Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Effective Synthesis of N-Alkyl-3-(Indol-3-yl)Pyrazoles from Ag2CO3- Catalyzed Regioselective Aza-Michael Addition of 5-(Indol-3-yl)-1HPyrazoles

Author(s): Xue Zhang, Dashuang Luo, Xuemin Niu, Jian Mo, Haifeng Yu* and Xiaobo Zhao*

Volume 21, Issue 10, 2024

Published on: 08 March, 2024

Page: [898 - 908] Pages: 11

DOI: 10.2174/0115701786295074240305095904

Price: $65

conference banner
Abstract

In this study, the synthesis of N-alkyl-3-(indol-3-yl)pyrazoles was carried out from Ag2CO3 catalyzed regioselective aza-Michael addition of 5-(indol-3-yl)-1H-pyrazoles to α, β-unsaturated carbonyl compounds. In the presence of 10 mol% of Ag2CO3, the reaction smoothly occurred in dichloroethane (DCE) at 120°C to preferentially afford a series of N-alkyl-3-(indol-3-yl)pyrazoles in high yields with good regioselectivity. It was found that 1-methyl-3-(3-methyl-1H-pyrazol-5-yl)-2-phenyl- 1H-indole, 1-benzyl-3-(3-methyl-1H-pyrazol-5-yl)-1H-indole, α, β-unsaturated ketone, and α, β- unsaturated amide exclusively gave 3-(pyrazol-3-yl)indoles in good yields. This reaction features high regioselectivity, mild reaction conditions, good substrate scope and yields, and a commercially available catalyst. Meanwhile, the reaction was also proven to be quite practical by the gram-scale synthesis of N-alkyl-3-(indol-3-yl)pyrazoles in excellent yields with good regioselectivity.

« Previous
Graphical Abstract

[1]
Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emran, T.B.; Simal-Gandara, J. Molecules, 2021, 26(8), 2297.
[http://dx.doi.org/10.3390/molecules26082297] [PMID: 33921093]
[2]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep., 2015, 32(10), 1389-1471.
[http://dx.doi.org/10.1039/C5NP00032G] [PMID: 26151910]
[3]
Appendino, G.; Minassi, A.; Taglialatela-Scafati, O. Nat. Prod. Rep., 2014, 31(7), 880-904.
[http://dx.doi.org/10.1039/c4np00010b] [PMID: 24823967]
[4]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep., 2013, 30(5), 694-752.
[http://dx.doi.org/10.1039/c3np20118j] [PMID: 23467716]
[5]
Girgis, A.S.; Panda, S.S.; Kariuki, B.M.; Bekheit, M.S.; Barghash, R.F.; Aboshouk, D.R. Molecules, 2023, 28(18), 6603.
[http://dx.doi.org/10.3390/molecules28186603] [PMID: 37764378]
[6]
Ansari, A.; Ali, A.; Asif, M. New J. Chem., 2017, 41, 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[7]
Dube, Z.F.; Soremekun, O.S.; Ntombela, T.; Alahmdi, M.I.; Abo-Dya, N.E.; Sidhom, P.A.; Shawky, A.M.; Shibl, M.F.; Ibrahim, M.A.A.; Soliman, M.E.S. Future Med. Chem., 2023, 15(18), 1719-1738.
[http://dx.doi.org/10.4155/fmc-2023-0142] [PMID: 37772542]
[8]
Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; Qian, M.; He, X.; Wu, S.; Zhang, Y.; Zheng, X. Eur. J. Med. Chem., 2020, 186, 111893.
[http://dx.doi.org/10.1016/j.ejmech.2019.111893] [PMID: 31761383]
[9]
Pottoo, F.H.; Joseph, A.; Das, S.; Akbar, S.; Ahmed, B.; Dewangan, R.P.; Iqubal, M.K.; Iqubal, A.; Chawla, P. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 940-951.
[http://dx.doi.org/10.2174/1871527320666210602152308] [PMID: 34080970]
[10]
Cadoni, R.; Pala, N.; Lomelino, C.; Mahon, B.P.; McKenna, R.; Dallocchio, R.; Dessì, A.; Carcelli, M.; Rogolino, D.; Sanna, V.; Rassu, M.; Iaccarino, C.; Vullo, D.; Supuran, C.T.; Sechi, M. ACS Med. Chem. Lett., 2017, 8(9), 941-946.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00229] [PMID: 28947941]
[11]
Somappa, S.B.; Biradar, J.S.; Rajesab, P.; Rahber, S.; Sundar, M. Monatsh. Chem., 2015, 146(12), 2067-2078.
[http://dx.doi.org/10.1007/s00706-015-1476-x]
[12]
Rao, R.M.; Reddy, G.N.; Sreeramulu, J. Der Pharma Chem., 2011, 3(5), 301-309.
[13]
Ummadi, N.; Gundala, S.; Venkatapuram, P.; Adivireddy, P. Med. Chem. Res., 2017, 26(7), 1574-1584.
[http://dx.doi.org/10.1007/s00044-017-1827-8]
[14]
Conchon, E.; Aboab, B.; Golsteyn, R.M.; Cruzalegui, F.; Edmonds, T.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Eur. J. Med. Chem., 2006, 41(12), 1470-1477.
[http://dx.doi.org/10.1016/j.ejmech.2006.06.012] [PMID: 16996169]
[15]
Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O.; Dalla Via, L.; Cirrincione, G. Bioorg. Med. Chem. Lett., 2007, 17, 6134-6137.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.042] [PMID: 17911018]
[16]
Wen, J.; Bao, Y.; Niu, Q.; Yang, J.; Fan, Y.; Li, J.; Jing, Y.; Zhao, L.; Liu, D. Eur. J. Med. Chem., 2016, 109, 350-359.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.013] [PMID: 26814680]
[17]
Cocconcelli, G.; Diodato, E.; Caricasole, A.; Gaviraghi, G.; Genesio, E.; Ghiron, C.; Magnoni, L.; Pecchioli, E.; Plazzi, P.V.; Terstappen, G.C. Bioorg. Med. Chem., 2008, 16(4), 2043-2052.
[http://dx.doi.org/10.1016/j.bmc.2007.10.090] [PMID: 18024137]
[18]
Krasavin, M.; Konstantinov, I. Lett. Org. Chem., 2008, 5(7), 594-598.
[http://dx.doi.org/10.2174/157017808785982266]
[19]
Ahmad, I.; Mishra, N.K.; Ghosh, T. J. Incl. Phenom. Macrocycl. Chem., 2013, 76(1-2), 183-191.
[http://dx.doi.org/10.1007/s10847-012-0188-7]
[20]
El-Mekabaty, A.; Mesbah, A.; Fadda, A.A. J. Heterocycl. Chem., 2017, 54(2), 916-922.
[http://dx.doi.org/10.1002/jhet.2654]
[21]
Nandi, G.C.; Singh, M.S.; Ila, H.; Junjappa, H. Eur. J. Org. Chem., 2012, 2012(5), 967-974.
[http://dx.doi.org/10.1002/ejoc.201101397]
[22]
Penning, T.D.; Kramer, S.W.; Lee, L.F.; Collins, P.W.; Koboldt, C.M.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Bioorg. Med. Chem. Lett., 1997, 7(16), 2121-2124.
[http://dx.doi.org/10.1016/S0960-894X(97)00372-7]
[23]
Stauffer, S.R.; Huang, Y.; Coletta, C.J.; Tedesco, R.; Katzenellenbogen, J.A. Bioorg. Med. Chem., 2001, 9(1), 141-150.
[http://dx.doi.org/10.1016/S0968-0896(00)00228-5] [PMID: 11197334]
[24]
Kumar, S.V.; Yadav, S.K.; Raghava, B.; Saraiah, B.; Ila, H.; Rangappa, K.S.; Hazra, A. J. Org. Chem., 2013, 78(10), 4960-4973.
[http://dx.doi.org/10.1021/jo400599e] [PMID: 23607788]
[25]
Gupton, J.T.; Telang, N.; Gazzo, D.F.; Barelli, P.J.; Lescalleet, K.E.; Fagan, J.W.; Mills, B.J.; Finzel, K.L.; Kanters, R.P.F.; Crocker, K.R.; Dudek, S.T.; Lariviere, C.M.; Smith, S.Q.; Keertikar, K.M. Tetrahedron, 2013, 69(29), 5829-5840.
[http://dx.doi.org/10.1016/j.tet.2013.05.045] [PMID: 23894213]
[26]
Usachev, B.I.; Obydennov, D.L.; Kodess, M.I.; Sosnovskikh, V.Y. Tetrahedron Lett., 2009, 50(31), 4446-4448.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.056]
[27]
Yu, J.; Chen, X.; Hu, Y.; Wang, L.; Zhang, S.; Liu, Y.; Wu, B.; Li, H. Synthesis, 2020, 52(12), 1847-1854.
[http://dx.doi.org/10.1055/s-0040-1708006]
[28]
Yu, B.; Selkti, M.; Ardisson, J.; Lannou, M.I.; Sorin, G. Org. Lett., 2022, 24(31), 5721-5725.
[http://dx.doi.org/10.1021/acs.orglett.2c02142] [PMID: 35920719]
[29]
Yamashiro, T.; Yamada, K.; Yoshida, H.; Tomisaka, Y.; Nishi, T.; Abe, T. Synlett, 2019, 30(20), 2247-2252.
[http://dx.doi.org/10.1055/s-0039-1690734]
[30]
Ma, Q.; Shi, Y.; Wang, D. Org. Lett., 2023, 25(51), 9181-9185.
[http://dx.doi.org/10.1021/acs.orglett.3c03742] [PMID: 38117207]
[31]
Ibara, M.; Abe, T.; Sawada, D. Org. Lett., 2022, 24(11), 2131-2136.
[http://dx.doi.org/10.1021/acs.orglett.2c00370] [PMID: 35285651]
[32]
Zivkovic, F.G.; Wycich, G.; Liu, L.; Schoenebeck, F. J. Am. Chem. Soc., 2024, 146(2), 1276-1281.
[http://dx.doi.org/10.1021/jacs.3c13711] [PMID: 38180777]
[33]
Xin, J.; Deng, X.; Tang, P. Org. Lett., 2022, 24(3), 881-885.
[http://dx.doi.org/10.1021/acs.orglett.1c04226] [PMID: 35023747]
[34]
Deng, Z.; Meng, L.; Bing, X.; Niu, S.; Zhang, X.; Peng, J.; Luan, Y.X.; Chen, L.; Tang, P. J. Am. Chem. Soc., 2024, 146(4), 2325-2332.
[http://dx.doi.org/10.1021/jacs.3c11653] [PMID: 38232384]
[35]
Zhang, X.; Qiu, D.; Qiu, W.; Wang, H.; Zhao, Z.; Yu, H.; Che, G. Tetrahedron, 2023, 134133305.
[http://dx.doi.org/10.1016/j.tet.2023.133305]
[36]
Zhang, X.; Mo, J.; Luo, D.S.; Niu, X.M.; Yu, H.F.; Zhao, X.B. Synth. Commun., 2023, 53(24), 2088-2096.
[http://dx.doi.org/10.1080/00397911.2023.2270636]
[37]
Zhang, X.; Zhang, Z.; Yu, H.; Che, G. Molecules, 2023, 28(11), 4347.
[http://dx.doi.org/10.3390/molecules28114347] [PMID: 37298822]
[38]
Yu, H.F.; Wang, W.J. Synth. Commun., 2020, 50(8), 1133-1140.
[http://dx.doi.org/10.1080/00397911.2019.1681001]
[39]
Zhao, Y.; Yu, H.; Liao, P.; Wang, W. Chem. Res. Chin. Univ., 2020, 36(5), 847-852.
[http://dx.doi.org/10.1007/s40242-019-0011-8]
[41]
Jarończyk, M.; Dobrowolski, J.C.; Mazurek, A.P. J. Mol. Struc-Theochem, 2004, 673, 17-28.
[42]
Muruganantham, R.; Namboothiri, I. J. Org. Chem., 2010, 75(7), 2197-2205.
[http://dx.doi.org/10.1021/jo902595e] [PMID: 20218559]
[43]
Bai, X.F.; Xu, Z.; Xia, C.G.; Zheng, Z.J.; Xu, L.W. ACS Catal., 2015, 5(10), 6016-6020.
[http://dx.doi.org/10.1021/acscatal.5b01685]
[44]
Li, J.Y.; Kim, H.Y.; Oh, K. Adv. Synth. Catal., 2016, 358(6), 984-993.
[http://dx.doi.org/10.1002/adsc.201500958]
[45]
Gao, Y.; Hu, Z.; Dong, J.; Liu, J.; Xu, X. Org. Lett., 2017, 19(19), 5292-5295.
[http://dx.doi.org/10.1021/acs.orglett.7b02582] [PMID: 28902514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy