Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Investigation of the Role of Zirconia and Zirconia-containing Systems as Catalysts in Organic Transformations

Author(s): Kobra Nikoofar*, Negin Shaddel and Fatemehsadat Jozi

Volume 28, Issue 6, 2024

Published on: 12 March, 2024

Page: [433 - 462] Pages: 30

DOI: 10.2174/0113852728290284240116042129

Price: $65

conference banner
Abstract

This review article discusses the applications of zirconia as a catalyst to promote various organic reactions and transformations. The article is subdivided into four main parts: 1) introduction, which consists of the history and introduction of zirconia, elaboration of its synthetic procedures, its application in various fields of science and technology with specified examples, and previously published review articles on ZrO2; 2) applications of sole zirconia and zirconia-based catalytic systems to promote various organic transformations, subdivided into oxidation reactions, hydrolysis and methanation reactions, reduction and hydrogenation reactions, furfural and synthesis of its derivatives, and miscellaneous reactions; 3) applications of sole zirconia and nano-sized ZrO2 to catalyze organic reactions and MCRs, classified as two-component reactions, three-component reactions (by a glance at pseudo 3-CRs), and four-component reactions (by a glance at pseudo 4-CRs); and 4) applications of zirconia-containing catalytic systems to catalyze organic transformations and MCRs classified as twocomponent reactions, three-component reactions, and four-component and higher-component reactions. According to investigations, some of the zirconia-based catalysts exist in nano-sized systems. Moreover, the literature survey contains publications up to the end of July 2023.

Graphical Abstract

[1]
Ali, S.A.; Karthigeyan, S. Zirconia: Properties and application. A review. Pak. Oral Dent. J., 2014, 34, 178-183.
[2]
Saridag, S.; Tak, O.; Alniacik, G. Basic properties and types of zirconia: An overview. World J. Stomatol, 2013, 2(3), 40-47.
[http://dx.doi.org/10.5321/wjs.v2.i3.40]
[3]
Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal‐monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc., 2009, 92(9), 1901-1920.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03278.x]
[4]
Li, H.B.; Liang, K.M.; Gu, S.R. Stability of t-ZrO2 in zirconia powder prepared by sol-gel process. J. Tsinghua Univ, 2001, 41, 13-15.
[5]
Ciuparu, D.; Ensuque, A.; Shafeev, G.; Bozon-Verduraz, F. Synthesis and apparent bandgap of nanophase zirconia. J. Mater. Sci. Lett., 2000, 19(11), 931-933.
[http://dx.doi.org/10.1023/A:1006799701474]
[6]
Kisi, E.H.; Howard, C.J. Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater., 1998, 153-154, 1-36.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.153-154.1]
[7]
Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int., 2017, 48(5), 369-380.
[PMID: 28396886]
[8]
Pitcher, M.W.; Ushakov, S.V.; Navrotsky, A.; Woodfield, B.F.; Li, G.; Boerio-Goates, J.; Tissue, B.M. Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc., 2005, 88(1), 160-167.
[http://dx.doi.org/10.1111/j.1551-2916.2004.00031.x]
[9]
Karapetrova, E.; Platzer, R.; Gardner, J.A.; Torne, E.; Sommers, J.A.; Evenson, W.E. Oxygen vacancies in pure tetragonal zirconia powders: Dependence on the presence of chlorine during processing. J. Am. Ceram. Soc., 2001, 84(1), 65-70.
[http://dx.doi.org/10.1111/j.1151-2916.2001.tb00609.x]
[10]
Zhao, Y.; Li, W.; Zhang, M.; Tao, K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia. Catal. Commun., 2002, 3(6), 239-245.
[http://dx.doi.org/10.1016/S1566-7367(02)00089-4]
[11]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(5), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[12]
Tanabe, K.; Holderich, W.F. Industrial application of solid acid–base catalysts. Appl. Catal. A Gen., 1999, 181(2), 399-434.
[http://dx.doi.org/10.1016/S0926-860X(98)00397-4]
[13]
Kouva, S.; Honkala, K.; Lefferts, L.; Kanervo, J. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol., 2015, 5(7), 3473-3490.
[http://dx.doi.org/10.1039/C5CY00330J]
[14]
Christensen, A.; Carter, E.A. First-principles study of the surfaces of zirconia. Phys. Rev. B Condens. Matter, 1998, 58(12), 8050-8064.
[http://dx.doi.org/10.1103/PhysRevB.58.8050]
[15]
Thakare, V. Progress in synthesis and applications of zirconia. Int. J. Appl. Eng. Res. Dev., 2012, 5, 25-28.
[16]
Liu, L.; Wang, S.; Jiang, G.; Zhang, B.; Yang, J.; Wang, J.; Liu, W.; Li, Y.; Liu, H. Solvothermal synthesis of zirconia nanomaterials: Latest developments and future. Ceram. Int., 2022, 48(22), 32649-32676.
[http://dx.doi.org/10.1016/j.ceramint.2022.07.290]
[17]
Srdić V.V.; Winterer, M. Comparison of nanosized zirconia synthesized by gas and liquid phase methods. J. Eur. Ceram. Soc., 2006, 26(15), 3145-3151.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.10.006]
[18]
Singh, A.K.; Nakate, U.T. Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. ScientificWorldJournal, 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/349457] [PMID: 24578628]
[19]
Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J. Nanomater., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/1913609]
[20]
Nikam, A.; Pagar, T.; Ghotekar, S.; Pagar, Kh.; Pansambal, Sh. A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. J. Chem. Rev., 2019, 1(3), 154-163.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.3.1]
[21]
Behbahani, A.; Rowshanzamir, S.; Esmaeilifar, A. Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Eng., 2012, 42, 908-917.
[http://dx.doi.org/10.1016/j.proeng.2012.07.483]
[22]
Bondioli, F.; Ferrari, A.M.; Leonelli, C.; Siligardi, C.; Pellacani, G.C. Microwave‐hydrothermal synthesis of nanocrystalline zirconia powders. J. Am. Ceram. Soc., 2001, 84(11), 2728-2730.
[http://dx.doi.org/10.1111/j.1151-2916.2001.tb01084.x]
[23]
Chandra, N.; Singh, D.K.; Sharma, M.; Upadhyay, R.K.; Amritphale, S.S.; Sanghi, S.K. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation. J. Colloid Interface Sci., 2010, 342(2), 327-332.
[http://dx.doi.org/10.1016/j.jcis.2009.10.065] [PMID: 19942226]
[24]
Dwivedi, R.; Maurya, A.; Verma, A.; Prasad, R.; Bartwal, K.S. Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J. Alloys Compd., 2011, 509(24), 6848-6851.
[http://dx.doi.org/10.1016/j.jallcom.2011.03.138]
[25]
Joo, J.; Yu, T.; Kim, Y.W.; Park, H.M.; Wu, F.; Zhang, J.Z.; Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc., 2003, 125(21), 6553-6557.
[http://dx.doi.org/10.1021/ja034258b] [PMID: 12785795]
[26]
Kanade, K.G.; Baeg, J.O.; Apte, S.K.; Prakash, T.L.; Kale, B.B. Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Mater. Res. Bull., 2008, 43(3), 723-729.
[http://dx.doi.org/10.1016/j.materresbull.2007.03.025]
[27]
Kongwudthiti, S.; Praserthdam, P.; Silveston, P.; Inoue, M. Influence of synthesis conditions on the preparation of zirconia powder by the glycothermal method. Ceram. Int., 2003, 29(7), 807-814.
[http://dx.doi.org/10.1016/S0272-8842(03)00020-8]
[28]
Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des., 2009, 9(9), 3874-3880.
[http://dx.doi.org/10.1021/cg800711m]
[29]
Ranjan Sahu, H.; Ranga Rao, G. Characterization of combustion synthesized zirconia powder by UV-Vis, IR and other techniques. Bull. Mater. Sci., 2000, 23(5), 349-354.
[http://dx.doi.org/10.1007/BF02708383]
[30]
Tahmasebpour, M.; Babaluo, A.A.; Aghjeh, M.K.R. Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. J. Eur. Ceram. Soc., 2008, 28(4), 773-778.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2007.09.018]
[31]
Tan, D.; Lin, G.; Liu, Y.; Teng, Y.; Zhuang, Y.; Zhu, B.; Zhao, Q.; Qiu, J. Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation. J. Nanopart. Res., 2011, 13(3), 1183-1190.
[http://dx.doi.org/10.1007/s11051-010-0110-4]
[32]
Tyagi, B.; Sidhpuria, K.; Shaik, B.; Jasra, R.V. Synthesis of nanocrystalline zirconia using sol-gel and precipitation techniques. Ind. Eng. Chem. Res., 2006, 45(25), 8643-8650.
[http://dx.doi.org/10.1021/ie060519p]
[33]
Ward, D.A.; Ko, E.I. Synthesis and structural transformation of zirconia aerogels. Chem. Mater., 1993, 5(7), 956-969.
[http://dx.doi.org/10.1021/cm00031a014]
[34]
Walker, R.C.; Potochniak, A.E.; Hyer, A.P.; Ferri, J.K. Zirconia aerogels for thermal management: Review of synthesis, processing, and properties information architecture. Adv. Colloid Interface Sci., 2021, 295, 102464.
[http://dx.doi.org/10.1016/j.cis.2021.102464] [PMID: 34364134]
[35]
Widoniak, J.; Eiden-Assmann, S.; Maret, G. Synthesis and characterisation of monodisperse zirconia particles. Eur. J. Inorg. Chem., 2005, 2005(15), 3149-3155.
[http://dx.doi.org/10.1002/ejic.200401025]
[36]
Zhang, S.C.; Messing, G.L.; Borden, M. Synthesis of solid, spherical zirconia particles by spray pyrolysis. J. Am. Ceram. Soc., 1990, 73(1), 61-67.
[http://dx.doi.org/10.1111/j.1151-2916.1990.tb05091.x]
[37]
Zhao, N.; Pan, D.; Nie, W.; Ji, X. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. J. Am. Chem. Soc., 2006, 128(31), 10118-10124.
[http://dx.doi.org/10.1021/ja0612145] [PMID: 16881641]
[38]
Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A. Zirconia nanotubes. Chem. Commun., 1997, 1997(16), 1581-1582.
[http://dx.doi.org/10.1039/a701354j]
[39]
Mahmood, Q.; Afzal, A.; Siddiqi, H.M.; Habib, A. Sol–gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies. J. Sol-Gel Sci. Technol., 2013, 67(3), 670-674.
[http://dx.doi.org/10.1007/s10971-013-3112-8]
[40]
Piticescu, R.; Monty, C.; Millers, D. Hydrothermal synthesis of nanostructured zirconia materials: Present state and future prospects. Sens. Actuators B Chem., 2005, 109(1), 102-106.
[http://dx.doi.org/10.1016/j.snb.2005.03.092]
[41]
Chatry, M.; Henry, M.; Livage, J. Synthesis of non-aggregated nanometric crystalline zirconia particles. Mater. Res. Bull., 1994, 29(5), 517-522.
[http://dx.doi.org/10.1016/0025-5408(94)90040-X]
[42]
Mishra, S.; Debnath, A.K.; Muthe, K.P.; Das, N.; Parhi, P. Rapid synthesis of tetragonal zirconia nanoparticles by microwave-solvothermal route and its photocatalytic activity towards organic dyes and hexavalent chromium in single and binary component systems. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608, 125551.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125551]
[43]
Hu, M.Z.C.; Harris, M.T.; Byers, C.H. Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis. J. Colloid Interface Sci., 1998, 198(1), 87-99.
[http://dx.doi.org/10.1006/jcis.1997.5290]
[44]
Shtansky, D.V.; Levashov, E.A.; Glushankova, N.A.; D’yakonova, N.B.; Kulinich, S.A.; Petrzhik, M.I.; Kiryukhantsev-Korneev, F.V.; Rossi, F. Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications. Surf. Coat. Tech., 2004, 182(1), 101-111.
[http://dx.doi.org/10.1016/S0257-8972(03)00813-2]
[45]
Balaji, S.; Mandal, B.K.; Ranjan, S.; Dasgupta, N.; Chidambaram, R. Nano-zirconia – Evaluation of its antioxidant and anticancer activity. J. Photochem. Photobiol. B, 2017, 170, 125-133.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.004] [PMID: 28431297]
[46]
Naszályi Nagy, L.; Dhaene, E.; Van Zele, M.; Mihály, J.; Klébert, S.; Varga, Z.; Kövér, K.E.; De Buysser, K.; Van Driessche, I.; Martins, J.C.; Fehér, K. Silica@zirconia core@shell nanoparticles for nucleic acid building block sorption. Nanomaterials, 2021, 11(9), 2166.
[http://dx.doi.org/10.3390/nano11092166]
[47]
Zou, S.J.; Ding, B.H.; Chen, Y.F.; Fan, H.T. Nanocomposites of graphene and zirconia for adsorption of organic-arsenic drugs: Performances comparison and analysis of adsorption behavior. Environ. Res., 2021, 195, 110752.
[http://dx.doi.org/10.1016/j.envres.2021.110752] [PMID: 33485908]
[48]
Subbarao, E.C. Zirconia-an overview. Adv. Ceram., 1981, 1, 1-24.
[49]
Arnold, B. Zirconia: A synthetic gemstone. In: Zircon, zirconium, zirconia- similar names, different materials; Springer, 2022.
[http://dx.doi.org/10.1007/978-3-662-64269-6_21]
[50]
Wu, Y.; Wang, X.; Shen, J. Metal oxide aerogels for high-temperature applications. J. Sol-Gel Sci. Technol., 2023, 106(2), 360-380.
[http://dx.doi.org/10.1007/s10971-021-05720-w]
[51]
Armstrong, B.L. Consolidation of nano-crystalline ZrO2. Mater. Manuf. Process., 1996, 11(6), 999-1012.
[http://dx.doi.org/10.1080/10426919608947547]
[52]
Luo, K.; Chen, L.; Li, B.; Lu, T.; Feng, J. Composition-structure-property synergistically tailoring of Zr-Y-Ta-O oxides as candidate abradable seal coatings materials. J. Eur. Ceram. Soc., 2023, 43(12), 5347-5358.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2023.04.041]
[53]
Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent., 2018, 119(1), 36-46.
[http://dx.doi.org/10.1016/j.prosdent.2017.07.009] [PMID: 28927925]
[54]
Mavriqi, L.; Valente, F.; Murmura, G.; Sinjari, B.; Macrì, M.; Trubiani, O.; Caputi, S.; Traini, T. Lithium disilicate and zirconia reinforced lithium silicate glass-ceramics for CAD/CAM dental restorations: Biocompatibility, mechanical and microstructural properties after crystallization. J. Dent., 2022, 119, 104054.
[http://dx.doi.org/10.1016/j.jdent.2022.104054] [PMID: 35122936]
[55]
Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Advances, 2022, 12(20), 12773-12793.
[http://dx.doi.org/10.1039/D2RA00006G] [PMID: 35496329]
[56]
Al-Amleh, B.; Lyons, K.; Swain, M. Clinical trials in zirconia: A systematic review. J. Oral Rehabil., 2010, 37(8), 641-652.
[http://dx.doi.org/10.1111/j.1365-2842.2010.02094.x] [PMID: 20406352]
[57]
Chevalier, J. What future for zirconia as a biomaterial? Biomaterials, 2006, 27(4), 535-543.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.034] [PMID: 16143387]
[58]
Manicone, P.F.; Rossi Iommetti, P.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent., 2007, 35(11), 819-826.
[http://dx.doi.org/10.1016/j.jdent.2007.07.008] [PMID: 17825465]
[59]
Denry, I.; Kelly, J. State of the art of zirconia for dental applications. Dent. Mater., 2008, 24(3), 299-307.
[http://dx.doi.org/10.1016/j.dental.2007.05.007] [PMID: 17659331]
[60]
Ghodsi, S.; Jafarian, Z. A review on translucent zirconia. Eur. J. Prosthodont. Restor. Dent., 2018, 26(2), 62-74.
[http://dx.doi.org/10.1922/ejprd_01759ghodsi13] [PMID: 29797847]
[61]
Göpel, W.; Reinhardt, G.; Rösch, M. Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ion., 2000, 136-137, 519-531.
[http://dx.doi.org/10.1016/S0167-2738(00)00410-0]
[62]
Somov, S.I.; Reinhardt, G.; Guth, U.; Göpel, W. Multi-electrode zirconia electrolyte amperometric sensors. Solid State Ion., 2000, 136-137, 543-547.
[http://dx.doi.org/10.1016/S0167-2738(00)00412-4]
[63]
Somov, S.I.; Guth, U. A parallel analysis of oxygen and combustibles in solid electrolyte amperometric cells. Sens. Actuators B Chem., 1998, 47(1-3), 131-138.
[http://dx.doi.org/10.1016/S0925-4005(98)00014-8]
[64]
Xu, Z.; Du, J.; Wang, J.; Chen, Z.; Li, W.; Wang, C.; Shen, Q. A comparative study on the microwave absorption properties of core-single-shell, core-double-shell and yolk-shell CIP/ceramic composite microparticles. J. Magn. Magn. Mater., 2022, 547, 168959.
[http://dx.doi.org/10.1016/j.jmmm.2021.168959]
[65]
Wiseman, I.; Roebuck, L.; Scapens, D. Effect of rare-earth (La, Nd, Pr, Y) doping on the properties of XY-Ce-Zr-O and XYZ-Ce-Zr-O nanodispersions for GPF applications. Emiss. Control Sci. Technol., 2022, 8(1-2), 96-108.
[http://dx.doi.org/10.1007/s40825-022-00209-6]
[66]
Wijaya, K.; Kurniawan, M.A.; Saputri, W.D.; Trisunaryanti, W.; Mirzan, M.; Hariani, P.L.; Tikoalu, A.D. Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process. J. Environ. Chem. Eng., 2021, 9(4), 105399.
[http://dx.doi.org/10.1016/j.jece.2021.105399]
[67]
Bocanegra-Bernal, M.H.; de la Torre, S.D. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J. Mater. Sci., 2002, 37(23), 4947-4971.
[http://dx.doi.org/10.1023/A:1021099308957]
[68]
Awaad, M.; Zawrah, M.F.; Khalil, N.M. In situ formation of zirconia–alumina–spinel–mullite ceramic composites. Ceram. Int., 2008, 34(2), 429-434.
[http://dx.doi.org/10.1016/j.ceramint.2006.11.002]
[69]
Lubauer, J.; Belli, R.; Petschelt, A.; Cicconi, M.R.; Hurle, K.; Lohbauer, U. Concurrent kinetics of crystallization and toughening in multicomponent biomedical SiO2-Li2O-P2O5-ZrO2 glass-ceramics. J. Non-Cryst. Solids, 2021, 554, 120607.
[http://dx.doi.org/10.1016/j.jnoncrysol.2020.120607]
[70]
Rendtorff, N.M.; Gómez, S.; Gauna, M.R.; Conconi, M.S.; Suarez, G.; Aglietti, E.F. Dense mullite–zirconia–zirconium titanate ceramic composites by reaction sintering. Ceram. Int., 2016, 42(1), 1563-1572.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.106]
[71]
Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials, 1999, 20(1), 1-25.
[http://dx.doi.org/10.1016/S0142-9612(98)00010-6] [PMID: 9916767]
[72]
Siwińska-Ciesielczyk, K.; Świgoń D.; Rychtowski, P.; Moszyński, D.; Zgoła-Grześkowiak, A.; Jesionowski, T. The performance of multicomponent oxide systems based on TiO2, ZrO2 and SiO2 in the photocatalytic degradation of Rhodamine B: Mechanism and kinetic studies. Colloids Surf. A Physicochem. Eng. Asp., 2020, 586, 124272.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124272]
[73]
Zarei, M.; Bahrami, J.; Zarei, M. Zirconia nanoparticle-modified graphitic carbon nitride nanosheets for effective photocatalytic degradation of 4-nitrophenol in water. Appl. Water Sci., 2019, 9(8), 175.
[http://dx.doi.org/10.1007/s13201-019-1076-8]
[74]
Farhan Hanafi, M.; Sapawe, N. Electrogenerated Zirconia (EGZrO2) nanoparticles as recyclable catalyst for effective photocatalytic degradation of phenol. Mater. Today Proc., 2019, 19, 1537-1540.
[http://dx.doi.org/10.1016/j.matpr.2019.11.180]
[75]
Franklin, R.; Goulding, P.; Haviland, J.; Joyner, R.W.; McAlpine, I.; Moles, P.; Norman, C.; Nowell, T. Stabilisation and catalytic properties of high surface area zirconia. Catal. Today, 1991, 10(3), 405-407.
[http://dx.doi.org/10.1016/0920-5861(91)80024-4]
[76]
Kauppinen, M.M.; Melander, M.M.; Bazhenov, A.S.; Honkala, K. Unraveling the role of the Rh–ZrO2 interface in the water–gas-shift reaction via a first-principles microkinetic study. ACS Catal., 2018, 8(12), 11633-11647.
[http://dx.doi.org/10.1021/acscatal.8b02596]
[77]
Mesrar, F.; Kacimi, M.; Liotta, L.F.; Puleo, F.; Ziyad, M. Syngas production from dry reforming of methane over ni/perlite catalysts: Effect of zirconia and ceria impregnation. Int. J. Hydrogen Energy, 2018, 43(36), 17142-17155.
[http://dx.doi.org/10.1016/j.ijhydene.2018.07.104]
[78]
Rogers, K.A.; Fu, J.; Xu, Y.; Zheng, Y. Guaiacol deoxygenation using ceria-zirconia based catalysts with hydrogen produced internally via water-gas-shift reaction. Catal. Today, 2023, 407, 68-79.
[http://dx.doi.org/10.1016/j.cattod.2022.04.006]
[79]
Tsoga, A.; Gupta, A.; Naoumidis, A.; Nikolopoulos, P. Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater., 2000, 48(18-19), 4709-4714.
[http://dx.doi.org/10.1016/S1359-6454(00)00261-5]
[80]
Motoc, A.M.; Valsan, S.; Slobozeanu, A.E.; Corban, M.; Valerini, D.; Prakasam, M.; Botan, M.; Dragut, V.; Vasile, B.S.; Surdu, A.V.; Trusca, R.; Grilli, M.L.; Piticescu, R.R. Design, fabrication, and characterization of new materials based on zirconia doped with mixed rare earth oxides: Review and first experimental results. Metals, 2020, 10(6), 746.
[http://dx.doi.org/10.3390/met10060746]
[81]
Wu, P.; Hu, M.Y.; Chong, X.Y.; Feng, J. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application. Appl. Phys. Lett., 2018, 112(13), 131903.
[http://dx.doi.org/10.1063/1.5022610]
[82]
Kumbhar, P.S.; Yadav, G.D. Catalysis by sulfur-promoted superacidic zirconia: Condensation reactions of hydroquinone with aniline and substituted anilines. Chem. Eng. Sci., 1989, 44(11), 2535-2544.
[http://dx.doi.org/10.1016/0009-2509(89)85197-8]
[83]
Crisci, A.J.; Dou, H.; Prasomsri, T.; Román-Leshkov, Y. Cascade reactions for the continuous and selective production of isobutene from bioderived acetic acid over zinc-zirconia catalysts. ACS Catal., 2014, 4(11), 4196-4200.
[http://dx.doi.org/10.1021/cs501018k]
[84]
Vannucci, J.A.; Nichio, N.N.; Pompeo, F. Solketal synthesis from ketalization of glycerol with acetone: A kinetic study over a sulfated zirconia catalyst. Catal. Today, 2021, 372, 238-245.
[http://dx.doi.org/10.1016/j.cattod.2020.10.005]
[85]
Niinistö, L.; Nieminen, M.; Päiväsaari, J.; Niinistö, J.; Putkonen, M.; Nieminen, M. Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys. Status Solidi, A Appl. Res., 2004, 201, 1443-1452.
[http://dx.doi.org/10.1002/pssa.200406798]
[86]
Liu, F.; Yang, G.C. Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions. Int. Mater. Rev., 2006, 51(3), 145-170.
[http://dx.doi.org/10.1179/174328006X102484]
[87]
Chen, L.; Song, P.; Feng, J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scr. Mater., 2018, 152, 117-121.
[http://dx.doi.org/10.1016/j.scriptamat.2018.03.042]
[88]
Zahir, M.H.; Fujisaki, S.; Sato, K.; Nagano, T.; Iwamoto, Y. Phosphate removal from aqueous solutions using slag microspheres. Desalination Water Treat., 2009, 2, 229-236.
[http://dx.doi.org/10.5004/dwt.2009.304]
[89]
Gbureck, U.; Spatz, K.; Thull, R. Improvement of mechanical properties of self setting calcium phosphate bone cements mixed with different metal oxides. Mater. Sci. Energy Technol., 2003, 34, 1036-1040.
[90]
Schade, O.R.; Dannecker, P.K.; Kalz, K.F.; Steinbach, D.; Meier, M.A.R.; Grunwaldt, J.D. Direct catalytic route to biomass-derived 2,5-furandicarboxylic acid and its use as monomer in a multicomponent polymerization. ACS Omega, 2019, 4(16), 16972-16979.
[http://dx.doi.org/10.1021/acsomega.9b02373] [PMID: 31646244]
[91]
Davar, F.; Shayan, N. Preparation of zirconia-magnesia nanocomposite powders and coating by a sucrose mediated sol-gel method and investigation of its corrosion behavior. Ceram. Int., 2017, 43(3), 3384-3392.
[http://dx.doi.org/10.1016/j.ceramint.2016.11.184]
[92]
Garnweitner, G.; Goldenberg, L.M.; Sakhno, O.V.; Antonietti, M.; Niederberger, M.; Stumpe, J. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small, 2007, 3(9), 1626-1632.
[http://dx.doi.org/10.1002/smll.200700075] [PMID: 17786900]
[93]
Nawrocki, J.; Rigney, M.; McCormick, A.; Carr, P.W. Chemistry of zirconia and its use in chromatography. J. Chromatogr. A, 1993, 657(2), 229-282.
[http://dx.doi.org/10.1016/0021-9673(93)80284-F] [PMID: 8130879]
[94]
Bolis, V.; Cerrato, G.; Magnacca, G.; Morterra, C. Surface acidity of metal oxides. Combined microcalorimetric and IR-spectroscopic studies of variously dehydrated systems. Thermochim. Acta, 1998, 312(1-2), 63-77.
[http://dx.doi.org/10.1016/S0040-6031(97)00440-1]
[95]
Ramirez, A.; Dutta Chowdhury, A.; Caglayan, M.; Rodriguez-Gomez, A.; Wehbe, N.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; Gascon, J. Coated sulfated zirconia/SAPO-34 for the direct conversion of CO2 to light olefins. Catal. Sci. Technol., 2020, 10(5), 1507-1517.
[http://dx.doi.org/10.1039/C9CY02532D]
[96]
Patil, M.K.; Prasad, A.N.; Reddy, B.M. Zirconia-based solid acids: green and heterogeneous catalysts for organic synthesis. Curr. Org. Chem., 2011, 15, 3961-3985.
[http://dx.doi.org/10.2174/138527211798072430]
[97]
Nikoofar, K.; Khademi, Z. A review on green Lewis acids: zirconium(IV) oxydichloride octahydrate (ZrOCl2•8H2O) and zirconium(IV) tetrachloride (ZrCl4) in organic chemistry. Res. Chem. Intermed., 2016, 42(5), 3929-3977.
[http://dx.doi.org/10.1007/s11164-015-2260-6]
[98]
Zhang, Z.H.; Li, T.S. Applications of zirconium (IV) compounds in organic synthesis. Curr. Org. Chem., 2009, 13(1), 1-30.
[http://dx.doi.org/10.2174/138527209787193783]
[99]
Zhang, W.; Wang, Z.; Huang, J.; Jiang, Y. Zirconia-based solid acid catalysts for biomass conversion. Energy Fuels, 2021, 35(11), 9209-9227.
[http://dx.doi.org/10.1021/acs.energyfuels.1c00709]
[100]
Halley, S.; Ramaiyan, K.P.; Tsui, L.; Garzon, F. A review of zirconia oxygen, NOx, and mixed potential gas sensors – History and current trends. Sens. Actuators B Chem., 2022, 370, 132363.
[http://dx.doi.org/10.1016/j.snb.2022.132363]
[101]
Yamaguchi, T. Application of ZrO2 as a catalyst and a catalyst support. Catal. Today, 1994, 20(2), 199-217.
[http://dx.doi.org/10.1016/0920-5861(94)80003-0]
[102]
Weng, W.; Wu, W.; Hou, M.; Liu, T.; Wang, T.; Yang, H. Review of zirconia-based biomimetic scaffolds for bone tissue engineering. J. Mater. Sci., 2021, 56(14), 8309-8333.
[http://dx.doi.org/10.1007/s10853-021-05824-2]
[103]
Ledade, P.V.; Lambat, T.L.; Gunjate, J.K.; Mahmood, S.H.; Das, S.; Abdala, A.A.; Chaudhary, R.G.; Banerjee, S. Synthesis of oxygen and nitrogen containing heterocycles using zirconium dioxide/mixed oxide nanoparticles as reusable green catalysts: A comprehensive update. Curr. Org. Chem., 2023, 27(3), 223-241.
[http://dx.doi.org/10.2174/1385272827666230106112146]
[104]
Fatimah, I.; Yanti, I.; Suharto, T.E.; Sagadevan, S. ZrO2-based catalysts for biodiesel production: A review. Inorg. Chem. Commun., 2022, 143, 109808.
[http://dx.doi.org/10.1016/j.inoche.2022.109808]
[105]
Ramesh, A.; Manigandan, R.; Ali, B.M.; Dhandapani, K.; Da, C.T.; Nguyen-Le, M.T. Selective oxidation of benzyl alcohol over sulphated zirconia incorporated ordered mesoporous carbon by a hard template method. J. Alloys Compd., 2022, 918, 165729.
[http://dx.doi.org/10.1016/j.jallcom.2022.165729]
[106]
Estenfelder, M.; Lintz, H.G. Simultaneous determination of reaction kinetics and oxygen activity during selective oxidation of an aldehyde over an oxidic multicomponent catalyst. Stud. Surf. Sci. Catal., 1997, 110, 981-988.
[http://dx.doi.org/10.1016/S0167-2991(97)81062-2]
[107]
Kantserova, M.R.; Chedryk, V.I.; Orlyk, S.N. Activity and stability of multicomponent nickel-containing catalysts supported on zirconia in the steam reforming and oxidative steam reforming of butane. Theor. Exp. Chem., 2015, 50(6), 378-383.
[http://dx.doi.org/10.1007/s11237-015-9391-0]
[108]
Gandía, L.M.; Vicente, M.A.; Gil, A. Complete oxidation of acetone over manganese oxide catalysts supported on alumina- and zirconia-pillared clays. Appl. Catal. B, 2002, 38(4), 295-307.
[http://dx.doi.org/10.1016/S0926-3373(02)00058-9]
[109]
Zhang, P.; Tong, Y.; Zhu, M.; Dai, B. Oxidative desulfurization of dibenzothiophene catalyzed by molybdenum dioxide immobilized on zirconia-modified silica. New J. Chem., 2020, 44(9), 3786-3793.
[http://dx.doi.org/10.1039/C9NJ06182G]
[110]
Sadasivan, R.; Patel, A. Flexible oxidation of styrene using TBHP over zirconia supported mono-copper substituted phosphotungstate. RSC Advances, 2019, 9(48), 27755-27767.
[http://dx.doi.org/10.1039/C9RA04892H] [PMID: 35530462]
[111]
Liang, Q.; Wu, X.; Weng, D.; Lu, Z. Selective oxidation of soot over Cu doped ceria/ceria–zirconia catalysts. Catal. Commun., 2008, 9(2), 202-206.
[http://dx.doi.org/10.1016/j.catcom.2007.06.007]
[112]
Fărcaşiu, D.; Ghenciu, A.; Li, J.Q. The Mechanism of conversion of saturated hydrocarbons catalyzed by sulfated metal oxides: Reaction of adamantane on sulfated zirconia. J. Catal., 1996, 158(1), 116-127.
[http://dx.doi.org/10.1006/jcat.1996.0013]
[113]
Akinnawo, C.A.; Maheso, D.J.; Bingwa, N.; Meijboom, R. Highly tunable selectivity to benzaldehyde over Pd/ZrO2 catalysts in Oppenauer oxidation of benzyl alcohol using acetone as H-acceptor. Appl. Catal. A Gen., 2021, 613, 118022.
[http://dx.doi.org/10.1016/j.apcata.2021.118022]
[114]
Li, J.; Yang, X.; Ma, J.; Yuan, C.; Ren, Y.; Cheng, X.; Deng, Y. Controllable multicomponent co-assembly approach to ordered mesoporous zirconia supported with well-dispersed tungsten oxide clusters as high-performance catalysts. ChemCatChem, 2021, 13(12), 2863-2872.
[http://dx.doi.org/10.1002/cctc.202100385]
[115]
Lonchay, W.; Bagnato, G.; Sanna, A. Highly selective hydropyrolysis of lignin waste to benzene, toluene and xylene in presence of zirconia supported iron catalyst. Bioresour. Technol., 2022, 361, 127727.
[http://dx.doi.org/10.1016/j.biortech.2022.127727] [PMID: 35944864]
[116]
Wang, X.; Liu, Q.; Jiang, J.; Jin, G.; Li, H.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. SiO2-stabilized Ni/t-ZrO2 catalysts with ordered mesopores: One-pot synthesis and their superior catalytic performance in CO methanation. Catal. Sci. Technol., 2016, 6(10), 3529-3543.
[http://dx.doi.org/10.1039/C5CY01482D]
[117]
Marcotte, N.; Coq, B.; Savill-Jovitt, C.; Bichon, P.; Cavalier, R.; Durand, R.; Harle, V.; Marques, R.; Rohart, E. Multi-component zirconia–titania mixed oxides: Catalytic materials with unprecedented performance in the selective catalytic reduction of NOx with NH3 after harsh hydrothermal ageing. Appl. Catal. B, 2011, 105(3-4), 373-376.
[http://dx.doi.org/10.1016/j.apcatb.2011.04.022]
[118]
Guo, P.P.; He, Z.H.; Yang, S.Y.; Wang, W.; Wang, K.; Li, C.C.; Wei, Y-Y.; Liu, Z-T.; Han, B. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem., 2022, 24(4), 1527-1533.
[http://dx.doi.org/10.1039/D1GC04284J]
[119]
Gawande, M.B.; Branco, P.S.; Parghi, K.; Shrikhande, J.J.; Pandey, R.K.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D.; Jayaram, R.V. Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol., 2011, 1(9), 1653-1664.
[http://dx.doi.org/10.1039/c1cy00259g]
[120]
Violi, I.L.; Zelcer, A.; Bruno, M.M.; Luca, V.; Soler-Illia, G.J.A.A. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: A highly active reusable heterogeneous nanocatalyst. ACS Appl. Mater. Interfaces, 2015, 7(2), 1114-1121.
[http://dx.doi.org/10.1021/am5065188] [PMID: 25522210]
[121]
Chu, Y.; Sanyal, U.; Li, X.S.; Qiu, Y.; Song, M.; Engelhard, M.H.; Davidson, S.D.; Koh, K.; Meyer, L.C.; Zheng, J.; Xie, X.; Li, D.; Liu, J.; Gutiérrez, O.Y.; Wang, Y.; Shao, Y. Tuning proton transfer and catalytic properties in triple junction nanostructured catalyts. Nano Energy, 2021, 86, 106046.
[http://dx.doi.org/10.1016/j.nanoen.2021.106046]
[122]
Ma, Y.; Wang, J.; Goodman, K.R.; Head, A.R.; Tong, X.; Stacchiola, D.J.; White, M.G. reactivity of a zirconia–copper inverse catalyst for CO2 hydrogenation. J. Phys. Chem. C, 2020, 124(40), 22158-22172.
[http://dx.doi.org/10.1021/acs.jpcc.0c06624]
[123]
Wang, T.; Nakagawa, Y.; Tamura, M.; Okumura, K.; Tomishige, K. Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. React. Chem. Eng., 2020, 5(7), 1237-1250.
[http://dx.doi.org/10.1039/D0RE00085J]
[124]
Yan, H.; Yang, Y.; Tong, D.; Xiang, X.; Hu, C. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2–Al2O3 solid acid catalysts. Catal. Commun., 2009, 10(11), 1558-1563.
[http://dx.doi.org/10.1016/j.catcom.2009.04.020]
[125]
Balaga, R.; Yan, P.; Ramineni, K.; Du, H.; Xia, Z.; Marri, M.R.; Zhang, Z.C. The role and performance of isolated zirconia sites on mesoporous silica for aldol condensation of furfural with acetone. Appl. Catal. A Gen., 2022, 648, 118901.
[http://dx.doi.org/10.1016/j.apcata.2022.118901]
[126]
Yan, J.; You, K.; Yin, J.; Ni, W.; Zhao, F.; Ai, Q.; Luo, H. Novel mesoporous submicron SO42−/FeCu-ZrO2 catalyst for highly selective liquid-phase nitration of 1-nitronaphthalene with NO2 to 1, 5-dinitronaphthalene under mild conditions. Surf. Interfaces, 2023, 36, 102501.
[http://dx.doi.org/10.1016/j.surfin.2022.102501]
[127]
Ghafuri, H.; Rashidizadeh, A.; Ghorbani, B.; Paravand, F. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42-) as a solid acid and reusable catalyst for the protection of hydroxyl groups under solvent-free condition. The 18th International Electronic Conference on Synthetic Organic Chemistry session General Organic Synthesis, 2014.
[http://dx.doi.org/10.3390/ecsoc-18-a012]
[128]
Li, Q.; Zhang, W.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal. Today, 2006, 115(1-4), 111-116.
[http://dx.doi.org/10.1016/j.cattod.2006.02.033]
[129]
Malakooti, R.; Mahmoudi, H.; Hosseinabadi, R.; Petrov, S.; Migliori, A. Facile synthesis of pure non-monoclinic zirconia nanoparticles and their catalytic activity investigations for Knoevenagel condensation. RSC Adv., 2013, 3(44), 22353-22359.
[http://dx.doi.org/10.1039/c3ra44682d]
[130]
Reddy, B.M.; Patil, M.K.; Rao, K.N.; Reddy, G.K. An easy-to-use heterogeneous promoted zirconia catalyst for Knoevenagel condensation in liquid phase under solvent-free conditions. J. Mol. Catal. Chem., 2006, 258(1-2), 302-307.
[http://dx.doi.org/10.1016/j.molcata.2006.05.065]
[131]
Jafarpour, M.; Rezapour, E.; Ghahramaninezhad, M.; Rezaeifard, A. A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1,2-diamines with 1,2-dicarbonyl compounds. New J. Chem., 2014, 38(2), 676-682.
[http://dx.doi.org/10.1039/C3NJ00655G]
[132]
Wan, M.; Liang, D.; Wang, L.; Zhang, X.; Yang, D.; Li, G. Cycloketone condensation catalyzed by zirconia: Origin of reactant selectivity. J. Catal., 2018, 361, 186-192.
[http://dx.doi.org/10.1016/j.jcat.2018.02.021]
[133]
Bhojegowd, M.R.M.; Siddaramanna, A.; Siddappa, A.B.; Thimmanna, C.G.; Pasha, M.A. combustion derived nanocrystalline‐ZrO2 and its catalytic activity for biginelli condensation under microwave irradiation. Chin. J. Chem., 2011, 29(9), 1863-1868.
[http://dx.doi.org/10.1002/cjoc.201180325]
[134]
Singh, S.; Bajpai, S. Eco-friendly and facile synthesis of substituted imidazoles via nano zirconia catalyzed one-pot multicomponent reaction of isatin derivatives with ammonium acetate and substituted aromatic aldehydes under solvent free conditions. In: nanaocatalysts; Sinha, I, Ed.; IntechOpen, 2019.
[135]
Bajpai, S.; Singh, S.; Srivastava, V. Nano zirconia catalysed one-pot synthesis of some novel substituted imidazoles under solvent-free conditions. RSC Adv., 2015, 5(36), 28163-28170.
[http://dx.doi.org/10.1039/C4RA16211K]
[136]
Saha, A.; Payra, S.; Verma, S.K.; Mandal, M.; Thareja, S.; Banerjee, S. In silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives. RSC Adv., 2015, 5(122), 100978-100983.
[http://dx.doi.org/10.1039/C5RA16643H]
[137]
Bajpai, S.; Singh, S.; Srivastava, V. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry. Synth. Commun., 2017, 47(16), 1514-1525.
[http://dx.doi.org/10.1080/00397911.2017.1336244]
[138]
Mortikov, V.Y.; Litvinov, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M. Versatile three-component synthesis of 2′-amino-1,2-dihydrospiro[(3H)-indole-3,4′-(4′H)-pyran]-2-ones. Russ. Chem. Bull., 2008, 57(11), 2373-2380.
[http://dx.doi.org/10.1007/s11172-008-0338-7]
[139]
Anaraki-Ardakani, H.; Heidari-Rakati, T. Zirconium oxide nanoparticles as an efficient catalyst for three-component synthesis of pyrazolo[1,2-a][1,2,4]triazole-1,3-diones derivatives. Orient. J. Chem., 2016, 32(3), 1625-1629.
[http://dx.doi.org/10.13005/ojc/320339]
[140]
Piltan, M. Preparation of 1 H -pyrazolo[1,2-b]phthalazine-5,10-diones using ZrO2 nanoparticles as a catalyst under solvent-free conditions. Heterocycl. Commun., 2017, 23(5), 401-403.
[http://dx.doi.org/10.1515/hc-2017-0142]
[141]
Mamaghani, M.; Jamali, M.M.; Hossein, N.R. A facile ZrO2 nanoparticles catalyzed synthesis of 2-amino-5-arylpyrimido[4,5-b]quinolinediones. J. Indian Chem. Soc., 2017, 14(2), 395-401.
[http://dx.doi.org/10.1007/s13738-016-0988-6]
[142]
Tanabe, K. Solid Acids and Bases; Academic Press: New York, 1970.
[http://dx.doi.org/10.1016/B978-0-12-683250-1.50005-5]
[143]
Jadhav, S.A.; Sarkate, A.P.; Raut, A.V.; Shinde, D.B. ZrO2 nano particle catalyzed multi-component synthesis of 3-benzylidene-1-phenylquinoline-2,4(1H,3H)-diones and its antimicrobial activity. Res. Chem. Intermed., 2017, 43(8), 4531-4547.
[http://dx.doi.org/10.1007/s11164-017-2894-7]
[144]
Debnath, K.; Mukherjee, S.; Bodhak, C.; Pramanik, A. Facile one-pot three-component synthesis of diverse 2,3-disubstituted isoindolin-1-ones using ZrO 2 nanoparticles as a reusable dual acid–base solid support under solvent-free conditions. RSC Advances, 2016, 6(25), 21127-21138.
[http://dx.doi.org/10.1039/C6RA00870D]
[145]
Tomishige, K.; Kunimori, K. Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl. Catal. A Gen., 2002, 237(1-2), 103-109.
[http://dx.doi.org/10.1016/S0926-860X(02)00322-8]
[146]
Hernández-Reyes, C.X.; Angeles-Beltrán, D.; Lomas-Romero, L.; González-Zamora, E.; Gaviño, R.; Cárdenas, J.; Morales-Serna, J.A.; Negrón-Silva, G.E. Synthesis of azanucleosides through regioselective ring-opening of epoxides catalyzed by sulphated zirconia under microwave and solvent-free conditions. Molecules, 2012, 17(3), 3359-3369.
[http://dx.doi.org/10.3390/molecules17033359] [PMID: 22421790]
[147]
Ghafuri, H.; Rashidizadeh, A.; Ghorbani, B.; Talebi, M. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−): an efficient solid acid catalyst for the green synthesis of α-aminonitriles and imines. New J. Chem., 2015, 39(6), 4821-4829.
[http://dx.doi.org/10.1039/C5NJ00314H]
[148]
Narasimhamurthy, K.H.; Girish, Y.R.; Thimmaraju, N.; Rangappa, K.S. Utility of ZrO2–Al2O3 in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Chem. Data Collect., 2019, 21, 100230.
[http://dx.doi.org/10.1016/j.cdc.2019.100230]
[149]
Abdollahi-Alibeik, M.; Shabani, E. Nanocrystalline sulfated zirconia as an efficient solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J. Indian Chem. Soc., 2014, 11(2), 351-359.
[http://dx.doi.org/10.1007/s13738-013-0306-5]
[150]
Halder, B.; Banerjee, F.; Nag, A. MWCNTs‐ZrO2 as a reusable heterogeneous catalyst for the synthesis of N‐heterocyclic scaffolds under green reaction medium. Appl. Organomet. Chem., 2020, 34(11), e5906.
[http://dx.doi.org/10.1002/aoc.5906]
[151]
Rekha, M.; Hamza, A.; Venugopal, B.R.; Nagaraju, N. Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chin. J. Catal., 2012, 33(2-3), 439-446.
[http://dx.doi.org/10.1016/S1872-2067(11)60338-0]
[152]
Shelke, S.V.; Dhumal, S.T.; Deshmukh, T.R.; Patil, M.K. A mild and rapid synthesis of 2-aryl benzimidazoles by using SO42-/ZrO2-TiO2 as a heterogeneous catalyst. Lett. Org. Chem., 2023, 20(6), 541-548.
[http://dx.doi.org/10.2174/1570178620666230103140744]
[153]
Vergara-Arenas, B.I.; Lomas-Romero, L.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Gutiérrez-Carrillo, A.; Lara, V.H.; Morales-Serna, J.A. Multicomponent synthesis of 4-aryl-NH-1,2,3-triazoles in the presence of Al-MCM-41 and sulfated zirconia. Tetrahedron Lett., 2017, 58(28), 2690-2694.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.055]
[154]
Devassy, B.; Halligudi, S. Zirconia-supported heteropoly acids: Characterization and catalytic behavior in liquid-phase veratrole benzoylation. J. Catal., 2005, 236(2), 313-323.
[http://dx.doi.org/10.1016/j.jcat.2005.09.016]
[155]
Devassy, B.M.; Shanbhag, G.V.; Lefebvre, F.; Böhringer, W.; Fletcher, J.; Halligudi, S.B. Zirconia-supported phosphotungstic acid as catalyst for alkylation of phenol with benzyl alcohol. J. Mol. Catal. Chem., 2005, 230(1-2), 113-119.
[http://dx.doi.org/10.1016/j.molcata.2004.12.028]
[156]
Devassy, B.M.; Halligudi, S.B.; Hegde, S.G.; Halgeri, A.B.; Lefebvre, F. 12-Tungstophosphoric acid/zirconia—a highly active stable solid acid-comparison with a tungstated zirconia catalyst. Chem. Commun. (Camb.), 2002, 2002(10), 1074-1075.
[http://dx.doi.org/10.1039/b200722c] [PMID: 12122671]
[157]
Deshpande, S.S.; Sonavane, S.U.; Jayaram, R.V. A facile deprotection of oximes over mixed metal oxides under solvent-free conditions. Catal. Commun., 2008, 9(5), 639-644.
[http://dx.doi.org/10.1016/j.catcom.2007.06.023]
[158]
Gawande, M.B.; Jayaram, R.V. A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions. Catal. Commun., 2006, 7(12), 931-935.
[http://dx.doi.org/10.1016/j.catcom.2006.03.008]
[159]
Sinhamahapatra, A.; Pal, P.; Tarafdar, A.; Bajaj, H.C.; Panda, A.B. Mesoporous borated zirconia: A solid acid-base bifunctional catalyst. ChemCatChem, 2013, 5(1), 331-338.
[http://dx.doi.org/10.1002/cctc.201200440]
[160]
Pratap, S.R.; Shamshuddin, S.Z.M.; Shyamprasad, K. Microwave assisted synthesis of propyl esters over modified versions of zirconia: Kinetic study. Chem. Data Collect., 2020, 30, 100579.
[http://dx.doi.org/10.1016/j.cdc.2020.100579]
[161]
Wang, A.; Liu, X.; Su, Z.; Jing, H. New magnetic nanocomposites of ZrO2-Al2O3-Fe3O4 as green solid acid catalysts in organic reactions. Catal. Sci. Technol., 2014, 4(1), 71-80.
[http://dx.doi.org/10.1039/C3CY00572K]
[162]
Li, X.; Zhang, Q.; Li, H.; Gao, X. A novel process for the production of triethylene glycol di-2-ethylhexoate by reactive distillation using a sulfated zirconia catalyst. Ind. Eng. Chem. Res., 2020, 59(19), 9242-9253.
[http://dx.doi.org/10.1021/acs.iecr.0c00618]
[163]
Nayebzadeh, H.; Saghatoleslami, N.; Tabasizadeh, M. Application of microwave irradiation for fabrication of sulfated ZrO2-Al2O3 nanocomposite via combustion method for esterification reaction: process condition evaluation. J. Nanostructure Chem., 2019, 9(2), 141-152.
[http://dx.doi.org/10.1007/s40097-019-0304-y]
[164]
Yadav, G.D.; Ajgaonkar, N.P.; Varma, A. Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. J. Catal., 2012, 292, 99-110.
[http://dx.doi.org/10.1016/j.jcat.2012.05.004]
[165]
Thimmaraju, N.; Shamshuddin, S.Z.M. Synthesis of 2,4,5-trisubstituted imidazoles, quinoxalines and 1,5-benzodiazepines over an eco-friendly and highly efficient ZrO2-Al2O3 catalyst. RSC Advances, 2016, 6(65), 60231-60243.
[http://dx.doi.org/10.1039/C6RA13956F]
[166]
Shelke, S.V.; Dhumal, S.T.; Karale, A.Y.; Deshmukh, T.R.; Patil, M.K. A facile synthesis of quinoxalines by using SO42−/ZrO2-TiO2 as an efficient and recyclable heterogeneous catalyst. Synth. Commun., 2022, 52(4), 597-607.
[http://dx.doi.org/10.1080/00397911.2022.2039711]
[167]
Vlasenko, N.V.; Kyriienko, P.I.; Valihura, K.V.; Kosmambetova, G.R.; Soloviev, S.O.; Strizhak, P.E. Yttria-stabilized zirconia as a high-performance catalyst for ethanol to n-butanol guerbet coupling. ACS Omega, 2019, 4(25), 21469-21476.
[http://dx.doi.org/10.1021/acsomega.9b03170] [PMID: 31867542]
[168]
Ordomsky, V.V.; Sushkevich, V.L.; Ivanova, I.I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. J. Mol. Catal. Chem., 2010, 333(1-2), 85-93.
[http://dx.doi.org/10.1016/j.molcata.2010.10.001]
[169]
Marakatti, V.S.; Marappa, S.; Gaigneaux, E.M. Sulfated zirconia: an efficient catalyst for the Friedel–Crafts monoalkylation of resorcinol with methyl tertiary butyl ether to 4-tertiary butylresorcinol. New J. Chem., 2019, 43(20), 7733-7742.
[http://dx.doi.org/10.1039/C9NJ01311C]
[170]
Shindalkar, S.S.; Madje, B.R.; Hangarge, R.V.; Patil, P.T.; Dongare, M.K.; Shingare, M.S. Borate zirconia mediated Knoevenagel condensation reaction in water. J. Korean Chem. Soc., 2005, 49(4), 377-380.
[http://dx.doi.org/10.5012/jkcs.2005.49.4.377]
[171]
Shyamsundar, M.; Shamshuddin, S.Z.M. Mo(VI)/ZrO2 coated on honeycomb monolith as solid acid green catalyst for the acetylation of substituted alcohols and amines under solvent free conditions. Indian J. Chem. Technol., 2019, 26, 553-561.
[172]
Jadhav, S.V.; Jinka, K.M.; Bajaj, H.C. Synthesis of nopol via Prins condensation of β-pinene and paraformaldehyde catalyzed by sulfated zirconia. Appl. Catal. A Gen., 2010, 390(1-2), 158-165.
[http://dx.doi.org/10.1016/j.apcata.2010.10.005]
[173]
Wang, X.; Wang, T.; Hua, W.; Yue, Y.; Gao, Z. Synthesis of zirconia porous phosphate heterostructures (Zr-PPH) for Prins condensation. Catal. Commun., 2014, 43, 97-101.
[http://dx.doi.org/10.1016/j.catcom.2013.09.020]
[174]
Marakatti, V.S.; Shanbhag, G.V.; Halgeri, A.B. Sulfated zirconia; an efficient and reusable acid catalyst for the selective synthesis of 4-phenyl-1,3-dioxane by Prins cyclization of styrene. Appl. Catal. A Gen., 2013, 451, 71-78.
[http://dx.doi.org/10.1016/j.apcata.2012.11.016]
[175]
Mallick, S.; Rana, S.; Parida, K. A facile method for the synthesis of copper modified amine-functionalized mesoporous zirconia and its catalytic evaluation in C–S coupling reaction. Dalton Trans., 2011, 40(36), 9169-9175.
[http://dx.doi.org/10.1039/c1dt10951k] [PMID: 21826356]
[176]
Parida, K.M.; Mallick, S.; Sahoo, P.C.; Rana, S.K. A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation. Appl. Catal. A Gen., 2010, 381(1-2), 226-232.
[http://dx.doi.org/10.1016/j.apcata.2010.04.008]
[177]
Teimouri, A.; Chermahini, A.N. One‐pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst. Chin. J. Chem., 2012, 30(2), 372-376.
[http://dx.doi.org/10.1002/cjoc.201100143]
[178]
Sasiambarrena, L.D.; Mendez, L.J.; Ocsachoque, M.A.; Cánepa, A.S.; Bravo, R.D.; González, M.G. Sulfated zirconia as an efficient catalyst for sulfonylamidomethylation of benzylsulfonamides and 2-phenylethanesulfonamides: Effect of catalyst thermal treatment. Catal. Lett., 2010, 138(3-4), 180-186.
[http://dx.doi.org/10.1007/s10562-010-0389-x]
[179]
Saravanan, K.; Tyagi, B.; Bajaj, H.C. Synthesis of dypnone by solvent free self condensation of acetophenone over nano-crystalline sulfated zirconia catalyst. J. Sol-Gel Sci. Technol., 2012, 61(1), 275-280.
[http://dx.doi.org/10.1007/s10971-011-2624-3]
[180]
Rana, S.; Mallick, S.; Parida, K.M. Facile method for synthesis of polyamine-functionalized mesoporous zirconia and its catalytic evaluation toward Henry reaction. Ind. Eng. Chem. Res., 2011, 50(4), 2055-2064.
[http://dx.doi.org/10.1021/ie101777a]
[181]
Nakhaei, A.; Farsinejad, S.; Ramezani, S. Use of nano magnetic zirconia phosphoric acid as an efficient and recyclable catalyst for the clean synthesis of some important quinolone carboxylic acid derivatives. Curr. Green Chem., 2018, 4(3), 130-136.
[http://dx.doi.org/10.2174/2213346104666171120143341]
[182]
Tatar, D. Kojčinović J.; Marković B.; Széchenyi, A.; Miletić A.; Nagy, S.B.; Ziegenheim, S.; Szenti, I.; Sapi, A.; Kukovecz, Á.; Dinjar, K.; Tang, Y.; Stenzel, D.; Varga, G.; Djerdj, I. Sol-gel synthesis of ceria-zirconia-based high-entropy oxides as high-promotion catalysts for the synthesis of 1,2-diketones from aldehyde. Molecules, 2021, 26(20), 6115.
[http://dx.doi.org/10.3390/molecules26206115] [PMID: 34684696]
[183]
Reddy, B.M.; Thirupathi, B.; Patil, M.K. Highly efficient promoted zirconia solid acid catalysts for synthesis of α-aminonitriles using trimethylsilyl cyanide. J. Mol. Catal. Chem., 2009, 307(1-2), 154-159.
[http://dx.doi.org/10.1016/j.molcata.2009.03.022]
[184]
Das, B.; Krishnaiah, M.; Laxminarayana, K.; Reddy, K.R. A simple and efficient one-pot synthesis of β-acetamido carbonyl compounds using sulfated zirconia as a heterogeneous recyclable catalyst. J. Mol. Catal. Chem., 2007, 270(1-2), 284-288.
[http://dx.doi.org/10.1016/j.molcata.2007.02.014]
[185]
Angeles-Beltrán, D.; Lomas-Romero, L.; Lara-Corona, V.; González-Zamora, E.; Negrón-Silva, G. Sulfated zirconia-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under solventless conditions: competitive multicomponent Biginelli vs. Hantzsch reactions. Molecules, 2006, 11(10), 731-738.
[http://dx.doi.org/10.3390/11100731] [PMID: 17971749]
[186]
Kumar, D.; Sundaree, M.S.; Mishra, B.G. Sulfated zirconia-catalyzed one-pot benign synthesis of 3,4-dihydropyrimidin-2(1H)-ones under microwave irradiation. Chem. Lett., 2006, 35(9), 1074-1075.
[http://dx.doi.org/10.1246/cl.2006.1074]
[187]
Ezhilarasi, M.; Govindaraju, R.; Thanusu, J.; Kanagarajan, V.; Sureshkumar, P.; Gopalakrishnan, M. Microwave-promoted facile and rapid solvent-free synthesis procedure for the efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones using ZrO2/SO42- as a reusable heterogeneous catalyst. Lett. Org. Chem., 2006, 3(6), 484-488.
[http://dx.doi.org/10.2174/157017806777828493]
[188]
Ramalingam, S.; Kumar, P. Yttria-zirconia–based lewis acid catalysis of the Biginelli reaction: An efficient one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Synth. Commun., 2009, 39(7), 1299-1309.
[http://dx.doi.org/10.1080/00397910802519174]
[189]
Hosseini, M.M.; Kolvari, E. Nano-magnetic zirconia sulfuric acid (Fe3O4@ZrO2-SO3H): Magnetically separable and reusable heterogeneous catalyst for multicomponent reactions. Chem. Lett., 2017, 46(1), 53-55.
[http://dx.doi.org/10.1246/cl.160793]
[190]
Zolfagharinia, S.; Kolvari, E.; Koukabi, N. A new type of magnetically-recoverable heteropolyacid nanocatalyst supported on zirconia-encapsulated Fe3O4 nanoparticles as a stable and strong solid acid for multicomponent reactions. Catal. Lett., 2017, 147(6), 1551-1566.
[http://dx.doi.org/10.1007/s10562-017-2015-7]
[191]
Atyam, B.; Nowduri, A.; Maripi, S.; Sanuradha, C. Synthesis of 3,3-di indolin-2-one’s in presence of ZrO2/SBA-15 as an efficient, reusable nano catalyst. J. Appl. Chem., 2018, 7, 1151-1157.
[192]
Enumula, S.S.; Gurram, V.R.B.; Kondeboina, M.; Burri, D.R.; Kamaraju, S.R.R. ZrO2/SBA-15 as an efficient catalyst for the production of γ-valerolactone from biomass-derived levulinic acid in the vapour phase at atmospheric pressure. RSC Advances, 2016, 6(24), 20230-20239.
[http://dx.doi.org/10.1039/C5RA27513J]
[193]
Zhang, X.; Corma, A. Supported gold (III) catalysts for highly efficient three‐component coupling reactions. Angew. Chem. Int. Ed., 2008, 120, 4430-4433.
[http://dx.doi.org/10.1002/ange.200800098]
[194]
Samantaray, S.; Mishra, B.G. Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones. J. Mol. Catal. Chem., 2011, 339(1-2), 92-98.
[http://dx.doi.org/10.1016/j.molcata.2011.02.017]
[195]
Zali, A.; Shokrolahi, A. Nano-sulfated zirconia as an efficient, recyclable and environmentally benign catalyst for one-pot three component synthesis of amidoalkyl naphthols. Chin. Chem. Lett., 2012, 23(3), 269-272.
[http://dx.doi.org/10.1016/j.cclet.2011.12.002]
[196]
Zolfagharinia, S.; Kolvari, E.; Salehi, M. Highly efficient and recyclable phosphoric acid functionalized zirconia encapsulated-Fe3O4 nanoparticles: clean synthesis of 1,4-dihydropyridine and 1-amidoalkyl-2-naphthol derivatives. React. Kinet. Mech. Catal., 2017, 121(2), 701-718.
[http://dx.doi.org/10.1007/s11144-017-1186-y]
[197]
Dipake, S.S.; Gadekar, S.P.; Thombre, P.B.; Lande, M.K.; Rajbhoj, A.S.; Gaikwad, S.T. ZS-1 zeolite as a highly efficient and reusable catalyst for facile synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Catal. Lett., 2022, 152(3), 755-770.
[http://dx.doi.org/10.1007/s10562-021-03684-8]
[198]
Maddila, S.; Rana, S.; Pagadala, R.; Kankala, S.; Maddila, S.; Jonnalagadda, S.B. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst. Catal. Commun., 2015, 61, 26-30.
[http://dx.doi.org/10.1016/j.catcom.2014.12.005]
[199]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Mn doped ZrO 2 as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives. RSC Advances, 2015, 5(47), 37360-37366.
[http://dx.doi.org/10.1039/C5RA06373F]
[200]
Sagar Vijay Kumar, P.; Suresh, L.; Vinodkumar, T.; Reddy, B.M.; Chandramouli, G.V.P. Zirconium doped ceria nanoparticles: An efficient and reusable catalyst for a green multicomponent synthesis of novel Phenyldiazenyl–chromene derivatives using aqueous medium. ACS Sustain. Chem.& Eng., 2016, 4(4), 2376-2386.
[http://dx.doi.org/10.1021/acssuschemeng.6b00056]
[201]
Tailor, Y.K.; Khandelwal, S.; Gopal, R.; Rushell, E.; Prajapati, A.; Kumar, M. Use of nanomagnetic sulfated zirconia (Fe3O4@ZrO2/SO42−) as sustainable heterogeneous acid catalyst for synthesis of spiroheterocycles under solvent‐free conditions. ChemistrySelect, 2017, 2(34), 11055-11061.
[http://dx.doi.org/10.1002/slct.201702422]
[202]
Bhaskaruni, S.; Maddila, S.; van Zyl, W.; Jonnalagadda, S. Ag2O on ZrO2 as a recyclable catalyst for multicomponent synthesis of indenopyrimidine derivatives. Molecules, 2018, 23(7), 1648.
[http://dx.doi.org/10.3390/molecules23071648] [PMID: 29976914]
[203]
Khan, M.U.; Siddiqui, Z.N. Ce@STANPs/ZrO2 as nanocatalyst for multicomponent synthesis of isatin-derived imidazoles under green reaction conditions. ACS Omega, 2018, 3(8), 10357-10364.
[http://dx.doi.org/10.1021/acsomega.8b01043] [PMID: 31459163]
[204]
Nasseri, M.A.; Kazemnejadi, M.; Mahmoudi, B.; Assadzadeh, F.; Alavi, S.A.; Allahresani, A. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles. J. Nanopart. Res., 2019, 21(10), 214.
[http://dx.doi.org/10.1007/s11051-019-4643-x]
[205]
Kahandal, S.S.; Burange, A.S.; Kale, S.R.; Prinsen, P.; Luque, R.; Jayaram, R.V. An efficient route to 1,8-dioxo-octahydroxanthenes and -decahydroacridines using a sulfated zirconia catalyst. Catal. Commun., 2017, 97, 138-145.
[http://dx.doi.org/10.1016/j.catcom.2017.03.017]
[206]
Mishra, M.; Devi, K.R.S.; Pinheiro, D.; Nizam, A. Zirconia supported on rice husk silica from biowaste: A novel, efficient, and recoverable nanocatalyst for the green synthesis of tetrahydro-1-benzopyrans. Russ. J. Org. Chem., 2020, 56(10), 1784-1789.
[http://dx.doi.org/10.1134/S107042802010019X]
[207]
Pradhan, S.; Sahu, V.; Mishra, B.G. CaO-ZrO2 nanocomposite oxide prepared by urea hydrolysis method as heterogeneous base catalyst for synthesis of chromene analogues. J. Mol. Catal. Chem., 2016, 425, 297-309.
[http://dx.doi.org/10.1016/j.molcata.2016.10.031]
[208]
Girish, Y.R.; Sharath Kumar, K.S.; Thimmaiah, K.N.; Rangappa, K.S.; Shashikanth, S. ZrO2-β-cyclodextrin catalyzed synthesis of 2,4,5-trisubstituted imidazoles and 1,2-disubstituted benzimidazoles under solvent free conditions and evaluation of their antibacterial study. RSC Advances, 2015, 5(92), 75533-75546.
[http://dx.doi.org/10.1039/C5RA13891D]
[209]
Pradhan, S.; Saha, J.; Mishra, B.G. Morphology controlled phosphate grafted SnO2-ZrO2 nanocomposite oxides prepared by a urea hydrolysis method as efficient heterogeneous catalysts towards the synthesis of 3-substituted indoles. New J. Chem., 2017, 41(14), 6616-6629.
[http://dx.doi.org/10.1039/C7NJ00249A]
[210]
Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. Gadolinium oxide loaded zirconia and multi-component synthesis of novel dihydro-pyrazolo[3,4-d]pyridines under green conditions. Sustain. Chem. Pharm., 2020, 18, 100316.
[http://dx.doi.org/10.1016/j.scp.2020.100316]
[211]
Samantaray, S.; Sahoo, S.K.; Mishra, B.G. Phosphomolybdic acid dispersed in the micropores of sulfate treated Zr-pillared clay as efficient heterogeneous catalyst for the synthesis of β-aminocarbonyl compounds in aqueous media. J. Porous Mater., 2011, 18(5), 573-580.
[http://dx.doi.org/10.1007/s10934-010-9411-3]
[212]
Teimouri, A.; Ghorbanian, L. One-pot three-component synthesis of β-amino carbonyl compounds using nanocrystalline solid acid catalyst. Int. J. Green Nanotechnol. Biomed., 2013, 1.
[http://dx.doi.org/10.1177/1943089213507161]
[213]
Ghafuri, H.; Ghorbani, B.; Rashidizadeh, A.; Talebi, M.; Roshani, M. Fe3O4 @ZrO2/SO42‐ A recyclable magnetic heterogeneous nanocatalyst for synthesis of β‐amino carbonyl derivatives and synthesis of benzylamino coumarin derivatives through Mannich reaction. Appl. Organomet. Chem., 2018, 32(3), e4147.
[http://dx.doi.org/10.1002/aoc.4147]
[214]
Reddy, B.M.; Patil, M.K.; Reddy, B.T. An efficient and ecofriendly WOx-ZrO2 solid acid catalyst for classical Mannich reaction. Catal. Lett., 2008, 125(1-2), 97-103.
[http://dx.doi.org/10.1007/s10562-008-9518-1]
[215]
Palermo, V.; Sosa, A.A.; Rivera, T.S.; Pizzio, L.R.; Romanelli, G.P. Unexpected result in the catalytic solvent-free multicomponent synthesis of 2-amino-3-cyano-4H-chromene. Org. Prep. Proced. Int., 2019, 51(5), 443-455.
[http://dx.doi.org/10.1080/00304948.2018.1549903]
[216]
Ghafuri, H.; Ghorbani, B.; Zand, H.R.E. Synthesis of bis(indolyl)methane derivatives catalyzed by recyclable nano Fe3O4@ZrO2/SO4-2. Lett. Org. Chem., 2018, 15(4), 295-301.
[http://dx.doi.org/10.2174/1570178614666170707151649]
[217]
Singh, V.; Sapehiyia, V.; Srivastava, V.; Kaur, S. ZrO2-pillared clay: An efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal. Commun., 2006, 7(8), 571-578.
[http://dx.doi.org/10.1016/j.catcom.2005.12.021]
[218]
Gawande, M.B.; Nagrik, D.M.; Ambhore, D.M. A one-pot green synthesis of 3,4 dihydropyrimidin-2-(1H)-ones/thiones catalyzed by MgO-ZrO2 under solvent-free conditions. Lett. Org. Chem., 2012, 9, 12-18.
[http://dx.doi.org/10.2174/157017812799303980]
[219]
Biklarian, H.; Behbahani, F.K.; Fakhroueian, Z. 22% Co/CeO2-ZrO2-catalyzed synthesis of 1,2,3,4-tetrahydro-2-pyrimidinones and -thiones. Lett. Org. Chem., 2012, 9, 580-584.
[http://dx.doi.org/10.2174/157017812802850159]
[220]
Rawal, K.; Mishra, M.K.; Dixit, M.; Srinivasarao, M. Microwave assisted solvent free synthesis of αά-bis (arylidene) cycloalkanones by sulfated zirconia catalyzed cross aldol condensation of aromatic aldehydes and cycloalkanones. J. Ind. Eng. Chem., 2012, 18(4), 1474-1481.
[http://dx.doi.org/10.1016/j.jiec.2012.02.011]
[221]
Ghafuri, H.; Rashidizadeh, A.; Esmaili Zand, H.R. Highly efficient solvent free synthesis of α-aminophosphonates catalyzed by recyclable nano-magnetic sulfated zirconia (Fe3O4@ZrO2/SO42-). RSC Advances, 2016, 6(19), 16046-16054.
[http://dx.doi.org/10.1039/C5RA13173A]
[222]
Rivera, T.S.; Sosa, A.; Romanelli, G.P.; Blanco, M.N.; Pizzio, L.R. Tungstophosphoric acid/zirconia composites prepared by the sol–gel method: An efficient and recyclable green catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes. Appl. Catal. A Gen., 2012, 443-444, 207-213.
[http://dx.doi.org/10.1016/j.apcata.2012.08.001]
[223]
Zhang, S.Z.; Dong, L.N.; Mo, L.P.; Zhang, Z.H. Magnetic biochar‐supported ZrO2 as an efficient catalyst for one‐pot synthesis of 1′4′‐dihydro‐3H, 3′H‐spiro[furo[3,4‐b]quinoline‐9,2′‐quinoxaline]‐1,3′(4 H)‐diones. Appl. Organomet. Chem., 2023, 37(2), e6949.
[http://dx.doi.org/10.1002/aoc.6949]
[224]
Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S.N.; Lavanya, P.; Jonnalagadda, S.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2. Arab. J. Chem., 2019, 12(5), 671-679.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.016]
[225]
Shabalala, S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Innovative efficient method for the synthesis of 1,4-dihydropyridines using Y2O3 loaded on ZrO2 as catalyst. Ind. Eng. Chem. Res., 2017, 56(40), 11372-11379.
[http://dx.doi.org/10.1021/acs.iecr.7b02579]
[226]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. RuO2/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized halopyridine derivatives. Catal. Commun., 2017, 100, 24-28.
[http://dx.doi.org/10.1016/j.catcom.2017.06.023]
[227]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. An efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst. RSC Advances, 2018, 8(29), 16336-16343.
[http://dx.doi.org/10.1039/C8RA01994K] [PMID: 35542231]
[228]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles. Res. Chem. Intermed., 2017, 43(8), 4313-4325.
[http://dx.doi.org/10.1007/s11164-017-2878-7]
[229]
Hadebe, N.P.; Kerru, N.; Tukulula, M.; Jonnalagadda, S.B. A sustainable molybdenum oxide loaded on zirconia (MoO3/ZrO2) catalysed multicomponent reaction to synthesise novel dihydropyridines. Sustain. Chem. Pharm., 2022, 25, 100578.
[http://dx.doi.org/10.1016/j.scp.2021.100578]
[230]
Shabalala, S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. A facile, efficacious and reusable Sm2O3/ZrO2 catalyst for the novel synthesis of functionalized 1,4-dihydropyridine derivatives. Catal. Commun., 2016, 79, 21-25.
[http://dx.doi.org/10.1016/j.catcom.2016.02.017]
[231]
Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Potewar, T.M.; Velhinho, A.; Nogueira, I.D.; Tolstogouzov, A.; Ghumman, C.A.A.; Teodoro, O.M.N.D. Nano-MgO–ZrO2 mixed metal oxides: Characterization by SIMS and application in the reduction of carbonyl compounds and in multicomponent reactions. RSC Adv, 2013, 3(11), 3611-3617.
[http://dx.doi.org/10.1039/c2ra22511e]
[232]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Four-component fusion protocol with NiO/ZrO2 as a robust recyclable catalyst for novel 1,4-dihydropyridines. ACS Omega, 2019, 4(25), 21187-21196.
[http://dx.doi.org/10.1021/acsomega.9b02608] [PMID: 31867512]
[233]
Pagadala, R.; Kommidi, D.R.; Rana, S.; Maddila, S.; Moodley, B.; Koorbanally, N.A.; Jonnalagadda, S.B. Multicomponent synthesis of pyridines via diamine functionalized mesoporous ZrO2 domino intramolecular tandem Michael type addition. RSC Advances, 2015, 5(8), 5627-5632.
[http://dx.doi.org/10.1039/C4RA13552K]
[234]
Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F.B.; Tabrizian, E. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions. New J. Chem., 2016, 40(1), 770-780.
[http://dx.doi.org/10.1039/C5NJ02430G]
[235]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. V2O5/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Catal. Today, 2018, 309, 276-281.
[http://dx.doi.org/10.1016/j.cattod.2017.05.038]
[236]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. A green protocol for the synthesis of new 1,4-dihydropyridine derivatives using Fe2O3/ZrO2 as a reusable catalyst. Res. Chem. Intermed., 2019, 45(9), 4555-4572.
[http://dx.doi.org/10.1007/s11164-019-03849-6]
[237]
Zolfagharinia, S.; Kolvari, E.; Koukabi, N.; Hosseini, M.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions. Arab. J. Chem., 2020, 13(1), 227-241.
[http://dx.doi.org/10.1016/j.arabjc.2017.04.004]
[238]
Yahyazadeh, A.; Abbaspour-Gilandeh, E.; Aghaei-Hashjin, M. Four-component synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by Cu@imineZCMNPs as a novel, efficient and simple nanocatalyst under solvent-free conditions. Catal. Lett., 2018, 148(4), 1254-1262.
[http://dx.doi.org/10.1007/s10562-018-2318-3]
[239]
Yelwande, A.A.; Navgire, M.E.; Palve, M.; Patil, H.S.; Farooqui, M.; Dinore, J.M. One-pot multicomponent synthesis approach for tetrahydropyridines using polyaniline-zirconium oxide composites. Synth. Commun., 2022, 52(7), 1039-1049.
[http://dx.doi.org/10.1080/00397911.2022.2063061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy