Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Facile Synthesis of 2-Substituted Quinazolines via Ruthenium(II)-Catalyzed Acceptorless Dehydrogenative Coupling

Author(s): Shulei Wu, Qianqian Lei, Zaoduan Wu, Huifang Xie, Chen Zhang, Yu Ye, Meiling Yi, Mingsheng Chen, Hao Xu* and Zehua Yang*

Volume 28, Issue 4, 2024

Published on: 12 March, 2024

Page: [305 - 318] Pages: 14

DOI: 10.2174/0113852728290175240213050011

Price: $65

Abstract

This study aims to develop a practical and facile one-pot synthesis of 2- substituted quinazolines. Using a commercially available and structurally simple ruthenium( II) complex as the catalyst to synthesize a series of quinazoline derivatives via acceptorless dehydrogenative coupling. The mechanism of this reaction was explored by control reaction and DFT calculation. This protocol offers access to a diverse array of quinazoline derivatives (52 examples) in moderate to excellent yields (29%-98%). In summary, we have developed an efficient one-pot ruthenium (II)-catalyzed ADC synthesis of quinazoline under an air atmosphere. The reaction only produces hydrogen and water as by-products, serving as a sustainable and atom-efficient synthetic approach.

Graphical Abstract

[1]
Bhat, M.; Belagali, S.L.; Mamatha, S.V.; Sagar, B.K.; Sekhar, E.V. Importance of quinazoline and quinazolinone derivatives in medicinal chemistry. In: Studies in Natural Products Chemistry; Atta, ur R., , Ed.; Elsevier, 2021; 71, pp. 185-219.
[2]
Wahan, S.K.; Sharma, B.; Chawla, P.A. Medicinal perspective of quinazolinone derivatives: Recent developments and structure–activity relationship studies. J. Heterocycl. Chem., 2022, 59(2), 239-257.
[http://dx.doi.org/10.1002/jhet.4382]
[3]
Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv., 2020, 10(68), 41353-41392.
[http://dx.doi.org/10.1039/D0RA06642G] [PMID: 35516563]
[4]
Haghighijoo, Z.; Zamani, L.; Moosavi, F.; Emami, S. Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review. Eur. J. Med. Chem., 2022, 227, 113949.
[http://dx.doi.org/10.1016/j.ejmech.2021.113949] [PMID: 34742016]
[5]
Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg. Med. Chem., 2016, 24(11), 2361-2381.
[http://dx.doi.org/10.1016/j.bmc.2016.03.031] [PMID: 27112448]
[6]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[7]
Abe, T.; Takahashi, Y.; Matsubara, Y.; Yamada, K. An ullmann N-arylation/2-amidation cascade by self-relay copper catalysis: One-pot synthesis of indolo[1,2-a]quinazolinones. Org. Chem. Front., 2017, 4(11), 2124-2127.
[http://dx.doi.org/10.1039/C7QO00549K]
[8]
Abe, T.; Kida, K.; Yamada, K. A copper-catalyzed Ritter-type cascade via iminoketene for the synthesis of quinazolin-4(3H)-ones and diazocines. Chem. Commun., 2017, 53(31), 4362-4365.
[http://dx.doi.org/10.1039/C7CC01406F] [PMID: 28374023]
[9]
Abe, T.; Yamada, K. Amination/cyclization cascade by acid-catalyzed activation of indolenine for the one-pot synthesis of phaitanthrin E. Org. Lett., 2016, 18(24), 6504-6507.
[http://dx.doi.org/10.1021/acs.orglett.6b03466] [PMID: 27978673]
[10]
Vaidya, S.D.; Argade, N.P. A biomimetic synthesis of phaitanthrin E involving a fragmentation of sp3 carbon–carbon bond: Synthesis and rearrangement of phaitanthrin D to phaitanthrin E. Org. Lett., 2015, 17(24), 6218-6221.
[http://dx.doi.org/10.1021/acs.orglett.5b03203] [PMID: 26650567]
[11]
Vaidya, S.D.; Argade, N.P. Aryne insertion reactions leading to bioactive fused quinazolinones: Diastereoselective total synthesis of cruciferane. Org. Lett., 2013, 15(15), 4006-4009.
[http://dx.doi.org/10.1021/ol4018062] [PMID: 23862684]
[12]
Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076]
[13]
Ashton, T.D.; Ngo, A.; Favuzza, P.; Bullen, H.E.; Gancheva, M.R.; Romeo, O.; Parkyn Schneider, M.; Nguyen, N.; Steel, R.W.J.; Duffy, S.; Lowes, K.N.; Sabroux, H.J.; Avery, V.M.; Boddey, J.A.; Wilson, D.W.; Cowman, A.F.; Gilson, P.R.; Sleebs, B.E. Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorg. Chem., 2021, 117, 105359.
[http://dx.doi.org/10.1016/j.bioorg.2021.105359] [PMID: 34689083]
[14]
Amrane, D.; Gellis, A.; Hutter, S.; Prieri, M.; Verhaeghe, P.; Azas, N.; Vanelle, P.; Primas, N. Synthesis and antiplasmodial evaluation of 4-carboxamido- and 4-alkoxy-2-trichloromethyl quinazolines. Molecules, 2020, 25(17), 3929.
[http://dx.doi.org/10.3390/molecules25173929] [PMID: 32867402]
[15]
Wu, T.; Qin, Q.; Lv, R.; Liu, N.; Yin, W.; Hao, C.; Sun, Y.; Zhang, C.; Sun, Y.; Zhao, D.; Cheng, M. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo. Eur. J. Med. Chem., 2022, 238, 114451.
[http://dx.doi.org/10.1016/j.ejmech.2022.114451] [PMID: 35617855]
[16]
Niu, Z.; Ma, S.; Zhang, L.; Liu, Q.; Zhang, S. Discovery of novel quinazoline derivatives as potent antitumor agents. Molecules, 2022, 27(12), 3906.
[http://dx.doi.org/10.3390/molecules27123906] [PMID: 35745027]
[17]
Abuelizz, H.A.; Marzouk, M.; Bakheit, A.H.; Al-Salahi, R. Investigation of some benzoquinazoline and quinazoline derivatives as novel inhibitors of HCV-NS3/4A protease: Biological, molecular docking and QSAR studies. RSC Adv., 2020, 10(59), 35820-35830.
[http://dx.doi.org/10.1039/D0RA05604A] [PMID: 35517076]
[18]
Li, Y.; Ouyang, Y.; Wu, H.; Wang, P.; Huang, Y.; Li, X.; Chen, H.; Sun, Y.; Hu, X.; Wang, X.; Li, G.; Lu, Y.; Li, C.; Lu, X.; Pang, J.; Nie, T.; Sang, X.; Dong, L.; Dong, W.; Jiang, J.; Paterson, I.C.; Yang, X.; Hong, W.; Wang, H.; You, X. The discovery of 1, 3-diamino-7H-pyrrol[3, 2-f]quinazoline compounds as potent antimicrobial antifolates. Eur. J. Med. Chem., 2022, 228, 113979.
[http://dx.doi.org/10.1016/j.ejmech.2021.113979] [PMID: 34802838]
[19]
Luan, M.Z.; Zhang, X.F.; Yang, Y.; Meng, Q.G.; Hou, G.G. Anti-inflammatory activity of fluorine-substituted benzo[h]quinazoline-2-amine derivatives as NF-κB inhibitors. Bioorg. Chem., 2023, 132, 106360.
[http://dx.doi.org/10.1016/j.bioorg.2023.106360] [PMID: 36652807]
[20]
Krasovska, N.; Berest, G.; Belenichev, I.; Severina, H.; Nosulenko, I.; Voskoboinik, O.; Okovytyy, S.; Kovalenko, S. 5+1-Heterocyclization as preparative approach for carboxy-containing triazolo[1,5-c]quinazolines with anti-inflammatory activity. Eur. J. Med. Chem., 2024, 266, 116137.
[http://dx.doi.org/10.1016/j.ejmech.2024.116137] [PMID: 38237343]
[21]
Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 733-743.
[http://dx.doi.org/10.3109/14756366.2013.845820] [PMID: 24156743]
[22]
Liu, T.C.; Jin, X.; Wang, Y.; Wang, K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am. J. Cancer Res., 2017, 7(2), 187-202.
[PMID: 28337370]
[23]
Shah, K.; Queener, S.; Cody, V.; Pace, J.; Gangjee, A. Development of substituted pyrido[3,2-d]pyrimidines as potent and selective dihydrofolate reductase inhibitors for pneumocystis pneumonia infection. Bioorg. Med. Chem. Lett., 2019, 29(15), 1874-1880.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.004] [PMID: 31176699]
[24]
King, L.; Christie, D.; Dare, W.; Bernaitis, N.; Chess-Williams, R.; McDermott, C.; Forbes, A.; Anoopkumar-Dukie, S. Quinazoline alpha-adrenoreceptor blockers as an adjunct cancer treatment: From bench to bedside. Eur. J. Pharmacol., 2021, 893, 173831.
[http://dx.doi.org/10.1016/j.ejphar.2020.173831] [PMID: 33359146]
[25]
Zhang, J.; Zhang, S.; Wang, Y.; Xu, W.; Zhang, J.; Jiang, H.; Huang, F. Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito. PLoS One, 2014, 9(2), e89473.
[http://dx.doi.org/10.1371/journal.pone.0089473] [PMID: 24586804]
[26]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[27]
Zaib, S.; Khan, I. Recent advances in the sustainable synthesis of quinazolines using earth-abundant first row transition metals. Curr. Org. Chem., 2020, 24(15), 1775-1792.
[http://dx.doi.org/10.2174/1385272824999200726230848]
[28]
Yamashiro, T.; Tokushige, K.; Abe, T. One-pot synthesis of core structure of shewanelline C using an azidoindoline. J. Org. Chem., 2023, 88(6), 3992-3997.
[http://dx.doi.org/10.1021/acs.joc.3c00013] [PMID: 36888895]
[29]
Gnyawali, K.; Kirinde Arachchige, P.T.; Yi, C.S. Synthesis of flavanone and quinazolinone derivatives from the ruthenium-catalyzed deaminative coupling reaction of 2′-hydroxyaryl ketones and 2-aminobenzamides with simple amines. Org. Lett., 2022, 24(1), 218-222.
[http://dx.doi.org/10.1021/acs.orglett.1c03870] [PMID: 34958227]
[30]
Gao, Z.; Qian, J.; Yang, H.; Zhang, J.; Jiang, G. Enantioselective construction of C-C axially chiral quinazolinones via chirality exchange and phase-transfer catalysis. Org. Lett., 2021, 23(5), 1731-1737.
[http://dx.doi.org/10.1021/acs.orglett.1c00156] [PMID: 33586979]
[31]
Dong, Y.; Zhang, J.; Yang, J.; Yan, C.; Wu, Y. An efficient transition-metal-free route to quinazolin-4(3H)-ones via 2-aminobenzamides and thiols. New J. Chem., 2021, 45(34), 15344-15349.
[http://dx.doi.org/10.1039/D1NJ03179A]
[32]
Kirinde Arachchige, P.T.; Yi, C.S. Synthesis of quinazoline and quinazolinone derivatives via ligand-promoted ruthenium-catalyzed dehydrogenative and deaminative coupling reaction of 2-aminophenyl ketones and 2-aminobenzamides with amines. Org. Lett., 2019, 21(9), 3337-3341.
[http://dx.doi.org/10.1021/acs.orglett.9b01082] [PMID: 31002524]
[33]
Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-catalyzed C-H functionalization reactions: Efficient synthesis of heterocycles. Chem. Rev., 2015, 115(3), 1622-1651.
[http://dx.doi.org/10.1021/cr500410y] [PMID: 25531056]
[34]
Sheng, C.; Ling, Z.; Ahmad, T.; Xie, F.; Zhang, W. Copper‐catalyzed regioselective [3+3] annulations of alkynyl ketimines with α‐cyano ketones: The synthesis of polysubstituted 4H‐pyran derivatives with a CF3‐containing quaternary center. Chemistry, 2022, 28(23), e202200128.
[http://dx.doi.org/10.1002/chem.202200128] [PMID: 35226370]
[35]
Wu, Z.; Wen, K.; Zhang, J.; Zhang, W. Pd(II)-Catalyzed aerobic intermolecular 1,2-diamination of conjugated dienes: A regio- and chemoselective [4 + 2] annulation for the synthesis of tetrahydroquinoxalines. Org. Lett., 2017, 19(11), 2813-2816.
[http://dx.doi.org/10.1021/acs.orglett.7b00919] [PMID: 28508645]
[36]
Wang, G.X.; Yan, X.; Yin, J.; Yin, Z.B.; Wei, J.; Xi, Z. Cobalt cyclopentadienyl‐phosphine dinitrogen complexes. Chemistry, 2022, 28(67), e202202803.
[http://dx.doi.org/10.1002/chem.202202803] [PMID: 36259370]
[37]
Guo, B.; Yu, T.Q.; Li, H.X.; Zhang, S.Q.; Braunstein, P.; Young, D.J.; Li, H.Y.; Lang, J.P. Phosphine ligand‐free ruthenium complexes as efficient catalysts for the synthesis of quinolines and pyridines by acceptorless dehydrogenative coupling reactions. ChemCatChem, 2019, 11(10), 2500-2510.
[http://dx.doi.org/10.1002/cctc.201900435]
[38]
Li, F.; Sun, C.; Wang, N. Catalytic acceptorless dehydrogenative coupling of arylhydrazines and alcohols for the synthesis of arylhydrazones. J. Org. Chem., 2014, 79(17), 8031-8039.
[http://dx.doi.org/10.1021/jo501161u] [PMID: 25075634]
[39]
Balamurugan, G.; Ramesh, R. Nickel(II)‐catalyzed selective (E)‐olefination of methyl heteroarenes using benzyl alcohols via acceptorless dehydrogenative coupling reaction. ChemCatChem, 2022, 14(2), e202101455.
[http://dx.doi.org/10.1002/cctc.202101455]
[40]
Chakraborty, S.; Gellrich, U.; Diskin-Posner, Y.; Leitus, G.; Avram, L.; Milstein, D. Manganese‐catalyzed N‐formylation of amines by methanol liberating H2: A catalytic and mechanistic study. Angew. Chem. Int. Ed., 2017, 56(15), 4229-4233.
[http://dx.doi.org/10.1002/anie.201700681] [PMID: 28319299]
[41]
Veerappan, T.; Rengan, R. Arene Binuclear Ru(II)-promoted sustainable synthesis of substituted pyrazoles from alcohols via acceptorless dehydrogenative annulation. Org. Lett., 2023, 25(22), 4162-4167.
[http://dx.doi.org/10.1021/acs.orglett.3c01452] [PMID: 37255231]
[42]
Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Selective iodine-catalyzed intermolecular oxidative amination of C(sp3)-H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew. Chem. Int. Ed., 2012, 51(32), 8077-8081.
[http://dx.doi.org/10.1002/anie.201203880] [PMID: 22865568]
[43]
Satish, G.; Polu, A.; Kota, L.; Ilangovan, A. Copper-catalyzed oxidative amination of methanol to access quinazolines. Org. Biomol. Chem., 2019, 17(19), 4774-4782.
[http://dx.doi.org/10.1039/C9OB00392D] [PMID: 31033980]
[44]
Chen, C.; He, F.; Tang, G.; Yuan, H.; Li, N.; Wang, J.; Faessler, R. Synthesis of quinazolines via an iron-catalyzed oxidative amination of N–H ketimines. J. Org. Chem., 2018, 83(4), 2395-2401.
[http://dx.doi.org/10.1021/acs.joc.7b02943] [PMID: 29341614]
[45]
Tian, H.; Xue, W.; Wu, J.; Yang, Z.; Lu, H.; Tang, C. A general and practical bifunctional cobalt catalytic system for N-heterocycle assembly via acceptorless dehydrogenation. Org. Chem. Front., 2022, 9(17), 4554-4560.
[http://dx.doi.org/10.1039/D2QO00683A]
[46]
Pan, M.; Wang, X.; Tong, Y.; Qiu, X.; Zeng, X.; Xiong, B. Ruthenium-catalyzed acceptorless dehydrogenative coupling of amino alcohols and ynones to access 3-acylpyrroles. Chem. Commun., 2022, 58(14), 2379-2382.
[http://dx.doi.org/10.1039/D1CC07018E] [PMID: 35080540]
[47]
Chen, M.; Zhang, M.; Xiong, B.; Tan, Z.; Lv, W.; Jiang, H. A novel ruthenium-catalyzed dehydrogenative synthesis of 2-arylquinazolines from 2-aminoaryl methanols and benzonitriles. Org. Lett., 2014, 16(22), 6028-6031.
[http://dx.doi.org/10.1021/ol503052s] [PMID: 25381883]
[48]
Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N.D. Accessing polysubstituted quinazolines via nickel catalyzed acceptorless dehydrogenative coupling. J. Org. Chem., 2018, 83(18), 11154-11166.
[http://dx.doi.org/10.1021/acs.joc.8b01479] [PMID: 30091595]
[49]
Das, K.; Mondal, A.; Pal, D.; Srimani, D. Sustainable synthesis of quinazoline and 2-aminoquinoline via dehydrogenative coupling of 2-aminobenzyl alcohol and nitrile catalyzed by phosphine-free manganese pincer complex. Org. Lett., 2019, 21(9), 3223-3227.
[http://dx.doi.org/10.1021/acs.orglett.9b00939] [PMID: 31008616]
[50]
Huo, S.; Kong, S.; Zeng, G.; Feng, Q.; Hao, Z.; Han, Z.; Lin, J.; Lu, G.L. Efficient access to quinolines and quinazolines by ruthenium complexes catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with ketones and nitriles. Molecul. Catalys., 2021, 514, 111773.
[http://dx.doi.org/10.1016/j.mcat.2021.111773]
[51]
Verma, S.; Kujur, S.; Sharma, R.; Pathak, D.D. Cucurbit[6]uril supported β-Ni(OH)2 nanoparticles as a heterogeneous catalyst for the synthesis of quinazolines via acceptorless dehydrogenative coupling of alcohols with nitriles. New J. Chem., 2022, 46(44), 21356-21365.
[http://dx.doi.org/10.1039/D2NJ03484K]
[52]
Hao, Z.; Zhou, X.; Ma, Z.; Zhang, C.; Han, Z.; Lin, J.; Lu, G.L. Dehydrogenative synthesis of quinolines and quinazolines via ligand-free cobalt-catalyzed cyclization of 2-aminoaryl alcohols with ketones or nitriles. J. Org. Chem., 2022, 87(19), 12596-12607.
[http://dx.doi.org/10.1021/acs.joc.2c00734] [PMID: 36162131]
[53]
Shui, H.; Zhong, Y.; Luo, N.; Luo, R.; Ouyang, L. Iridium-catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with amides or nitriles to synthesize quinazolines. Synthesis, 2022, 54(12), 2876-2884.
[http://dx.doi.org/10.1055/a-1755-4700]
[54]
Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Synthesis of 2-substituted quinazolines by CsOH-mediated direct aerobic oxidative cyclocondensation of 2-aminoarylmethanols with nitriles in air. Green Chem., 2017, 19(13), 2945-2951.
[http://dx.doi.org/10.1039/C7GC00977A]
[55]
Wan, X.M.; Liu, Z.L.; Liu, W.Q.; Cao, X.N.; Zhu, X.; Zhao, X.M.; Song, B.; Hao, X.Q.; Liu, G. NNN pincer Ru(II)-catalyzed dehydrogenative coupling of 2-aminoarylmethanols with nitriles for the construction of quinazolines. Tetrahedron, 2019, 75(18), 2697-2705.
[http://dx.doi.org/10.1016/j.tet.2019.03.046]
[56]
Bhattacharyya, D.; Adhikari, P.; Deori, K.; Das, A. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions. Catal. Sci. Technol., 2022, 12(18), 5695-5702.
[http://dx.doi.org/10.1039/D2CY01030E]
[57]
Giordani, A.; Lanza, M.; Caselli, G.; Mandelli, S.; Zanzola, S.; Makovec, F.; Rovati, L. C. 6-1H-imidazo-quinazoline and quinolines derivatives, new MAO inhibitors and imidazoline receptor ligands. WO Patent 2009/152868,2, 2009.
[58]
Comi, E.; Lanza, M.; Ferrari, F.; Mauri, V.; Caselli, G.; Rovati, L.C. Efficacy of CR4056, a first-in-class imidazoline-2 analgesic drug, in comparison with naproxen in two rat models of osteoarthritis. J. Pain Res., 2017, 10, 1033-1043.
[http://dx.doi.org/10.2147/JPR.S132026] [PMID: 28496359]
[59]
Rovati, L.C.; Brambilla, N.; Blicharski, T.; Connell, J.; Vitalini, C.; Bonazzi, A.; Giacovelli, G.; Girolami, F.; D’Amato, M. Efficacy and safety of the first-in-class imidazoline-2 receptor ligand CR4056 in pain from knee osteoarthritis and disease phenotypes: A randomized, double-blind, placebo-controlled phase 2 trial. Osteoarthritis Cartilage, 2020, 28(1), 22-30.
[http://dx.doi.org/10.1016/j.joca.2019.09.002] [PMID: 31526875]
[60]
Cheng, X.; Vellalath, S.; Goddard, R.; List, B. Direct catalytic asymmetric synthesis of cyclic aminals from aldehydes. J. Am. Chem. Soc., 2008, 130(47), 15786-15787.
[http://dx.doi.org/10.1021/ja8071034] [PMID: 18975905]
[61]
Midya, G.C.; Kapat, A.; Maiti, S.; Dash, J. Transition-metal-free hydration of nitriles using potassium tert-butoxide under anhydrous conditions. J. Org. Chem., 2015, 80(8), 4148-4151.
[http://dx.doi.org/10.1021/jo502752u] [PMID: 25786059]
[62]
Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc., 1997, 97(1-4), 119-124.
[http://dx.doi.org/10.1007/s002140050244]
[63]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15), 154104.
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[64]
Aebly, A.H.; Rainey, T.J. Pd(II)-catalyzed enantioselective intramolecular oxidative amination utilizing (+)-camphorsulfonic acid. Tetrahedron Lett., 2017, 58(40), 3795-3799.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.090]
[65]
Baek, J.; Si, T.; Kim, H.Y.; Oh, K. Bioinspired o -naphthoquinone-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Org. Lett., 2022, 24(27), 4982-4986.
[http://dx.doi.org/10.1021/acs.orglett.2c02037] [PMID: 35796666]
[66]
Ida, Y.; Matsubara, A.; Nemoto, T.; Saito, M.; Hirayama, S.; Fujii, H.; Nagase, H. Synthesis of quinolinomorphinan derivatives as highly selective δ opioid receptor ligands. Bioorg. Med. Chem., 2012, 20(19), 5810-5831.
[http://dx.doi.org/10.1016/j.bmc.2012.08.004] [PMID: 22967810]
[67]
Li, B.; Chao, Z.; Li, C.; Gu, Z. Cu-Catalyzed enantioselective ring opening of cyclic diaryliodoniums toward the synthesis of chiral diarylmethanes. J. Am. Chem. Soc., 2018, 140(30), 9400-9403.
[http://dx.doi.org/10.1021/jacs.8b05743] [PMID: 30015479]
[68]
Yang, J.; Xie, Z.; Jin, L.; Chen, X.; Le, Z. Synthesis of quinazoline by decarboxylation of 2-aminobenzylamine and α-keto acid under visible light catalysis. Org. Biomol. Chem., 2022, 20(17), 3558-3563.
[http://dx.doi.org/10.1039/D2OB00219A] [PMID: 35416228]
[69]
Zhang, S.Q.; Cui, Y.; Guo, B.; Young, D.J.; Xu, Z.; Li, H.X. Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides. Tetrahedron, 2021, 78, 131825.
[http://dx.doi.org/10.1016/j.tet.2020.131825]
[70]
Gopalaiah, K.; Saini, A.; Devi, A. Iron-catalyzed cascade reaction of 2-aminobenzyl alcohols with benzylamines: Synthesis of quinazolines by trapping of ammonia. Org. Biomol. Chem., 2017, 15(27), 5781-5789.
[http://dx.doi.org/10.1039/C7OB01159H] [PMID: 28660261]
[71]
Cheng, X.; Wang, H.; Xiao, F.; Deng, G.J. Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde. Green Chem., 2016, 18(21), 5773-5776.
[http://dx.doi.org/10.1039/C6GC02319C]
[72]
Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Copper-catalyzed annulation of amidines for quinazoline synthesis. Chem. Commun., 2013, 49(57), 6439-6441.
[http://dx.doi.org/10.1039/c3cc43129k] [PMID: 23756495]
[73]
Kumar, G.R.Y.; Begum, N.S. Mn(III)-mediated cascade cyclization of 1-(azidomethyl)-2-isocyanoarenes with organoboronic acids: Construction of quinazoline derivatives. New J. Chem., 2021, 45(22), 9811-9817.
[http://dx.doi.org/10.1039/D1NJ01115D]
[74]
Ma, J.T.; Wang, L.S.; Chai, Z.; Chen, X.F.; Tang, B.C.; Chen, X.L.; He, C.; Wu, Y.D.; Wu, A.X. Access to 2-arylquinazolines via catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide. Chem. Commun., 2021, 57(44), 5414-5417.
[http://dx.doi.org/10.1039/D1CC00623A] [PMID: 33949486]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy