Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Hypervalent Iodine Reagents and m-CPBA Mediated Oxidative Transformations

Author(s): Ravi Varala*, Vittal Seema, Mohammed Amanullah, Seella Ramanaiah and Mohammed Mujahid Alam*

Volume 28, Issue 7, 2024

Published on: 12 March, 2024

Page: [489 - 509] Pages: 21

DOI: 10.2174/0113852728296345240215111730

Price: $65

Abstract

Among the several peroxides available, meta-chloroperbenzoic acid (mCPBA) plays an efficient role of oxidizing reagent and is used for many oxidative transformations, such as oxidation of various functional groups, carbon-carbon, carbon-hetero bond formation, heterocyclic ring formation, heteroarylation, oxidative cross-coupling, lactonization, oxidative dearomatization, α-oxytosylation or α-acetoxylation, oxidative C-C bond activation and in other miscellaneous reactions. The purpose of this review is to critically discuss the significant contributions of mCPBA along with hypervalent iodine/iodine reagents in organic synthesis from mid-2015 to date.

Next »
Graphical Abstract

[1]
Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph Series 186; American Chemical Society: Washington, DC, 1990.
[2]
Trost, B.M.; Fleming, I. Eds.; Comprehensive Organic Synthesis, 1st ed; Pergamon Press: Oxford, 1991, Vol. 7, .
[3]
Sheldon, R.A. Catalytic Oxidation; Sheldon, R.A.; van Santen, R.A., Eds.; World Scientific: Singapore, 1995, p. 239.
[http://dx.doi.org/10.1142/9789814503884_0011]
[4]
Clark, J.H.; Macquarrie, D.J. Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals. Org. Process Res. Dev., 1997, 1(2), 149-162.
[http://dx.doi.org/10.1021/op960008m]
[5]
Hoelderich, W.F.; Kollmer, F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system. Pure Appl. Chem., 2000, 72(7), 1273-1287.
[http://dx.doi.org/10.1351/pac200072071273]
[6]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun., 2009, 2073(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[7]
Cha, S.; Hwang, J.; Choi, M.G.; Chang, S.K. Dual signaling of m-chloroperbenzoic acid by desulfurization of thiocoumarin. Tetrahedron Lett., 2010, 51(50), 6663-6665.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.066]
[8]
Kamijo, S.; Matsumura, S.; Inoue, M. CCl3CN: A crucial promoter of mCPBA-mediated direct ether oxidation. Org. Lett., 2010, 12(18), 4195-4197.
[http://dx.doi.org/10.1021/ol1018079] [PMID: 20734980]
[9]
Gipstein, E.; Nichik, F.; Offenbach, J.A. m-Chloroperbenzoic acid as a reagent for the determination of unsaturation in natural and cyclized rubber. Anal. Chim. Acta, 1968, 43, 129-131.
[http://dx.doi.org/10.1016/S0003-2670(00)89187-4]
[10]
Tank, R. m-Chloroperoxybenzoic acid (MCPBA). Synlett, 2007, 2007(4), 0664-0665.
[http://dx.doi.org/10.1055/s-2007-967956]
[11]
a) McDonald, R.N.; Steppel, R.N.; Dorsey, J.E. Organic syntheses. Coll., 1988, 6, 276.;
b) McDonald, R.N.; Steppel, R.N.; Dorsey, J.E. m-Chloroperbenzoic acid. Org. Synth., 1970, 50, 15.
[http://dx.doi.org/10.15227/orgsyn.050.0015]
[12]
Caron, S.; Dugger, R.W.; Ruggeri, S.G.; Ragan, J.A.; Ripin, D.H.B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev., 2006, 106(7), 2943-2989.
[http://dx.doi.org/10.1021/cr040679f] [PMID: 16836305]
[13]
Rao, A. m-Chloroperbenzoic acid. In: Encyclopedia of Reagents for Organic Synthesis (EROS); Wiley, 2005.
[http://dx.doi.org/10.1002/047084289X.rc140]
[14]
Mehta, G.; Mohal, N. Baeyer-Villiger oxidation of norbornan-7-ones: Long-range substituent effects on regioselectivity. J. Chem. Soc., Perkin Trans. 1, 1998, 505-508(3), 505-508.
[http://dx.doi.org/10.1039/a706268k]
[15]
Brougham, P.; Cooper, M.S.; Cummerson, D.A.; Heaney, H.; Thompson, N. Oxidation reactions using magnesium monoperphthalate: A comparison with m-chloroperoxybenzoic acid. Synthesis, 1987, 1987(11), 1015-1017.
[http://dx.doi.org/10.1055/s-1987-28153]
[16]
Schwartz, N.N.; Blumbergs, J.H. Epoxidations with m-chloroperbenzoic acid. J. Org. Chem., 1964, 29(7), 1976-1979.
[http://dx.doi.org/10.1021/jo01030a078]
[17]
Nakayama, J.; Kamiyama, H. Oxidation of congested thiophene 1,1-dioxides with m-chloroperbenzoic acid. Formation of epoxides vs. ring-contracted thiete 1,1-dioxides. Tetrahedron Lett., 1992, 33(49), 7539-7542.
[http://dx.doi.org/10.1016/S0040-4039(00)60818-3]
[18]
Zhang, X.; Hu, A.; Pan, C.; Zhao, Q.; Wang, X.; Lu, J. Safer preparation of m-CPBA/DMF solution in pilot plant. Org. Process Res. Dev., 2013, 17(12), 1591-1596.
[http://dx.doi.org/10.1021/op400208b]
[19]
Yang, J.; Jiang, J.; Jiang, J.; Pan, X.; Pan, Y.; Ni, L. Thermal instability and kinetic analysis on m-chloroperbenzoic acid. J. Therm. Anal. Calorim., 2019, 135, 2309-2316.
[http://dx.doi.org/10.1007/s10973-018-7470-x]
[20]
Yaremenko, I.A.; Vil’, V.A.; Demchuk, D.V.; Terent’ev, A.O. Rearrangements of organic peroxides and related processes. Beilstein J. Org. Chem., 2016, 12, 1647-1748.
[http://dx.doi.org/10.3762/bjoc.12.162] [PMID: 27559418]
[21]
Hussain, H.; Al-Harrasi, A.; Green, I.R.; Ahmed, I.; Abbas, G.; Rehman, N.U. meta-Chloroperbenzoic acid (mCPBA): A versatile reagent in organic synthesis. RSC Advances, 2014, 4(25), 12882-12917.
[http://dx.doi.org/10.1039/C3RA45702H]
[22]
Merkushev, A. Meta-chloroperoxybenzoic acid (m-CPBA). Synlett, 2015, 26(15), 2187-2188.
[http://dx.doi.org/10.1055/s-0034-1381134]
[23]
Varala, R.; Seema, V. Recent applications of TEMPO in organic synthesis and catalysis. SynOpen, 2023, 7(3), 408-413.
[http://dx.doi.org/10.1055/a-2155-2950]
[24]
Varala, R.; Alam, M.; Vittal, S.; Swamy, D.N.; Devi, R.V. Iodoxybenzoic Acid (IBX) in organic synthesis: A septennial review. Curr. Org. Synth., 2024, 21(5), 607-664.
[http://dx.doi.org/10.2174/0115701794263252230924074035]
[25]
Alam, M.M.; Hussien, M.; Bollikolla, H.; Seema, V.; Dubasi, N.; Amanullah, M.; Varala, R. Applications of PIDA in heterocyclic ring formations: An update from 2015 to date. J. Het. Chem., 2023, 60(8), 1326-1355.
[http://dx.doi.org/10.1002/jhet.4627]
[26]
Alam, M.M.; Seema, V.; Dubasi, N.; Kurra, M.; Varala, R. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-Covering up to march 2022. Mini Rev. Org. Chem., 2023, 20(7), 708-734.
[http://dx.doi.org/10.2174/1570193X20666221021104906]
[27]
Vittal, S.; Mujahid Alam, M.; Hussien, M.; Amanullah, M.; Pisal, P.M.; Ravi, V.; Pisal, P.M.; Varala, R. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update. ChemistrySelect, 2023, 8(1), e202204240.
[http://dx.doi.org/10.1002/slct.202204240]
[28]
Varala, R.; Seema, V.; Dubasi, N. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis. Organics, 2023, 4(1), 1-40.
[http://dx.doi.org/10.3390/org4010001]
[29]
Alam, M.M.; Bollikolla, H.B.; Amanullah, M.; Hussein, M.; Varala, R. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions. Curr. Org. Chem., 2023, 27(2), 93-107.
[http://dx.doi.org/10.2174/1385272827666230330105241]
[30]
Varala, R.; Dubasi, N.; Seema, V.; Kotra, V. Sodium periodate (NaIO4) in organic synthesis. SynOpen, 2023, 7(4), 548-554.
[http://dx.doi.org/10.1055/a-2183-3678]
[31]
Varala, R.; Seema, V.; Alam, M.M.; Amanullah, M.; Swamy, D.N. Dess-martin periodinane (DMP) in organic synthesis-A septennial report. Curr. Org. Chem., 2023, 27(17), 1504-1530.
[http://dx.doi.org/10.2174/0113852728262311231012060626]
[32]
Basdevant, B.; Guilbault, A.A.; Beaulieu, S.; Lauriers, A.J.D.; Legault, C.Y. Iodine(III)-mediated synthesis of chiral α-substituted ketones: Recent advances and mechanistic insights. Pure Appl. Chem., 2017, 89(6), 781-789.
[http://dx.doi.org/10.1515/pac-2016-1212]
[33]
Fujita, M. Mechanistic aspects of alkene oxidation using chiral hypervalent iodine reagents. Tetrahedron Lett., 2017, 58(47), 4409-4419.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.019]
[34]
Molnár, I.G.; Thiehoff, C.; Holland, M.C.; Gilmour, R. Catalytic, vicinal difluorination of olefins: Creating a hybrid, chiral bioisostere of the trifluoromethyl and ethyl groups. ACS Catal., 2016, 6(10), 7167-7173.
[http://dx.doi.org/10.1021/acscatal.6b02155]
[35]
Kitamura, T.; Miyake, A.; Muta, K.; Oyamada, J. Hypervalent iodine/HF reagents for the synthesis of 3-fluoropyrrolidines. J. Org. Chem., 2017, 82(22), 11721-11726.
[http://dx.doi.org/10.1021/acs.joc.7b01266] [PMID: 28695730]
[36]
Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science, 2016, 353(6294), 51-54.
[http://dx.doi.org/10.1126/science.aaf8078] [PMID: 27365443]
[37]
Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Enantioselective iodine(I/III) catalysis in organic synthesis. Adv. Synth. Catal., 2019, 361(1), 2-25.
[http://dx.doi.org/10.1002/adsc.201800521]
[38]
Elsherbini, M.; Moran, W.J. A general protocol for catalytic oxidative transformations using electrochemically generated hypervalent iodine species. J. Org. Chem., 2023, 88(3), 1424-1433.
[http://dx.doi.org/10.1021/acs.joc.2c02309] [PMID: 36689352]
[39]
Miyamoto, K.; Yamashita, J.; Narita, S.; Sakai, Y.; Hirano, K.; Saito, T.; Wang, C.; Ochiai, M.; Uchiyama, M. Iodoarene-catalyzed oxidative transformations using molecular oxygen. Chem. Commun., 2017, 53(70), 9781-9784.
[http://dx.doi.org/10.1039/C7CC05160C] [PMID: 28816304]
[40]
Claraz, A.; Masson, G. Asymmetric iodine catalysis-mediated enantioselective oxidative transformations. Org. Biomol. Chem., 2018, 16(30), 5386-5402.
[http://dx.doi.org/10.1039/C8OB01378K] [PMID: 30024581]
[41]
Stang, P.J.; Zhdankin, V.V. Organic polyvalent iodine compounds. Chem. Rev., 1996, 96(3), 1123-1178.
[http://dx.doi.org/10.1021/cr940424+] [PMID: 11848783]
[42]
Berthiol, F. Reagent and catalyst design for asymmetric hypervalent iodine oxidations. Synthesis, 2015, 47(5), 587-603.
[http://dx.doi.org/10.1055/s-0034-1379892]
[43]
Parra, A.; Reboredo, S. Chiral hypervalent iodine reagents: Synthesis and reactivity. Chemistry, 2013, 19(51), 17244-17260.
[http://dx.doi.org/10.1002/chem.201302220] [PMID: 24272963]
[44]
Wirth, T.; Brown, M.; Farid, U. Hypervalent iodine reagents as powerful electrophiles. Synlett, 2013, 24(4), 424-431.
[http://dx.doi.org/10.1055/s-0032-1318103]
[45]
a) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile hypervalent-iodine(III)-catalyzed oxidations with mchloroperbenzoic acid as a cooxidant. Angew. Chem. Int. Ed., 2005, 44(38), 6193-6196.
[http://dx.doi.org/10.1002/anie.200501688] [PMID: 16121408];
b) Tohma, H.; Maruyama, A.; Maeda, A.; Maegawa, T.; Dohi, T.; Shiro, M.; Morita, T.; Kita, Y. Preparation and reactivity of 1,3,5,7-tetrakis[4-(diacetoxyiodo)phenyl]adamantane, a recyclable hypervalent iodine(III) reagent. Angew. Chem. Int. Ed., 2004, 43(27), 3595-3598.
[http://dx.doi.org/10.1002/anie.200454234] [PMID: 15293256];
c) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Shiro, M.; Kita, Y. A unique site-selective reaction of ketones with new recyclable hypervalent iodine(III) reagents based on a tetraphenylmethane structure. Chem. Commun., 2005, 2205-2207(17), 2205-2207.
[http://dx.doi.org/10.1039/b501475a] [PMID: 15856097]
[46]
a) Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S.B.; Kita, Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew. Chem. Int. Ed., 2008, 47(20), 3787-3790.
[http://dx.doi.org/10.1002/anie.200800464] [PMID: 18393265];
b) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-catalyzed α-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid. J. Am. Chem. Soc., 2005, 127(35), 12244-12245.
[http://dx.doi.org/10.1021/ja0542800] [PMID: 16131201]
[47]
Lucet, D.; Le Gall, T.; Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed., 1998, 37(19), 2580-2627.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L] [PMID: 29711625]
[48]
Viso, A.; de la Pradilla, F.R.; Tortosa, M.; García, A.; Flores, A. Update 1 of: α,β-Diamino acids: Biological significance and synthetic approaches. Chem. Rev., 2011, 111(2), PR1-PR42.
[http://dx.doi.org/10.1021/cr100127y] [PMID: 21306179]
[49]
De Jong, S.; Nosal, D.G.; Wardrop, D.J. Methods for direct alkene diamination, new & old. Tetrahedron, 2012, 68(22), 4067-4105.
[http://dx.doi.org/10.1016/j.tet.2012.03.036] [PMID: 22888177]
[50]
Cardona, F.; Goti, A. Metal-catalysed 1,2-diamination reactions. Nat. Chem., 2009, 1(4), 269-275.
[http://dx.doi.org/10.1038/nchem.256] [PMID: 21378869]
[51]
Muñiz, K.; Martínez, C. Development of intramolecular vicinal diamination of alkenes: From palladium to bromine catalysis. J. Org. Chem., 2013, 78(6), 2168-2174.
[http://dx.doi.org/10.1021/jo302472w] [PMID: 23437968]
[52]
Muñiz, K.; Barreiro, L.; Romero, R.M.; Martínez, C. Catalytic asymmetric diamination of styrenes. J. Am. Chem. Soc., 2017, 139(12), 4354-4357.
[http://dx.doi.org/10.1021/jacs.7b01443] [PMID: 28277652]
[53]
John, O.R.S.; Killeen, N.M.; Knowles, D.A.; Yau, S.C.; Bagley, M.C.; Tomkinson, N.C.O. Direct α-oxytosylation of carbonyl compounds: One-pot synthesis of heterocycles. Org. Lett., 2007, 9(20), 4009-4012.
[http://dx.doi.org/10.1021/ol701774y] [PMID: 17824710]
[54]
Wirth, T.; Richardson, R.; Page, T.; Altermann, S.; Paradine, S.; French, A. Enantioselective α-oxytosylation of ketones catalysed by iodoarenes. Synlett, 2007, 2007(4), 0538-0542.
[http://dx.doi.org/10.1055/s-2007-967960]
[55]
Alharbi, H.; Elsherbini, M.; Qurban, J.; Wirth, T. C-N Axial chiral hypervalent iodine reagents: Catalytic stereoselective α-oxytosylation of ketones. Chemistry, 2021, 27(13), 4317-4321.
[http://dx.doi.org/10.1002/chem.202005253] [PMID: 33428245]
[56]
Lex, T.R.; Swasy, M.I.; Whitehead, D.C. Relative rate profiles of functionalized iodoarene catalysts for iodine(III) oxidations. J. Org. Chem., 2015, 80(24), 12234-12243.
[http://dx.doi.org/10.1021/acs.joc.5b02129] [PMID: 26599392]
[57]
Miao, Y.; Hu, Y.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Advances, 2019, 9(47), 27510-27540.
[http://dx.doi.org/10.1039/C9RA04917G] [PMID: 35529241]
[58]
Dawood, K.M. Benzofuran derivatives: A patent review. Expert Opin. Ther. Pat., 2013, 23(9), 1133-1156.
[http://dx.doi.org/10.1517/13543776.2013.801455] [PMID: 23683135]
[59]
Singh, F.; Mangaonkar, S. Hypervalent iodine(III)-catalyzed synthesis of 2-arylbenzofurans. Synthesis, 2018, 50(24), 4940-4948.
[http://dx.doi.org/10.1055/s-0037-1610650]
[60]
Ebner, C.; Carreira, E.M. Cyclopropanation strategies in recent total syntheses. Chem. Rev., 2017, 117(18), 11651-11679.
[http://dx.doi.org/10.1021/acs.chemrev.6b00798] [PMID: 28467054]
[61]
Wu, W.; Lin, Z.; Jiang, H. Recent advances in the synthesis of cyclopropanes. Org. Biomol. Chem., 2018, 16(40), 7315-7329.
[http://dx.doi.org/10.1039/C8OB01187G] [PMID: 30229776]
[62]
Liu, J.; Liu, R.; Wei, Y.; Shi, M. Recent developments in cyclopropane cycloaddition reactions. Trends Chem., 2019, 1(8), 779-793.
[http://dx.doi.org/10.1016/j.trechm.2019.06.012]
[63]
Li, Y.; Guo, H.; Fan, R. Iodobenzene-catalyzed oxidative cyclization for the synthesis of highly functionalized cyclopropanes. Synthesis, 2020, 52(6), 928-932.
[http://dx.doi.org/10.1055/s-0039-1690809]
[64]
Zhdankin, V.V. Hypervalent iodine chemistry: Preparation, structure, and synthetic applications of polyvalent iodine compounds; Wiley: Hoboken, 2014.
[65]
Kaiho, T. Iodine chemistry and applications; Wiley: New York, 2015.
[66]
Wirth, T. Ed.; Hypervalent Iodine chemistry, in topics in current chemistry; Springer: Berlin, 2016.
[67]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[68]
Marigo, M.; Jørgensen, K.A. Organocatalytic direct asymmetric α-heteroatom functionalization of aldehydes and ketones. Chem. Commun., 2006, (19), 2001-2011.
[http://dx.doi.org/10.1039/B517090G] [PMID: 16767258]
[69]
Olofsson, B.; Merritt, E. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis, 2011, 2011(4), 517-538.
[http://dx.doi.org/10.1055/s-0030-1258328]
[70]
Dong, D.Q.; Hao, S.H.; Wang, Z.L.; Chen, C. Hypervalent iodine: A powerful electrophile for asymmetric α-functionalization of carbonyl compounds. Org. Biomol. Chem., 2014, 12(25), 4278-4289.
[http://dx.doi.org/10.1039/c4ob00318g] [PMID: 24827449]
[71]
Hokamp, T.; Wirth, T. Hypervalent iodine(III)-catalysed enantioselective α-acetoxylation of ketones. Chemistry, 2020, 26(46), 10417-10421.
[http://dx.doi.org/10.1002/chem.202000927] [PMID: 32233006]
[72]
Liao, C.C.; Peddinti, R.K. Masked o-benzoquinones in organic synthesis. Acc. Chem. Res., 2002, 35(10), 856-866.
[http://dx.doi.org/10.1021/ar000194n] [PMID: 12379138]
[73]
Magdziak, D.; Meek, S.J.; Pettus, T.R.R. Cyclohexadienone ketals and quinols: Four building blocks potentially useful for enantioselective synthesis. Chem. Rev., 2004, 104(3), 1383-1430.
[http://dx.doi.org/10.1021/cr0306900] [PMID: 15008626]
[74]
Pouységu, L.; Deffieux, D.; Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66(13), 2235-2261.
[http://dx.doi.org/10.1016/j.tet.2009.12.046]
[75]
Roche, S.P.; Porco, J.A., Jr Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed., 2011, 50(18), 4068-4093.
[http://dx.doi.org/10.1002/anie.201006017] [PMID: 21506209]
[76]
Bartoli, A.; Rodier, F.; Commeiras, L.; Parrain, J.L.; Chouraqui, G. Construction of spirolactones with concomitant formation of the fused quaternary centre - application to the synthesis of natural products. Nat. Prod. Rep., 2011, 28(4), 763-782.
[http://dx.doi.org/10.1039/c0np00053a] [PMID: 21290066]
[77]
Zhuo, C.X.; Zhang, W.; You, S.L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed., 2012, 51(51), 12662-12686.
[http://dx.doi.org/10.1002/anie.201204822] [PMID: 23208999]
[78]
Uyanik, M.; Ishihara, K. Asymmetric Dearomatization Reactions; You, S-L., Ed.; John Wiley & Sons: Weinheim, 2016, p. 126-152.
[79]
Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine (III) catalysis. ACS Catal., 2017, 7(1), 872-876.
[http://dx.doi.org/10.1021/acscatal.6b03380]
[80]
Yamazaki, T.; Taguchi, T.; Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009.
[81]
Manteau, B.; Pazenok, S.; Vors, J.P.; Leroux, F.R. New trends in the chemistry of α-fluorinated ethers, thioethers, amines and phosphines. J. Fluor. Chem., 2010, 131(2), 140-158.
[http://dx.doi.org/10.1016/j.jfluchem.2009.09.009]
[82]
Furuya, T.; Kamlet, A.S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature, 2011, 473(7348), 470-477.
[http://dx.doi.org/10.1038/nature10108] [PMID: 21614074]
[83]
Becker, A. Inventory of industrial fluoro-biochemicals; Eyrolles: Paris, 1996.
[84]
Pluta, R.; Krach, P.E.; Cavallo, L.; Falivene, L.; Rueping, M. Metal-free catalytic asymmetric fluorination of keto esters using a combination of hydrogen fluoride (HF) and oxidant: Experiment and computation. ACS Catal., 2018, 8(3), 2582-2588.
[http://dx.doi.org/10.1021/acscatal.7b03118]
[85]
Singh, F.V.; Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem. Asian J., 2014, 9(4), 950-971.
[http://dx.doi.org/10.1002/asia.201301582] [PMID: 24523252]
[86]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[87]
Fujita, M. Asymmetric oxidation of alkenes with optically active hypervalent iodine (III). J. Synth. Org. Chem. Jpn., 2016, 74, 233-242.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.74.233]
[88]
Hashimoto, T.; Shimazaki, Y.; Omatsu, Y.; Maruoka, K. Indanol-based chiral organoiodine catalysts for enantioselective hydrative dearomatization. Angew. Chem. Int. Ed., 2018, 57(24), 7200-7204.
[http://dx.doi.org/10.1002/anie.201803889] [PMID: 29700910]
[89]
Zhuo, C.X.; Zheng, C.; You, S.L. Transition-metal-catalyzed asymmetric allylic dearomatization reactions. Acc. Chem. Res., 2014, 47(8), 2558-2573.
[http://dx.doi.org/10.1021/ar500167f] [PMID: 24940612]
[90]
Xu, R.Q.; Gu, Q.; Wu, W.T.; Zhao, Z.A.; You, S.L. Construction of erythrinane skeleton via Pd(0)-catalyzed intramolecular dearomatization of para-aminophenols. J. Am. Chem. Soc., 2014, 136(44), 15469-15472.
[http://dx.doi.org/10.1021/ja508645j] [PMID: 25308898]
[91]
Oguma, T.; Katsuki, T. Iron-catalysed asymmetric tandem spiro-cyclization using dioxygen in air as the hydrogen acceptor. Chem. Commun., 2014, 50(39), 5053-5056.
[http://dx.doi.org/10.1039/C4CC01555J] [PMID: 24715032]
[92]
Wang, S.G.; Yin, Q.; Zhuo, C.X.; You, S.L. Asymmetric dearomatization of β-naphthols through an amination reaction catalyzed by a chiral phosphoric acid. Angew. Chem. Int. Ed., 2015, 54(2), 647-650.
[http://dx.doi.org/10.1002/anie.201409756] [PMID: 25414091]
[93]
Zhang, D.Y.; Xu, L.; Wu, H.; Gong, L.Z. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chemistry, 2015, 21(29), 10314-10317.
[http://dx.doi.org/10.1002/chem.201501583] [PMID: 26095392]
[94]
Harned, A.M. Asymmetric oxidative dearomatizations promoted by hypervalent iodine(III) reagents: An opportunity for rational catalyst design? Tetrahedron Lett., 2014, 55(34), 4681-4689.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.051] [PMID: 25147412]
[95]
Liang, H.; Ciufolini, M.A. Chiral hypervalent iodine reagents in asymmetric reactions. Angew. Chem. Int. Ed., 2011, 50(50), 11849-11851.
[http://dx.doi.org/10.1002/anie.201106127] [PMID: 22052680]
[96]
Ngatimin, M.; Lupton, D.W. The discovery of catalytic enantioselective polyvalent iodine mediated reactions. Aust. J. Chem., 2010, 63(4), 653-658.
[http://dx.doi.org/10.1071/CH09625]
[97]
Ochiai, M.; Miyamoto, K. Catalytic version of and reuse in hypervalent organo-λ3- and -λ5-iodane oxidation. Eur. J. Org. Chem., 2008, 2008(25), 4229-4239.
[http://dx.doi.org/10.1002/ejoc.200800416]
[98]
Richardson, R.D.; Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem. Int. Ed., 2006, 45(27), 4402-4404.
[http://dx.doi.org/10.1002/anie.200601817] [PMID: 16804953]
[99]
Jain, N.; Xu, S.; Ciufolini, M.A. Asymmetric oxidative cycloetherification of naphtholic alcohols. Chemistry, 2017, 23(19), 4542-4546.
[http://dx.doi.org/10.1002/chem.201700667] [PMID: 28194827]
[100]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
[101]
Wang, J.; Roselló, S.M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[102]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[103]
Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51(15), 4359-4369.
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365]
[104]
Wolstenhulme, J.R.; Gouverneur, V. Asymmetric fluorocyclizations of alkenes. Acc. Chem. Res., 2014, 47(12), 3560-3570.
[http://dx.doi.org/10.1021/ar500282z] [PMID: 25379791]
[105]
Denmark, S.E.; Kuester, W.E.; Burk, M.T. Catalytic, asymmetric halofunctionalization of alkenes-A critical perspective. Angew. Chem. Int. Ed., 2012, 51(44), 10938-10953.
[http://dx.doi.org/10.1002/anie.201204347] [PMID: 23011853]
[106]
Cahard, D.; Xu, X.; Bonnaire, C.S.; Pannecoucke, X. Fluorine & chirality: How to create a nonracemic stereogenic carbon-fluorine centre? Chem. Soc. Rev., 2010, 39(2), 558-568.
[http://dx.doi.org/10.1039/B909566G] [PMID: 20111780]
[107]
Wolstenhulme, J.R.; Rosenqvist, J.; Lozano, O.; Ilupeju, J.; Wurz, N.; Engle, K.M.; Pidgeon, G.W.; Moore, P.R.; Sandford, G.; Gouverneur, V. Asymmetric electrophilic fluorocyclization with carbon nucleophiles. Angew. Chem. Int. Ed., 2013, 52(37), 9796-9800.
[http://dx.doi.org/10.1002/anie.201304845] [PMID: 23873744]
[108]
Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N. Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF•pyridine/mCPBA system. Chem. Sci., 2014, 5(7), 2754-2760.
[http://dx.doi.org/10.1039/C3SC53107D]
[109]
Woerly, E.M.; Banik, S.M.; Jacobsen, E.N. Enantioselective, catalytic fluorolactonization reactions with a nucleophilic fluoride source. J. Am. Chem. Soc., 2016, 138(42), 13858-13861.
[http://dx.doi.org/10.1021/jacs.6b09499] [PMID: 27709922]
[110]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th ed; Springer: New York, 2007, pp. 298-305.
[111]
Cresswell, A.J.; Eey, S.T.C.; Denmark, S.E. Catalytic, stereoselective dihalogenation of alkenes: Challenges and opportunities. Angew. Chem. Int. Ed., 2015, 54(52), 15642-15682.
[http://dx.doi.org/10.1002/anie.201507152] [PMID: 26630449]
[112]
Huchet, Q.A.; Kuhn, B.; Wagner, B.; Kratochwil, N.A.; Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E.M.; Müller, K. Fluorination patterning: A study of structural motifs that impact physicochemical properties of relevance to drug discovery. J. Med. Chem., 2015, 58(22), 9041-9060.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01455] [PMID: 26523333]
[113]
Lizarme-Salas, Y.; Ariawan, A.D.; Ratnayake, R.; Luesch, H.; Finch, A.; Hunter, L. Vicinal difluorination as a C=C surrogate: An analog of piperine with enhanced solubility, photostability, and acetylcholinesterase inhibitory activity. Beilstein J. Org. Chem., 2020, 16, 2663-2670.
[http://dx.doi.org/10.3762/bjoc.16.216] [PMID: 33178356]
[114]
Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, diastereoselective 1,2-difluorination of alkenes. J. Am. Chem. Soc., 2016, 138(15), 5000-5003.
[http://dx.doi.org/10.1021/jacs.6b02391] [PMID: 27046019]
[115]
Schulte, M.L.; Lindsley, C.W. Highly diastereoselective and general synthesis of primary β-fluoroamines. Org. Lett., 2011, 13(20), 5684-5687.
[http://dx.doi.org/10.1021/ol202415j] [PMID: 21942742]
[116]
Appayee, C.; Brenner-Moyer, S.E. Organocatalytic enantioselective olefin aminofluorination. Org. Lett., 2010, 12(15), 3356-3359.
[http://dx.doi.org/10.1021/ol101167z] [PMID: 20575576]
[117]
Mennie, K.M.; Banik, S.M.; Reichert, E.C.; Jacobsen, E.N. Catalytic diastereo- and enantioselective fluoroamination of alkenes. J. Am. Chem. Soc., 2018, 140(14), 4797-4802.
[http://dx.doi.org/10.1021/jacs.8b02143] [PMID: 29583001]
[118]
Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J.M.; Möbitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.; Desrayaud, S.; Neumann, U. Discovery of cyclic sulfone hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors: Structure-based design and in vivo reduction of amyloid β-peptides. J. Med. Chem., 2012, 55(7), 3364-3386.
[http://dx.doi.org/10.1021/jm300069y] [PMID: 22380629]
[119]
Koley, S.; Altman, R.A. Recent advances in transition metal-catalyzed functionalization of gem-difluoroalkenes. Isr. J. Chem., 2020, 60(3-4), 313-339.
[http://dx.doi.org/10.1002/ijch.201900173] [PMID: 32523163]
[120]
Altman, R.A.; Sorrentino, J.P. Fluorine-retentive strategies for the functionalization of gem-difluoroalkenes. Synthesis, 2021, 53(21), 3935-3950.
[http://dx.doi.org/10.1055/a-1547-9270] [PMID: 34707322]
[121]
Zeng, Y.; Jiang, Z-T.; Zhu, Y.; Chen, J.; Zhang, H.; Xia, Y. Carbofluorination of alkenes with gem-difluorinated cyclopropanes as bifunctional reagents enabled by well-define rhodium catalysts. ChemRxiv, 2023.
[http://dx.doi.org/10.26434/chemrxiv-2023-8mj8n]
[122]
Kitamura, T.; Muta, K.; Oyamada, J. Hypervalent iodine-mediated fluorination of styrene derivatives: Stoichiometric and catalytic transformation to 2,2-difluoroethylarenes. J. Org. Chem., 2015, 80(21), 10431-10436.
[http://dx.doi.org/10.1021/acs.joc.5b01929] [PMID: 26450682]
[123]
Quideau, S.; Pouysegu, L.; Peixoto, P.A.; Deffieux, D. In hypervalent iodine chemistry; Wirth, T., Ed.; Springer: Switzerland, 2016, pp. 25-74.
[http://dx.doi.org/10.1007/128_2015_665]
[124]
Uyanik, M.; Yasui, T.; Ishihara, K. Chiral hypervalent organoiodine-catalyzed enantioselective oxidative spirolactonization of naphthol derivatives. J. Org. Chem., 2017, 82(22), 11946-11953.
[http://dx.doi.org/10.1021/acs.joc.7b01941] [PMID: 28926246]
[125]
Murahashi, S.; Saito, T.; Hanaoka, H.; Murakami, Y.; Naota, T.; Kumobayashi, H.; Akutagawa, S. Ruthenium-catalyzed oxidative transformation of alkenes to. alpha.-ketols with peracetic acid. Simple synthesis of cortisone acetate. J. Org. Chem., 1993, 58(11), 2929-2930.
[http://dx.doi.org/10.1021/jo00063a002]
[126]
Kocienski, P.J. Protecting Groups; Thieme: Stuttgart, 1994, p. 22.
[127]
Vilaivan, T.; Bhanthumnavin, W. Organocatalyzed asymmetric α-oxidation, α-aminoxylation and α-amination of carbonyl compounds. Molecules, 2010, 15(2), 917-958.
[http://dx.doi.org/10.3390/molecules15020917] [PMID: 20335955]
[128]
Guillena, G.; Ramon, D.J. Recent advances on the organocatalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Curr. Org. Chem., 2011, 15, 296-327.
[http://dx.doi.org/10.2174/138527211794072551]
[129]
Smith, A.M.R.; Hii, K.K.M. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev., 2011, 111(3), 1637-1656.
[http://dx.doi.org/10.1021/cr100197z] [PMID: 20954710]
[130]
Levitre, G.; Dumoulin, A.; Retailleau, P.; Panossian, A.; Leroux, F.R.; Masson, G. Asymmetric α-sulfonyl- and α-phosphoryl-oxylation of ketones by a chiral hypervalent iodine(III). J. Org. Chem., 2017, 82(22), 11877-11883.
[http://dx.doi.org/10.1021/acs.joc.7b01597] [PMID: 28731345]
[131]
Beaulieu, S.; Legault, C.Y. Mechanistic insights on the iodine(III)-mediated α-oxidation of ketones. Chemistry, 2015, 21(31), 11206-11211.
[http://dx.doi.org/10.1002/chem.201501177] [PMID: 26118902]
[132]
Seitz, M.; Reiser, O. Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds. Curr. Opin. Chem. Biol., 2005, 9(3), 285-292.
[http://dx.doi.org/10.1016/j.cbpa.2005.03.005] [PMID: 15939330]
[133]
Hoffmann, H.M.R.; Rabe, J. Synthesis and biological activity of α-methylene-γ-butyrolactones. Angew. Chem. Int. Ed. Engl., 1985, 24(2), 94-110.
[http://dx.doi.org/10.1002/anie.198500941]
[134]
Dey, S.; Karabal, P.U.; Sudalai, A. Concise enantioselective synthesis of naturally active (S)-3-hydroxypiperidine. Synth. Commun., 2015, 45(13), 1559-1565.
[http://dx.doi.org/10.1080/00397911.2015.1033428]
[135]
Kuilya, T.K.; Chatterjee, S.; Goswami, R.K. Stereoselective total synthesis of cananginones (D-I) using Ireland-Claisen rearrangement as a key step. Tetrahedron, 2014, 70(18), 2905-2918.
[http://dx.doi.org/10.1016/j.tet.2014.03.028]
[136]
Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Chiral hypervalent iodine(III) catalyst promotes highly enantioselective sulfonyl- and phosphoryl-oxylactonizations. Org. Lett., 2017, 19(1), 278-281.
[http://dx.doi.org/10.1021/acs.orglett.6b03631] [PMID: 28009522]
[137]
Kita, Y.; Dohi, T. Pioneering metal-free oxidative coupling strategy of aromatic compounds using hypervalent iodine reagents. Chem. Rec., 2015, 15(5), 886-906.
[http://dx.doi.org/10.1002/tcr.201500020] [PMID: 26223195]
[138]
Quideau, S.; Pouységu, L.; Peixoto, P.A.; Deffieux, D. Phenol dearomatization with hypervalent iodine reagents. Top. Curr. Chem., 2016, 373, 25-74.
[http://dx.doi.org/10.1007/128_2015_665] [PMID: 26809622]
[139]
Uyanik, M.; Ishihara, K. In asymmetric dearomatization reactions; You, S.L; Wiley-VCH, 2016, pp. 129-152.
[140]
Muñiz, K.; Fra, L. Enantioselective 4-hydroxylation of phenols under chiral organoiodine(I/III) catalysis. Synthesis, 2017, 49(13), 2901-2906.
[http://dx.doi.org/10.1055/s-0036-1588808]
[141]
Hong, S.; Jung, M.; Park, Y.; Ha, M.W.; Park, C.; Lee, M.; Park, H. Efficient enantioselective total synthesis of (-)-horsfiline. Chemistry, 2013, 19(29), 9599-9605.
[http://dx.doi.org/10.1002/chem.201301008] [PMID: 23836402]
[142]
Rawson, T.E.; Rüth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Georges, G.J.; Goller, B.; Halladay, J.; Hunsaker, T.; Kleinheinz, T.; Krell, H.W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.; Phillips, G.; Ran, Y.; Safina, B.; Ultsch, M.; Walker, L.; Wiesmann, C.; Zhang, B.; Zhou, A.; Zhu, B.Y.; Rüger, P.; Cochran, A.G. A pentacyclic aurora kinase inhibitor (AKI-001) with high in vivo potency and oral bioavailability. J. Med. Chem., 2008, 51(15), 4465-4475.
[http://dx.doi.org/10.1021/jm800052b] [PMID: 18630890]
[143]
Wang, Y.; Yang, M.; Sun, Y.Y.; Wu, Z.G.; Dai, H.; Li, S. An efficient approach for 3,3-disubstituted oxindoles synthesis: Aryl iodine catalyzed intramolecular C-N bond oxidative cross-coupling. Org. Lett., 2021, 23(22), 8750-8754.
[http://dx.doi.org/10.1021/acs.orglett.1c03224] [PMID: 34709841]
[144]
Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W.Y.; Houk, K.N.; Shi, Z. Shi. Z. Iodoarene-catalyzed stereospecific intramolecular sp3 C-H amination: Reaction development and mechanistic insights. J. Am. Chem. Soc., 2015, 137(24), 7564-7567.
[http://dx.doi.org/10.1021/jacs.5b03488] [PMID: 26035639]
[145]
Peerzada, M.N.; Hamel, E.; Bai, R.; Supuran, C.T.; Azam, A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol. Ther., 2021, 225, 107860.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107860] [PMID: 33895188]
[146]
Stępień, M.; Gońka, E.; Żyła, M.; Sprutta, N. Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: Synthetic routes, properties, and applications. Chem. Rev., 2017, 117(4), 3479-3716.
[http://dx.doi.org/10.1021/acs.chemrev.6b00076] [PMID: 27258218]
[147]
Waldman, A.J.; Ng, T.L.; Wang, P.; Balskus, E.P. Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem. Rev., 2017, 117(8), 5784-5863.
[http://dx.doi.org/10.1021/acs.chemrev.6b00621] [PMID: 28375000]
[148]
Dong, J.; Liu, Y.; Wang, Q. Recent advances in visible-light-mediated Minisci reactions. Youji Huaxue, 2021, 41(10), 3771-3791.
[http://dx.doi.org/10.6023/cjoc202104024]
[149]
Meng, W.; Xu, K.; Guo, B.; Zeng, C. Recent advances in Minisci reactions under electrochemical conditions. Youji Huaxue, 2021, 41(7), 2621-2635.
[http://dx.doi.org/10.6023/cjoc202102001]
[150]
Wang, W.; Wang, S. Recent advances in Minisci-type reactions and applications in organic synthesis. Curr. Org. Chem., 2021, 25(8), 894-934.
[http://dx.doi.org/10.2174/18755348MTEylODY6w]
[151]
Bacoş, P.D.; Lahdenperä, A.S.K.; Phipps, R.J. Discovery and development of the enantioselective Minisci reaction. Acc. Chem. Res., 2023, 56(14), 2037-2049.
[http://dx.doi.org/10.1021/acs.accounts.3c00247] [PMID: 37405731]
[152]
Cao, Z.; Wang, X.; Wu, X.; Zhu, C. Iodobenzene-catalyzed photochemical heteroarylation of alcohols by rupture of inert C-H and C-C bonds. Tetrahedron Chem, 2022, 4, 100031.
[http://dx.doi.org/10.1016/j.tchem.2022.100031]
[153]
Chai, Z.; Chen, J.N.; Liu, Z.; Li, X.F.; Yang, P.J.; Hu, J.P.; Yang, G. [3 + 2]-Annulations of N-alkyl-3-substituted indoles with quinone monoketals catalysed by Brønsted acids. Org. Biomol. Chem., 2016, 14(3), 1024-1030.
[http://dx.doi.org/10.1039/C5OB01876E] [PMID: 26633006]
[154]
Quideau, S.; Pouységu, L.; Deffieux, D. Oxidative dearomatization of phenols: Why, how and what for? Synlett, 2008, 2008(4), 467-495.
[http://dx.doi.org/10.1055/s-2008-1032094]
[155]
Fan, R.; Ding, Q.; Ye, Y. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis, 2012, 45(1), 1-16.
[http://dx.doi.org/10.1055/s-0032-1317575]
[156]
Taneja, N.; Peddinti, R.K. Iodobenzene and m-chloroperbenzoic acid mediated oxidative dearomatization of phenols. Tetrahedron Lett., 2016, 57(35), 3958-3963.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.078]
[157]
Hoffmann, R.W. Conformation design of open-chain compounds. Angew. Chem. Int. Ed., 2000, 39(12), 2054-2070.
[http://dx.doi.org/10.1002/1521-3773(20000616)39:12<2054::AID-ANIE2054>3.0.CO;2-Z] [PMID: 10941017]
[158]
Sheng, W.; Huang, X.; Cai, J.; Zheng, Y.; Wen, Y.; Song, C.; Li, J. Electrochemical oxidation enables regioselective 1,3-hydroxyfunctionalization of cyclopropanes. Org. Lett., 2023, 25(33), 6178-6183.
[http://dx.doi.org/10.1021/acs.orglett.3c02309] [PMID: 37584476]
[159]
Chen, K.; Li, Z.Q.; Zhu, C.; Feng, C. Ring-opening 1,3-difunctionalization of aryl cyclopropanes. Trends Chem., 2023, 5(2), 160-161.
[http://dx.doi.org/10.1016/j.trechm.2022.09.006]
[160]
Liu, Y.; Wang, Q.L.; Chen, Z.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Yang, C.A.; Zhou, Q. Oxidative radical ring-opening/cyclization of cyclopropane derivatives. Beilstein J. Org. Chem., 2019, 15, 256-278.
[http://dx.doi.org/10.3762/bjoc.15.23] [PMID: 30800176]
[161]
Banik, S.M.; Mennie, K.M.; Jacobsen, E.N. Catalytic 1,3-difunctionalization via oxidative C-C bond activation. J. Am. Chem. Soc., 2017, 139(27), 9152-9155.
[http://dx.doi.org/10.1021/jacs.7b05160] [PMID: 28622723]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy