loiola Pessoa, O.D.; Santos Magalhães, N.S.; Lira-Nogueira, M.C.B. Fucoidan-coated PIBCA nanoparticles containing oncocalyxone A: Activity against metastatic breast cancer cells. J. Drug Deliv. Sci. Technol., 2021, 65, 102698.
[http://dx.doi.org/10.1016/j.jddst.2021.102698]
[25]
Lira, M.C.B.; Santos-Magalhães, N.S.; Nicolas, V.; Marsaud, V.; Silva, M.P.C.; Ponchel, G.; Vauthier, C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur. J. Pharm. Biopharm., 2011, 79(1), 162-170.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.013] [PMID: 21349331]
[26]
Brenner, S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77(1), 71-94.
[http://dx.doi.org/10.1093/genetics/77.1.71] [PMID: 4366476]
[27]
Bischof, L.J.; Huffman, D.L.; Aroian, R.V. Assays for toxicity studies in <i>C. elegans</i> with Bt crystal proteins. In: C. elegans; Humana Press: New Jersey, 2006; pp. 139-154.
[http://dx.doi.org/10.1385/1-59745-151-7:139]
[28]
Wang, M.C.; O’Rourke, E.J.; Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science, 2008, 322(1979), 957-960.
[http://dx.doi.org/10.1126/science.1162011]
[29]
Tsalik, E.L.; Hobert, O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol., 2003, 56(2), 178-197.
[http://dx.doi.org/10.1002/neu.10245] [PMID: 12838583]
[30]
Chalfie, M.; Sulston, J.E.; White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci., 1985, 5(4), 956-964.
[http://dx.doi.org/10.1523/JNEUROSCI.05-04-00956.1985] [PMID: 3981252]
[31]
Gubert, P.; Puntel, B.; Lehmen, T.; Bornhorst, J.; Avila, D.S.; Aschner, M.; Soares, F.A.A. Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans. Life Sci., 2016, 151, 218-223.
[http://dx.doi.org/10.1016/j.lfs.2016.03.016] [PMID: 26972607]
[32]
Rangsinth, P.; Prasansuklab, A.; Duangjan, C.; Gu, X.; Meemon, K.; Wink, M.; Tencomnao, T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement. Altern. Med., 2019, 19(1), 164.
[http://dx.doi.org/10.1186/s12906-019-2578-5] [PMID: 31286949]
[33]
Yin, J.; Hong, X.; Ma, L.; Liu, R.; Bu, Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS. Ecotoxicol. Environ. Saf., 2020, 206, 111170.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111170] [PMID: 32861007]
[34]
Klupczynska, A.; Plewa, S.; Dereziński, P.; Garrett, T.J.; Rubio, V.Y.; Kokot, Z.J.; Matysiak, J. Identification and quantification of honeybee venom constituents by multiplatform metabolomics. Sci. Rep., 2020, 10(1), 21645.
[http://dx.doi.org/10.1038/s41598-020-78740-1] [PMID: 33303913]
[35]
Azevedo, F.V.P.V.; Lopes, D.S.; Cirilo Gimenes, S.N.; Achê, D.C.; Vecchi, L.; Alves, P.T.; Guimarães, D.O.; Rodrigues, R.S.; Goulart, L.R.; Rodrigues, V.M.; Yoneyama, K.A.G. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. Int. J. Biol. Macromol., 2016, 82, 671-677.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.080] [PMID: 26519876]
[36]
Bozorgi, A.; Khazaei, S.; Khademi, A.; Khazaei, M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci., 2020, 23(8), 970-983.
[http://dx.doi.org/10.22038/ijbms.2020.43745.10270] [PMID: 32952942]
[37]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[38]
Ip, S-W.; Liao, S-S.; Lin, S-Y.; Lin, J.P.; Yang, J.S.; Lin, M.L.; Chen, G.W.; Lu, H.F.; Lin, M.W.; Han, S.M.; Chung, J.G. The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo, 2008, 22(2), 237-245.
[PMID: 18468409]
[39]
Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; Iyer, K.S.; Baer, B.; Blancafort, P. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol., 2020, 4(1), 24.
[http://dx.doi.org/10.1038/s41698-020-00129-0] [PMID: 32923684]
[40]
Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; Chang, H.W.; Chang, Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol., 2014, 68, 218-225.
[http://dx.doi.org/10.1016/j.fct.2014.03.022] [PMID: 24675423]
[41]
Shiassi Arani, F.; Karimzadeh, L.; Ghafoori, S.M.; Nabiuni, M. Antimutagenic and synergistic cytotoxic effect of cisplatin and honey bee venom on 4t1 invasive mammary carcinoma cell line. Adv. Pharmacol. Sci., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/7581318] [PMID: 30838042]
[42]
Oršolić, N.; Šver, L.; Verstovšek, S.; Terzić, S.; Bašić, I. Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon, 2003, 41(7), 861-870.
[http://dx.doi.org/10.1016/S0041-0101(03)00045-X] [PMID: 12782086]
[43]
Oršolić, N.; Terzić, S.; Šver, L.; Bašić, I. Honey‐bee products in prevention and/or therapy of murine transplantable tumours. J. Sci. Food Agric., 2005, 85(3), 363-370.
[http://dx.doi.org/10.1002/jsfa.2041]
[44]
Ahn, Y.; Shin, J.S.; Lee, J.; Lee, Y.J.; Kim, M.; Shin, Y.; Park, K.B.; Kim, E.J.; Kim, M.J.; Lee, J.; Lee, H.D.; Lee, Y.; Kim, S.; Chung, H.J.; Ha, I.H. Safety of essential bee venom pharmacopuncture as assessed in a randomized controlled double-blind trial. J. Ethnopharmacol., 2016, 194, 774-780.
[http://dx.doi.org/10.1016/j.jep.2016.11.012] [PMID: 27840257]
[45]
Cherniack, E.P.; Govorushko, S. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon, 2018, 154, 74-78.
[http://dx.doi.org/10.1016/j.toxicon.2018.09.013] [PMID: 30268393]
[46]
DeGrado, W.F.; Musso, G.F.; Lieber, M.; Kaiser, E.T.; Kézdy, F.J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J., 1982, 37(1), 329-338.
[http://dx.doi.org/10.1016/S0006-3495(82)84681-X] [PMID: 7055625]
[47]
Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327.
[http://dx.doi.org/10.1002/wnan.126] [PMID: 21225660]
[48]
Peeler, D.J.; Thai, S.N.; Cheng, Y.; Horner, P.J.; Sellers, D.L.; Pun, S.H. pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials, 2019, 192, 235-244.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.004] [PMID: 30458359]
[49]
Xing, L.; Dawei, C.; Liping, X.; Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: Development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release, 2003, 93(3), 293-300.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.019] [PMID: 14644579]
[50]
Das, B.; Madhubala, D.; Mahanta, S.; Patra, A.; Puzari, U.; Khan, M.R.; Mukherjee, A.K. A novel therapeutic formulation for the improved treatment of indian red scorpion (mesobuthus tamulus) venom-induced toxicity-tested in caenorhabditis elegans and rodent models. Toxins, 2023, 15(8), 504.
[http://dx.doi.org/10.3390/toxins15080504] [PMID: 37624261]
[51]
Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 2006, 5(5), 387-399.
[http://dx.doi.org/10.1038/nrd2031] [PMID: 16672925]
[52]
Boyd, W.A.; Smith, M.V.; Co, C.A.; Pirone, J.R.; Rice, J.R.; Shockley, K.R.; Freedman, J.H. Developmental effects of the toxcastTM phase i and phase ii chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ. Health Perspect., 2016, 124(5), 586-593.
[http://dx.doi.org/10.1289/ehp.1409645] [PMID: 26496690]
[53]
Chattopadhyay, D.; Thirumurugan, K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech. Ageing Dev., 2018, 171, 47-57.
[http://dx.doi.org/10.1016/j.mad.2018.03.002] [PMID: 29526449]
[54]
da Silveira, T.L.; Zamberlan, D.C.; Arantes, L.P.; Machado, M.L.; da Silva, T.C.; Câmara, D.F.; Santamaría, A.; Aschner, M.; Soares, F.A.A. Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 2018, 67, 94-101.
[http://dx.doi.org/10.1016/j.neuro.2018.04.015] [PMID: 29702159]
[55]
Zečić, A.; Dhondt, I.; Braeckman, B.P. The nutritional requirements of Caenorhabditis elegans. Genes Nutr., 2019, 14(1), 15.
[http://dx.doi.org/10.1186/s12263-019-0637-7] [PMID: 31080524]
[56]
Branicky, R.; Hekimi, S. What keeps C. elegans regular: The genetics of defecation. Trends Genet., 2006, 22(10), 571-579.
[http://dx.doi.org/10.1016/j.tig.2006.08.006] [PMID: 16911844]
[57]
Gonzalez-Moragas, L.; Roig, A.; Laromaine, A.C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci., 2015, 219, 10-26.
[http://dx.doi.org/10.1016/j.cis.2015.02.001] [PMID: 25772622]
[58]
Treinin, M.; Jin, Y. Cholinergic transmission in C. elegans: Functions, diversity, and maturation of ACh‐activated ion channels. J. Neurochem., 2021, 158(6), 1274-1291.
[http://dx.doi.org/10.1111/jnc.15164] [PMID: 32869293]
[59]
Mitchell, H.K.; Lowy, P.H.; Sarmiento, L.; Dickson, L. Melittin: Toxicity to Drosophila and inhibition of acetylcholinesterase. Arch. Biochem. Biophys., 1971, 145(1), 344-348.
[http://dx.doi.org/10.1016/0003-9861(71)90045-2] [PMID: 5001227]
[60]
Philippsen, D.F.; Tamagno, W.A.; Vanin, A.P.; Concato, A.C.; Bragagnolo, L.; Prestes, E.; Korf, E.P.; Kaizer, R.R. Copper uses in organic production are safe to the nervous system of Caenorhabditis elegans? Environ. Qual. Manage., 2021, 30(4), 61-70.
[http://dx.doi.org/10.1002/tqem.21736]
[61]
Anderson, G.L.; Cole, R.D.; Williams, P.L. Assessing behavioral toxicity with Caenorhabditis elegans. Environ. Toxicol. Chem., 2004, 23(5), 1235-1240.
[http://dx.doi.org/10.1897/03-264] [PMID: 15180374]
[62]
Mansur, F.; Luoga, W.; Buttle, D.J.; Duce, I.R.; Lowe, A.; Behnke, J.M. The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstomain vitro. Vet. Parasitol., 2014, 201(1-2), 48-58.
[http://dx.doi.org/10.1016/j.vetpar.2013.12.018] [PMID: 24462509]
[63]
Williams, A.R.; Fryganas, C.; Ramsay, A.; Mueller-Harvey, I.; Thamsborg, S.M. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One, 2014, 9(5), e97053.
[http://dx.doi.org/10.1371/journal.pone.0097053] [PMID: 24810761]
[64]
Rehman, A.; Ullah, R.; Jaiswal, N.; Khan, M.A.H.; Rehman, L.; Beg, M.A.; Malhotra, S.K.; Abidi, S.M.A. Low virulence potential and in vivo transformation ability in the honey bee venom treated Clinostomum Complanatum. Exp. Parasitol., 2017, 183, 33-40.
[http://dx.doi.org/10.1016/j.exppara.2017.10.007] [PMID: 29069571]
[65]
Hashmi, S.; Zhang, J.; Oksov, Y.; Ji, Q.; Lustigman, S. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J. Biol. Chem., 2006, 281(38), 28415-28429.
[http://dx.doi.org/10.1074/jbc.M600254200] [PMID: 16857685]
[66]
Jang, S.H.; Park, Y.; Park, S.C.; Il Kim, P.; Lee, D.G.; Hahm, K.S. Antinematodal activity and the mechanism of the antimicrobial peptide, HP (2-20), against Caenorhabditis elegans. Biotechnol. Lett., 2004, 26(4), 287-291.
[http://dx.doi.org/10.1023/B:BILE.0000015427.26410.d4] [PMID: 15055763]
[67]
DiLoreto, R.; Murphy, C.T. The cell biology of aging. Mol. Biol. Cell, 2015, 26(25), 4524-4531.
[http://dx.doi.org/10.1091/mbc.E14-06-1084] [PMID: 26668170]
[68]
Kenyon, C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N. Y. Acad. Sci., 2010, 1204(1), 156-162.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05640.x] [PMID: 20738286]
[69]
Dues, D.J.; Andrews, E.K.; Schaar, C.E.; Bergsma, A.L.; Senchuk, M.M.; Van Raamsdonk, J.M. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging, 2016, 8(4), 777-795.
[http://dx.doi.org/10.18632/aging.100939] [PMID: 27053445]
[70]
Henderson, S.T.; Johnson, T.E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol., 2001, 11(24), 1975-1980.
[http://dx.doi.org/10.1016/S0960-9822(01)00594-2] [PMID: 11747825]
[71]
Farhan, M.; Silva, M.; Xingan, X.; Huang, Y.; Zheng, W. Role of FOXO transcription factors in cancer metabolism and angiogenesis. Cells, 2020, 9(7), 1586.
[http://dx.doi.org/10.3390/cells9071586] [PMID: 32629884]
[72]
Wan, Q.L.; Shi, X.; Liu, J.; Ding, A.J.; Pu, Y.Z.; Li, Z.; Wu, G.S.; Luo, H.R. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans. Aging, 2017, 9(2), 447-474.
[http://dx.doi.org/10.18632/aging.101170] [PMID: 28177875]
[73]
Lemieux, G.A.; Ashrafi, K. Investigating connections between metabolism, longevity, and behavior in Caenorhabditis elegans. Trends Endocrinol. Metab., 2016, 27(8), 586-596.
[http://dx.doi.org/10.1016/j.tem.2016.05.004] [PMID: 27289335]
[74]
Utkin, Y.N. Animal venom studies: Current benefits and future developments. World J. Biol. Chem., 2015, 6(2), 28-33.
[http://dx.doi.org/10.4331/wjbc.v6.i2.28] [PMID: 26009701]
[75]
Nelson, D.A.; O’Connor, R. The venom of the honeybee (Apis mellifera): Free amino acids and peptides. Can. J. Biochem., 1968, 46(10), 1221-1226.
[http://dx.doi.org/10.1139/o68-182] [PMID: 5687646]
[76]
Surendra, N.S.; Ravikumar, H.; Reddy, M.R.S. Evaluation of catecholamines and amino acids from venom reservoir extract of Indian honey bee (Apis) species. J. Apic. Res., 2014, 53(5), 514-519.
[http://dx.doi.org/10.3896/IBRA.1.53.5.05]
[77]
Popplewell, J.F.; Swann, M.J.; Freeman, N.J.; McDonnell, C.; Ford, R.C. Quantifying the effects of melittin on liposomes. Biochim. Biophys. Acta Biomembr., 2007, 1768(1), 13-20.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.016] [PMID: 17092481]
[78]
Molenaars, M.; Schomakers, B.V.; Elfrink, H.L.; Gao, A.W.; Vervaart, M.A.T.; Pras-Raves, M.L.; Luyf, A.C.; Smith, R.L.; Sterken, M.G.; Kammenga, J.E.; van Kampen, A.H.C.; Janssens, G.E.; Vaz, F.M.; van Weeghel, M.; Houtkooper, R.H. Metabolomics and lipidomics in Caenorhabditis elegans using a single-sample preparation. Dis. Model. Mech., 2021, 14(4), dmm047746.
[http://dx.doi.org/10.1242/dmm.047746] [PMID: 33653825]
[79]
Jin, J.; Byun, J.K.; Choi, Y.K.; Park, K.G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med., 2023, 55(4), 706-715.
[http://dx.doi.org/10.1038/s12276-023-00971-9] [PMID: 37009798]
[80]
Butler, M.; van der Meer, L.T.; van Leeuwen, F.N. Amino acid depletion therapies: Starving cancer cells to death. Trends Endocrinol. Metab., 2021, 32(6), 367-381.
[http://dx.doi.org/10.1016/j.tem.2021.03.003] [PMID: 33795176]
[81]
Dallière, N.; Bhatla, N.; Luedtke, Z.; Ma, D.K.; Woolman, J.; Walker, R.J.; Holden-Dye, L.; O’Connor, V. Multiple excitatory and inhibitory neural signals converge to fine‐tune Caenorhabditis elegans feeding to food availability. FASEB J., 2016, 30(2), 836-848.
[http://dx.doi.org/10.1096/fj.15-279257] [PMID: 26514165]
[82]
Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med., 2020, 52(1), 15-30.
[http://dx.doi.org/10.1038/s12276-020-0375-3] [PMID: 31980738]
[83]
Eren, C.Y.; Gurer, H.G.; Gursoy, O.O.; Sezer, C.V. Antitumor effects of l-citrulline on hela cervical cancer cell lines. Anticancer. Agents Med. Chem., 2022, 22(18), 3157-3162.
[http://dx.doi.org/10.2174/1871520622666220426101409] [PMID: 35473537]
[84]
Corsetto, P.A.; Zava, S.; Rizzo, A.M.; Colombo, I. The critical impact of sphingolipid metabolism in breast cancer progression and drug response. Int. J. Mol. Sci., 2023, 24(3), 2107.
[http://dx.doi.org/10.3390/ijms24032107] [PMID: 36768427]
[85]
Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High levels of sphingolipids in human breast cancer. J. Surg. Res., 2016, 204(2), 435-444.
[http://dx.doi.org/10.1016/j.jss.2016.05.022] [PMID: 27565080]
[86]
Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 2020, 148, 80-89.
[http://dx.doi.org/10.1016/j.plaphy.2020.01.006] [PMID: 31951944]
[87]
Barfeld, S.J.; Fazli, L.; Persson, M.; Marjavaara, L.; Urbanucci, A.; Kaukoniemi, K.M.; Rennie, P.S.; Ceder, Y.; Chabes, A.; Visakorpi, T.; Mills, I.G. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget, 2015, 6(14), 12587-12602.
[http://dx.doi.org/10.18632/oncotarget.3494] [PMID: 25869206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy