Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Plasma/Serum Proteomics based on Mass Spectrometry

Author(s): Yiying Zhu*

Volume 31, Issue 3, 2024

Published on: 06 March, 2024

Page: [192 - 208] Pages: 17

DOI: 10.2174/0109298665286952240212053723

Price: $65

Abstract

Human blood is a window of physiology and disease. Examination of biomarkers in blood is a common clinical procedure, which can be informative in diagnosis and prognosis of diseases, and in evaluating treatment effectiveness. There is still a huge demand on new blood biomarkers and assays for precision medicine nowadays, therefore plasma/serum proteomics has attracted increasing attention in recent years. How to effectively proceed with the biomarker discovery and clinical diagnostic assay development is a question raised to researchers who are interested in this area. In this review, we comprehensively introduce the background and advancement of technologies for blood proteomics, with a focus on mass spectrometry (MS). Analyzing existing blood biomarkers and newly-built diagnostic assays based on MS can shed light on developing new biomarkers and analytical methods. We summarize various protein analytes in plasma/serum which include total proteome, protein post-translational modifications, and extracellular vesicles, focusing on their corresponding sample preparation methods for MS analysis. We propose screening multiple protein analytes in the same set of blood samples in order to increase success rate for biomarker discovery. We also review the trends of MS techniques for blood tests including sample preparation automation, and further provide our perspectives on their future directions.

Graphical Abstract

[1]
Cristofanilli, M.; Hayes, D.F.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Reuben, J.M.; Doyle, G.V.; Matera, J.; Allard, W.J.; Miller, M.C.; Fritsche, H.A.; Hortobagyi, G.N.; Terstappen, L.W.M.M. Circulating tumor cells: A novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol., 2005, 23(7), 1420-1430.
[http://dx.doi.org/10.1200/JCO.2005.08.140] [PMID: 15735118]
[2]
De Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.W.M.; Pienta, K.J.; Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res., 2008, 14(19), 6302-6309.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0872] [PMID: 18829513]
[3]
Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.A.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.M.M.; Meropol, N.J. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann. Oncol., 2009, 20(7), 1223-1229.
[http://dx.doi.org/10.1093/annonc/mdn786] [PMID: 19282466]
[4]
Buchholz, M. Circulating RNAs in medical diagnostics and as disease-relevant biomarkers. Pharmazie, 2016, 71(1), 17-20.
[PMID: 26867348]
[5]
Hamam, R.; Hamam, D.; Alsaleh, K.A.; Kassem, M.; Zaher, W.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis., 2017, 8(9), e3045.
[http://dx.doi.org/10.1038/cddis.2017.440] [PMID: 28880270]
[6]
Gahan, P. Circulating nucleic acids in plasma and serum: Applications in diagnostic techniques for noninvasive prenatal diagnosis. Int. J. Womens Health, 2013, 5, 177-186.
[http://dx.doi.org/10.2147/IJWH.S34442] [PMID: 23637563]
[7]
Dennis Lo, Y.M.; Chiu, R.W.K. Prenatal diagnosis: Progress through plasma nucleic acids. Nat. Rev. Genet., 2007, 8(1), 71-77.
[http://dx.doi.org/10.1038/nrg1982] [PMID: 17146468]
[8]
Tounta, G.; Kolialexi, A.; Papantoniou, N.; Tsangaris, G.T.; Kanavakis, E.; Mavrou, A. Non-invasive prenatal diagnosis using cell-free fetal nucleic acids in maternal plasma: Progress overview beyond predictive and personalized diagnosis. EPMA J., 2011, 2(2), 163-171.
[http://dx.doi.org/10.1007/s13167-011-0085-y] [PMID: 23199146]
[9]
Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther., 2023, 8(1), 132.
[http://dx.doi.org/10.1038/s41392-023-01399-3] [PMID: 36941259]
[10]
Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteomics, 2002, 1(11), 845-867.
[http://dx.doi.org/10.1074/mcp.R200007-MCP200] [PMID: 12488461]
[11]
Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol., 2017, 13(9), 942.
[http://dx.doi.org/10.15252/msb.20156297] [PMID: 28951502]
[12]
Peiris, A.N.; Medlock, D.; Gavin, M. Thyroglobulin for monitoring for thyroid cancer recurrence. JAMA, 2019, 321(12), 1228.
[http://dx.doi.org/10.1001/jama.2019.0803] [PMID: 30912839]
[13]
De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis: The transaminase serum activities. Clin. Chim. Acta, 1957, 2(1), 70-74.
[http://dx.doi.org/10.1016/0009-8981(57)90027-X] [PMID: 13447217]
[14]
Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; Sibai, B.M.; Sukhatme, V.P.; Karumanchi, S.A. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med., 2004, 350(7), 672-683.
[http://dx.doi.org/10.1056/NEJMoa031884] [PMID: 14764923]
[15]
Omenn, G.S. The human proteome organization plasma proteome project pilot phase: Reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics, 2004, 4(5), 1235-1240.
[http://dx.doi.org/10.1002/pmic.200300686] [PMID: 15188391]
[16]
Omenn, G.S. THE HUPO human plasma proteome project. Proteomics Clin. Appl., 2007, 1(8), 769-779.
[http://dx.doi.org/10.1002/prca.200700369] [PMID: 21136733]
[17]
Omenn, G.S.; States, D.J.; Adamski, M.; Blackwell, T.W.; Menon, R.; Hermjakob, H.; Apweiler, R.; Haab, B.B.; Simpson, R.J.; Eddes, J.S.; Kapp, E.A.; Moritz, R.L.; Chan, D.W.; Rai, A.J.; Admon, A.; Aebersold, R.; Eng, J.; Hancock, W.S.; Hefta, S.A.; Meyer, H.; Paik, Y.K.; Yoo, J.S.; Ping, P.; Pounds, J.; Adkins, J.; Qian, X.; Wang, R.; Wasinger, V.; Wu, C.Y.; Zhao, X.; Zeng, R.; Archakov, A.; Tsugita, A.; Beer, I.; Pandey, A.; Pisano, M.; Andrews, P.; Tammen, H.; Speicher, D.W.; Hanash, S.M. Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly‐available database. Proteomics, 2005, 5(13), 3226-3245.
[http://dx.doi.org/10.1002/pmic.200500358] [PMID: 16104056]
[18]
Zimmerman, L.J. Global stability of plasma proteomes for mass spectrometry-based analyses. Mol Cell Proteomics, 2012, 11(6), M111 014340.
[http://dx.doi.org/10.1074/mcp.M111.014340]
[19]
Mateos, J.; Carneiro, I.; Corrales, F.; Elortza, F.; Paradela, A.; del Pino, M.S.; Iloro, I.; Marcilla, M.; Mora, M.I.; Valero, L.; Ciordia, S.; Fernández, V.; Fortuño, M.A.; García-Sánchez, I.; Martínez, R.; Muñoz, M.A.; Rodriguez, C.; Doménech, N. Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J. Proteomics, 2017, 150, 109-120.
[http://dx.doi.org/10.1016/j.jprot.2016.09.003] [PMID: 27620695]
[20]
Percy, A.J.; Parker, C.E.; Borchers, C.H. Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis, 2013, 5(22), 2837-2856.
[http://dx.doi.org/10.4155/bio.13.245] [PMID: 24256362]
[21]
Anderson, N.L.; Ptolemy, A.S.; Rifai, N. The riddle of protein diagnostics: Future bleak or bright? Clin. Chem., 2013, 59(1), 194-197.
[http://dx.doi.org/10.1373/clinchem.2012.184705] [PMID: 23150058]
[22]
Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.; Conroy, M.C.; Crabtree, N.; Doherty, N.; Frangi, A.F.; Harvey, N.C.; Leeson, P.; Miller, K.L.; Neubauer, S.; Petersen, S.E.; Sellors, J.; Sheard, S.; Smith, S.M.; Sudlow, C.L.M.; Matthews, P.M.; Allen, N.E. The UK Biobank imaging enhancement of 100,000 participants: Rationale, data collection, management and future directions. Nat. Commun., 2020, 11(1), 2624.
[http://dx.doi.org/10.1038/s41467-020-15948-9] [PMID: 32457287]
[23]
Conroy, M.C.; Lacey, B. Bešević J.; Omiyale, W.; Feng, Q.; Effingham, M.; Sellers, J.; Sheard, S.; Pancholi, M.; Gregory, G.; Busby, J.; Collins, R.; Allen, N.E. UK Biobank: A globally important resource for cancer research. Br. J. Cancer, 2023, 128(4), 519-527.
[http://dx.doi.org/10.1038/s41416-022-02053-5] [PMID: 36402876]
[24]
Geyer, P.E.; Voytik, E.; Treit, P.V.; Doll, S.; Kleinhempel, A.; Niu, L.; Müller, J.B.; Buchholtz, M.L.; Bader, J.M.; Teupser, D.; Holdt, L.M.; Mann, M. Plasma proteome profiling to detect and avoid sample‐related biases in biomarker studies. EMBO Mol. Med., 2019, 11(11), e10427.
[http://dx.doi.org/10.15252/emmm.201910427] [PMID: 31566909]
[25]
Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; Callahan, T.J.; Chute, C.G.; Est, J.L.; Galer, P.D.; Ganesan, S.; Griese, M.; Haimel, M.; Pazmandi, J.; Hanauer, M.; Harris, N.L.; Hartnett, M.J.; Hastreiter, M.; Hauck, F.; He, Y.; Jeske, T.; Kearney, H.; Kindle, G.; Klein, C.; Knoflach, K.; Krause, R.; Lagorce, D.; McMurry, J.A.; Miller, J.A.; Munoz-Torres, M.C.; Peters, R.L.; Rapp, C.K.; Rath, A.M.; Rind, S.A.; Rosenberg, A.Z.; Segal, M.M.; Seidel, M.G.; Smedley, D.; Talmy, T.; Thomas, Y.; Wiafe, S.A.; Xian, J.; Yüksel, Z.; Helbig, I.; Mungall, C.J.; Haendel, M.A.; Robinson, P.N. The human phenotype ontology in 2021. Nucleic Acids Res., 2021, 49(D1), D1207-D1217.
[http://dx.doi.org/10.1093/nar/gkaa1043] [PMID: 33264411]
[26]
Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Bucht Thorsen, S.; Ekman, D.; Eriksson, A.; Rennel Dickens, E.; Ohlsson, S.; Edfeldt, G.; Andersson, A.C.; Lindstedt, P.; Stenvang, J.; Gullberg, M.; Fredriksson, S. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One, 2014, 9(4), e95192.
[http://dx.doi.org/10.1371/journal.pone.0095192] [PMID: 24755770]
[27]
Petricoin, E., III; Wulfkuhle, J.; Howard, M.; Pierobon, M.; Espina, V.; Luchini, A.; Liotta, L.A. RPPA: Origins, transition to a validated clinical research tool, and next generations of the technology. Adv. Exp. Med. Biol., 2019, 1188, 1-19.
[http://dx.doi.org/10.1007/978-981-32-9755-5_1] [PMID: 31820380]
[28]
Chang, L.; Rissin, D.M.; Fournier, D.R.; Piech, T.; Patel, P.P.; Wilson, D.H.; Duffy, D.C. Single molecule enzyme-linked immunosorbent assays: Theoretical considerations. J. Immunol. Methods, 2012, 378(1-2), 102-115.
[http://dx.doi.org/10.1016/j.jim.2012.02.011] [PMID: 22370429]
[29]
Fulton, R.J.; McDade, R.L.; Smith, P.L.; Kienker, L.J.; Kettman, J.R. Jr Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem., 1997, 43(9), 1749-1756.
[http://dx.doi.org/10.1093/clinchem/43.9.1749] [PMID: 9299971]
[30]
Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; Flather, D.; Forbes, A.; Foreman, T.; Fowler, C.; Gawande, B.; Goss, M.; Gunn, M.; Gupta, S.; Halladay, D.; Heil, J.; Heilig, J.; Hicke, B.; Husar, G.; Janjic, N.; Jarvis, T.; Jennings, S.; Katilius, E.; Keeney, T.R.; Kim, N.; Koch, T.H.; Kraemer, S.; Kroiss, L.; Le, N.; Levine, D.; Lindsey, W.; Lollo, B.; Mayfield, W.; Mehan, M.; Mehler, R.; Nelson, S.K.; Nelson, M.; Nieuwlandt, D.; Nikrad, M.; Ochsner, U.; Ostroff, R.M.; Otis, M.; Parker, T.; Pietrasiewicz, S.; Resnicow, D.I.; Rohloff, J.; Sanders, G.; Sattin, S.; Schneider, D.; Singer, B.; Stanton, M.; Sterkel, A.; Stewart, A.; Stratford, S.; Vaught, J.D.; Vrkljan, M.; Walker, J.J.; Watrobka, M.; Waugh, S.; Weiss, A.; Wilcox, S.K.; Wolfson, A.; Wolk, S.K.; Zhang, C.; Zichi, D. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 2010, 5(12), e15004.
[http://dx.doi.org/10.1371/journal.pone.0015004] [PMID: 21165148]
[31]
Ding, Z.; Wang, N.; Ji, N.; Chen, Z.S. Proteomics technologies for cancer liquid biopsies. Mol. Cancer, 2022, 21(1), 53.
[http://dx.doi.org/10.1186/s12943-022-01526-8] [PMID: 35168611]
[32]
Suhre, K.; McCarthy, M.I.; Schwenk, J.M. Genetics meets proteomics: Perspectives for large population-based studies. Nat. Rev. Genet., 2021, 22(1), 19-37.
[http://dx.doi.org/10.1038/s41576-020-0268-2] [PMID: 32860016]
[33]
Fredolini, C.; Byström, S.; Pin, E.; Edfors, F.; Tamburro, D.; Iglesias, M.J.; Häggmark, A.; Hong, M.G.; Uhlen, M.; Nilsson, P.; Schwenk, J.M. Immunocapture strategies in translational proteomics. Expert Rev. Proteomics, 2016, 13(1), 83-98.
[http://dx.doi.org/10.1586/14789450.2016.1111141] [PMID: 26558424]
[34]
Rai, A.J.; Zhang, Z.; Rosenzweig, J.; Shih, I.; Pham, T.; Fung, E.T.; Sokoll, L.J.; Chan, D.W. Proteomic approaches to tumor marker discovery. Arch. Pathol. Lab. Med., 2002, 126(12), 1518-1526.
[http://dx.doi.org/10.5858/2002-126-1518-PATTMD] [PMID: 12456215]
[35]
Zhang, Z.; Bast, R.C., Jr; Yu, Y.; Li, J.; Sokoll, L.J.; Rai, A.J.; Rosenzweig, J.M.; Cameron, B.; Wang, Y.Y.; Meng, X.Y.; Berchuck, A.; van Haaften-Day, C.; Hacker, N.F.; de Bruijn, H.W.A.; van der Zee, A.G.J.; Jacobs, I.J.; Fung, E.T.; Chan, D.W. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res., 2004, 64(16), 5882-5890.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0746] [PMID: 15313933]
[36]
Stewart, H.I.; Grinfeld, D.; Giannakopulos, A.; Petzoldt, J.; Shanley, T.; Garland, M.; Denisov, E.; Peterson, A.C.; Damoc, E.; Zeller, M.; Arrey, T.N.; Pashkova, A.; Renuse, S.; Hakimi, A.; Kühn, A.; Biel, M.; Kreutzmann, A.; Hagedorn, B.; Colonius, I.; Schütz, A.; Stefes, A.; Dwivedi, A.; Mourad, D.; Hoek, M.; Reitemeier, B.; Cochems, P.; Kholomeev, A.; Ostermann, R.; Quiring, G.; Ochmann, M.; Möhring, S.; Wagner, A.; Petker, A.; Kanngiesser, S.; Wiedemeyer, M.; Balschun, W.; Hermanson, D.; Zabrouskov, V.; Makarov, A.A.; Hock, C. Parallelized acquisition of orbitrap and astral analyzers enables high-throughput quantitative analysis. Anal. Chem., 2023, 95(42), 15656-15664.
[http://dx.doi.org/10.1021/acs.analchem.3c02856] [PMID: 37815927]
[37]
Conza, J.A.D. Applications of MALDI-TOF mass spectrometry in clinical microbiology. Rev. Argent. Microbiol., 2022, 54(3), 163-165.
[http://dx.doi.org/10.1016/j.ram.2022.08.001] [PMID: 36184187]
[38]
Elbehiry, A.; Aldubaib, M.; Abalkhail, A.; Marzouk, E. ALbeloushi, A.; Moussa, I.; Ibrahem, M.; Albazie, H.; Alqarni, A.; Anagreyyah, S.; Alghamdi, S.; Rawway, M. How MALDI-TOF mass spectrometry technology contributes to microbial infection control in healthcare settings. Vaccines (Basel), 2022, 10(11), 1881.
[http://dx.doi.org/10.3390/vaccines10111881] [PMID: 36366389]
[39]
Iles, R.K. A how to guide: Clinical population test development and authorization of MALDI-ToF mass spectrometry-based screening tests for viral infections. Viruses, 2022, 14(9), 1958.
[40]
Tsuchida, S.; Nakayama, T. MALDI-based mass spectrometry in clinical testing: Focus on bacterial identification. Appl. Sci., 2022, 12(6), 2814.
[41]
Do, T.; Guran, R.; Adam, V.; Zitka, O. Use of MALDI-TOF mass spectrometry for virus identification: A review. Analyst (Lond.), 2022, 147(14), 3131-3154.
[http://dx.doi.org/10.1039/D2AN00431C] [PMID: 35713185]
[42]
Weis, C.; Cuénod, A.; Rieck, B.; Dubuis, O.; Graf, S.; Lang, C.; Oberle, M.; Brackmann, M.; Søgaard, K.K.; Osthoff, M.; Borgwardt, K.; Egli, A. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat. Med., 2022, 28(1), 164-174.
[http://dx.doi.org/10.1038/s41591-021-01619-9] [PMID: 35013613]
[43]
Zubair, F. MALDI mass Spectrometry based proteomics for drug discovery & development. Drug Discov. Today. Technol., 2021, 40, 29-35.
[http://dx.doi.org/10.1016/j.ddtec.2021.09.002] [PMID: 34916018]
[44]
Richards, A.L.; Hebert, A.S.; Ulbrich, A.; Bailey, D.J.; Coughlin, E.E.; Westphall, M.S.; Coon, J.J. One-hour proteome analysis in yeast. Nat. Protoc., 2015, 10(5), 701-714.
[http://dx.doi.org/10.1038/nprot.2015.040] [PMID: 25855955]
[45]
Li, J.; Cai, Z.; Bomgarden, R.D.; Pike, I.; Kuhn, K.; Rogers, J.C.; Roberts, T.M.; Gygi, S.P.; Paulo, J.A. TMTpro-18plex: The expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res., 2021, 20(5), 2964-2972.
[http://dx.doi.org/10.1021/acs.jproteome.1c00168] [PMID: 33900084]
[46]
Rosting, C.; Yu, J.; Cooper, H.J. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots. J. Proteome Res., 2018, 17(6), 1997-2004.
[http://dx.doi.org/10.1021/acs.jproteome.7b00746] [PMID: 29707944]
[47]
Assis, D. Yellow fever blood proteomics study by trapped ion mobility mass spectrometry. Mol. Cell. Proteomics, 2022, 21(8), S61-S61.
[48]
Cooper, H.J. To what extent is FAIMS beneficial in the analysis of proteins? J. Am. Soc. Mass Spectrom., 2016, 27(4), 566-577.
[http://dx.doi.org/10.1007/s13361-015-1326-4] [PMID: 26843211]
[49]
Michelmann, K.; Silveira, J.A.; Ridgeway, M.E.; Park, M.A. Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom., 2015, 26(1), 14-24.
[http://dx.doi.org/10.1007/s13361-014-0999-4] [PMID: 25331153]
[50]
Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteomics, 2020, 17(1), 17.
[http://dx.doi.org/10.1186/s12014-020-09283-w] [PMID: 32489335]
[51]
Meier, F.; Park, M.A.; Mann, M. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteomics, 2021, 20, 100138.
[http://dx.doi.org/10.1016/j.mcpro.2021.100138] [PMID: 34416385]
[52]
Method of the Year. 2012. Nat. Methods, 2013, 10(1), 1.
[http://dx.doi.org/10.1038/nmeth.2329] [PMID: 23547284]
[53]
Erickson, B.K.; Rose, C.M.; Braun, C.R.; Erickson, A.R.; Knott, J.; McAlister, G.C.; Wühr, M.; Paulo, J.A.; Everley, R.A.; Gygi, S.P. A Strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol. Cell, 2017, 65(2), 361-370.
[http://dx.doi.org/10.1016/j.molcel.2016.12.005] [PMID: 28065596]
[54]
Grossegesse, M.; Hartkopf, F.; Nitsche, A.; Doellinger, J. Stable isotope-triggered offset fragmentation allows massively multiplexed target profiling on quadrupole-orbitrap mass spectrometers. J. Proteome Res., 2020, 19(7), 2854-2862.
[http://dx.doi.org/10.1021/acs.jproteome.0c00065] [PMID: 32369372]
[55]
Stopfer, L.E.; Flower, C.T.; Gajadhar, A.S.; Patel, B.; Gallien, S.; Lopez-Ferrer, D.; White, F.M. High-density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumors. Cancer Res., 2021, 81(9), 2495-2509.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3804] [PMID: 33509940]
[56]
Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Abraham, D.; Hoofnagle, A.N.; Meikle, A.W. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin. Chem., 2013, 59(6), 982-990.
[http://dx.doi.org/10.1373/clinchem.2012.195594] [PMID: 23396140]
[57]
Razavi, M.; Johnson, L.D.S.; Lum, J.J.; Kruppa, G.; Anderson, N.L.; Pearson, T.W. Quantification of a proteotypic peptide from protein C inhibitor by liquid chromatography-free SISCAPA-MALDI mass spectrometry: Application to identification of recurrence of prostate cancer. Clin. Chem., 2013, 59(10), 1514-1522.
[http://dx.doi.org/10.1373/clinchem.2012.199786] [PMID: 23857672]
[58]
Razavi, M.; Frick, L.E.; LaMarr, W.A.; Pope, M.E.; Miller, C.A.; Anderson, N.L.; Pearson, T.W. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry. J. Proteome Res., 2012, 11(12), 5642-5649.
[http://dx.doi.org/10.1021/pr300652v] [PMID: 23126378]
[59]
Liu, C.; Zhao, Z.; Fan, J.; Lyon, C.J.; Wu, H.J.; Nedelkov, D.; Zelazny, A.M.; Olivier, K.N.; Cazares, L.H.; Holland, S.M.; Graviss, E.A.; Hu, Y. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc. Natl. Acad. Sci., 2017, 114(15), 3969-3974.
[http://dx.doi.org/10.1073/pnas.1621360114] [PMID: 28348223]
[60]
Lingxiao, S.; Jinfei, M.; Qingqing, Y.; Pengyun, L.; Huafen, L. The application of certified reference materials for clinical mass spectrometry. J. Clin. Lab. Anal., 2022, 36(4), e24301.
[http://dx.doi.org/10.1002/jcla.24301] [PMID: 35274770]
[61]
Shih, H.C.; Chang, M.C.; Chen, C.H.; Tsai, I.L.; Wang, S.Y.; Kuo, Y.P.; Chen, C.H.; Chang, Y.T. High accuracy differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma by immunoglobulin G glycosylation. Clin. Proteomics, 2019, 16(1), 1.
[http://dx.doi.org/10.1186/s12014-018-9221-1] [PMID: 30622446]
[62]
Shiao, J.Y.; Chang, Y.T.; Chang, M.C.; Chen, M.X.; Liu, L.W.; Wang, X.Y.; Tsai, Y.J.; Kuo, T.C.; Tsai, I.L. Development of efficient on-bead protein elution process coupled to ultra-high performance liquid chromatography–tandem mass spectrometry to determine immunoglobulin G subclass and glycosylation for discovery of bio-signatures in pancreatic disease. J. Chromatogr. A, 2020, 1621, 461039.
[http://dx.doi.org/10.1016/j.chroma.2020.461039] [PMID: 32295703]
[63]
Kirkpatrick, D.S.; Gerber, S.A.; Gygi, S.P. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods, 2005, 35(3), 265-273.
[http://dx.doi.org/10.1016/j.ymeth.2004.08.018] [PMID: 15722223]
[64]
Dupuis, N.; Muller, S.; Treiber, T.; Escher, C. Evaluation of PQ500, a 500-plasma protein blood panel in NSCLC subjects using high-throughput MRM mass spectrometry. J. Clin. Oncol., 2019, 37(8_suppl), 110.
[http://dx.doi.org/10.1200/JCO.2019.37.8_suppl.110]
[65]
Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods, 2020, 17(1), 41-44.
[http://dx.doi.org/10.1038/s41592-019-0638-x] [PMID: 31768060]
[66]
Kawahara, R.; Chernykh, A.; Alagesan, K.; Bern, M.; Cao, W.; Chalkley, R.J.; Cheng, K.; Choo, M.S.; Edwards, N.; Goldman, R.; Hoffmann, M.; Hu, Y.; Huang, Y.; Kim, J.Y.; Kletter, D.; Liquet, B.; Liu, M.; Mechref, Y.; Meng, B.; Neelamegham, S.; Nguyen-Khuong, T.; Nilsson, J.; Pap, A.; Park, G.W.; Parker, B.L.; Pegg, C.L.; Penninger, J.M.; Phung, T.K.; Pioch, M.; Rapp, E.; Sakalli, E.; Sanda, M.; Schulz, B.L.; Scott, N.E.; Sofronov, G.; Stadlmann, J.; Vakhrushev, S.Y.; Woo, C.M.; Wu, H.Y.; Yang, P.; Ying, W.; Zhang, H.; Zhang, Y.; Zhao, J.; Zaia, J.; Haslam, S.M.; Palmisano, G.; Yoo, J.S.; Larson, G.; Khoo, K.H.; Medzihradszky, K.F.; Kolarich, D.; Packer, N.H.; Thaysen-Andersen, M. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat. Methods, 2021, 18(11), 1304-1316.
[http://dx.doi.org/10.1038/s41592-021-01309-x] [PMID: 34725484]
[67]
Chalkley, R.J.; Baker, P.R.; Huang, L.; Hansen, K.C.; Allen, N.P.; Rexach, M.; Burlingame, A.L. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Mol. Cell. Proteomics, 2005, 4(8), 1194-1204.
[http://dx.doi.org/10.1074/mcp.D500002-MCP200] [PMID: 15937296]
[68]
Bern, M.; Kil, Y.J.; Becker, C. Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinformatics, 2012.
[69]
Liu, M.Q.; Zeng, W.F.; Fang, P.; Cao, W.Q.; Liu, C.; Yan, G.Q.; Zhang, Y.; Peng, C.; Wu, J.Q.; Zhang, X.J.; Tu, H.J.; Chi, H.; Sun, R.X.; Cao, Y.; Dong, M.Q.; Jiang, B.Y.; Huang, J.M.; Shen, H.L.; Wong, C.C.L.; He, S.M.; Yang, P.Y. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun., 2017, 8(1), 438.
[http://dx.doi.org/10.1038/s41467-017-00535-2] [PMID: 28874712]
[70]
Zeng, W.F.; Liu, M.Q.; Zhang, Y.; Wu, J.Q.; Fang, P.; Peng, C.; Nie, A.; Yan, G.; Cao, W.; Liu, C.; Chi, H.; Sun, R.X.; Wong, C.C.L.; He, S.M.; Yang, P. pGlyco: A pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Sci. Rep., 2016, 6(1), 25102.
[http://dx.doi.org/10.1038/srep25102] [PMID: 27139140]
[71]
Delafield, D.G.; Li, L. Recent advances in analytical approaches for glycan and glycopeptide quantitation. Mol. Cell. Proteomics, 2021, 20, 100054.
[http://dx.doi.org/10.1074/mcp.R120.002095] [PMID: 32576592]
[72]
Wu, Z.; Serie, D.; Xu, G.; Zou, J. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring. J. Proteomics, 2020, 223, 103820.
[http://dx.doi.org/10.1016/j.jprot.2020.103820] [PMID: 32416316]
[73]
Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst., 2021, 12(8), 759-770.
[http://dx.doi.org/10.1016/j.cels.2021.06.006] [PMID: 34411543]
[74]
Blumenscheit, C.; Pfeifer, Y.; Werner, G.; John, C.; Schneider, A.; Lasch, P.; Doellinger, J. Unbiased antimicrobial resistance detection from clinical bacterial isolates using proteomics. Anal. Chem., 2021, 93(44), 14599-14608.
[http://dx.doi.org/10.1021/acs.analchem.1c00594] [PMID: 34697938]
[75]
Nanjappa, V.; Thomas, J.K.; Marimuthu, A.; Muthusamy, B.; Radhakrishnan, A.; Sharma, R.; Ahmad Khan, A.; Balakrishnan, L.; Sahasrabuddhe, N.A.; Kumar, S.; Jhaveri, B.N.; Sheth, K.V.; Kumar Khatana, R.; Shaw, P.G.; Srikanth, S.M.; Mathur, P.P.; Shankar, S.; Nagaraja, D.; Christopher, R.; Mathivanan, S.; Raju, R.; Sirdeshmukh, R.; Chatterjee, A.; Simpson, R.J.; Harsha, H.C.; Pandey, A.; Prasad, T.S.K. Plasma proteome database as a resource for proteomics research: 2014 update. Nucleic Acids Res., 2014, 42(D1), D959-D965.
[http://dx.doi.org/10.1093/nar/gkt1251] [PMID: 24304897]
[76]
Ribeiro, L.F.; Urban, J. Recent stationary phase-based fractionation strategies in proteomic analysis. J. Sep. Sci., 2023, 2023, e2300174.
[77]
Dey, K.K.; Wang, H.; Niu, M.; Bai, B.; Wang, X.; Li, Y.; Cho, J.H.; Tan, H.; Mishra, A.; High, A.A.; Chen, P.C.; Wu, Z.; Beach, T.G.; Peng, J. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin. Proteomics, 2019, 16(1), 16.
[http://dx.doi.org/10.1186/s12014-019-9237-1] [PMID: 31019427]
[78]
Shi, T.; Zhou, J.Y.; Gritsenko, M.A.; Hossain, M.; Camp, D.G., II; Smith, R.D.; Qian, W.J. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography–mass spectrometry for human plasma proteomics biomarker discovery. Methods, 2012, 56(2), 246-253.
[http://dx.doi.org/10.1016/j.ymeth.2011.09.001] [PMID: 21925605]
[79]
Qian, W.J.; Kaleta, D.T.; Petritis, B.O.; Jiang, H.; Liu, T.; Zhang, X.; Mottaz, H.M.; Varnum, S.M.; Camp, D.G., II; Huang, L.; Fang, X.; Zhang, W.W.; Smith, R.D. Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol. Cell. Proteomics, 2008, 7(10), 1963-1973.
[http://dx.doi.org/10.1074/mcp.M800008-MCP200] [PMID: 18632595]
[80]
Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res., 2010, 9(10), 4982-4991.
[http://dx.doi.org/10.1021/pr100646w] [PMID: 20677825]
[81]
Bellei, E.; Bergamini, S.; Monari, E.; Fantoni, L.I.; Cuoghi, A.; Ozben, T.; Tomasi, A. High-abundance proteins depletion for serum proteomic analysis: Concomitant removal of non-targeted proteins. Amino Acids, 2011, 40(1), 145-156.
[http://dx.doi.org/10.1007/s00726-010-0628-x] [PMID: 20495836]
[82]
Keshishian, H.; Burgess, M.W.; Gillette, M.A.; Mertins, P.; Clauser, K.R.; Mani, D.R.; Kuhn, E.W.; Farrell, L.A.; Gerszten, R.E.; Carr, S.A. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol. Cell. Proteomics, 2015, 14(9), 2375-2393.
[http://dx.doi.org/10.1074/mcp.M114.046813] [PMID: 25724909]
[83]
Ferdosi, S.; Tangeysh, B.; Brown, T.R.; Everley, P.A.; Figa, M.; McLean, M.; Elgierari, E.M.; Zhao, X.; Garcia, V.J.; Wang, T.; Chang, M.E.K.; Riedesel, K.; Chu, J.; Mahoney, M.; Xia, H.; O’Brien, E.S.; Stolarczyk, C.; Harris, D.; Platt, T.L.; Ma, P.; Goldberg, M.; Langer, R.; Flory, M.R.; Benz, R.; Tao, W.; Cuevas, J.C.; Batzoglou, S.; Blume, J.E.; Siddiqui, A.; Hornburg, D.; Farokhzad, O.C. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano–bio interactions. Proc. Natl. Acad. Sci., 2022, 119(11), e2106053119.
[http://dx.doi.org/10.1073/pnas.2106053119] [PMID: 35275789]
[84]
Blume, J.E.; Manning, W.C.; Troiano, G.; Hornburg, D.; Figa, M.; Hesterberg, L.; Platt, T.L.; Zhao, X.; Cuaresma, R.A.; Everley, P.A.; Ko, M.; Liou, H.; Mahoney, M.; Ferdosi, S.; Elgierari, E.M.; Stolarczyk, C.; Tangeysh, B.; Xia, H.; Benz, R.; Siddiqui, A.; Carr, S.A.; Ma, P.; Langer, R.; Farias, V.; Farokhzad, O.C. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun., 2020, 11(1), 3662.
[http://dx.doi.org/10.1038/s41467-020-17033-7] [PMID: 32699280]
[85]
Docter, D.; Distler, U.; Storck, W.; Kuharev, J.; Wünsch, D.; Hahlbrock, A.; Knauer, S.K.; Tenzer, S.; Stauber, R.H. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc., 2014, 9(9), 2030-2044.
[http://dx.doi.org/10.1038/nprot.2014.139] [PMID: 25079427]
[86]
Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxid. Med. Cell. Longev., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/3818196] [PMID: 32256950]
[87]
Suzuki, A.; Yabu, A.; Nakamura, H. Advanced glycation end products in musculoskeletal system and disorders. Methods, 2022, 203, 179-186.
[http://dx.doi.org/10.1016/j.ymeth.2020.09.012] [PMID: 32987130]
[88]
Singh, S.; Siva, B.V.; Ravichandiran, V. Advanced glycation end products: key player of the pathogenesis of atherosclerosis. Glycoconj. J., 2022, 39(4), 547-563.
[http://dx.doi.org/10.1007/s10719-022-10063-x] [PMID: 35579827]
[89]
Li, W.Y.; Lee, C.Y.; Lee, K.M.; Zhang, G.; Lyu, A.; Yue, K.K.M. Advanced glycation end-product precursor methylglyoxal may lead to development of alzheimer’s disease. Diabetes Metab. Syndr. Obes., 2022, 15, 3153-3166.
[http://dx.doi.org/10.2147/DMSO.S382927] [PMID: 36262805]
[90]
Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 2022, 12(4), 542.
[http://dx.doi.org/10.3390/biom12040542] [PMID: 35454131]
[91]
Zhang, W.; Zhao, T.; Zhao, Y.; Gui, D.; Xu, Y. Advanced glycation end products in chinese medicine mediated aging diseases: A review. Curr. Vasc. Pharmacol., 2020, 18(4), 322-333.
[http://dx.doi.org/10.2174/1570161117666190507112157] [PMID: 31060489]
[92]
Jagadeeshaprasad, M.G.; Batkulwar, K.B.; Meshram, N.N.; Tiwari, S.; Korwar, A.M.; Unnikrishnan, A.G.; Kulkarni, M.J. Targeted quantification of N-1-(carboxymethyl) valine and N-1-(carboxyethyl) valine peptides of β-hemoglobin for better diagnostics in diabetes. Clin. Proteomics, 2016, 13(1), 7.
[http://dx.doi.org/10.1186/s12014-016-9108-y] [PMID: 27030792]
[93]
Dang, L.; Jia, L.; Zhi, Y.; Li, P.; Zhao, T.; Zhu, B.; Lan, R.; Hu, Y.; Zhang, H.; Sun, S. Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry. Trends Analyt. Chem., 2019, 114, 143-150.
[http://dx.doi.org/10.1016/j.trac.2019.02.009] [PMID: 31831916]
[94]
Sun, S.; Shah, P.; Eshghi, S.T.; Yang, W.; Trikannad, N.; Yang, S.; Chen, L.; Aiyetan, P.; Höti, N.; Zhang, Z.; Chan, D.W.; Zhang, H. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol., 2016, 34(1), 84-88.
[http://dx.doi.org/10.1038/nbt.3403] [PMID: 26571101]
[95]
Halim, A.; Westerlind, U.; Pett, C.; Schorlemer, M.; Rüetschi, U.; Brinkmalm, G.; Sihlbom, C.; Lengqvist, J.; Larson, G.; Nilsson, J. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res., 2014, 13(12), 6024-6032.
[http://dx.doi.org/10.1021/pr500898r] [PMID: 25358049]
[96]
Ranzinger, R.; York, W.S.; Glycome, D.B. Methods Mol. Biol., 2015, 1273, 109-124.
[http://dx.doi.org/10.1007/978-1-4939-2343-4_8] [PMID: 25753706]
[97]
Ranzinger, R.; Herget, S.; von der Lieth, C.W.; Frank, M. GlycomeDB--a unified database for carbohydrate structures. Nucleic Acids Res., 2011, 39(Database), D373-D376.
[http://dx.doi.org/10.1093/nar/gkq1014] [PMID: 21045056]
[98]
Suttapitugsakul, S.; Sun, F.; Wu, R. Recent advances in glycoproteomic analysis by mass spectrometry. Anal. Chem., 2020, 92(1), 267-291.
[http://dx.doi.org/10.1021/acs.analchem.9b04651] [PMID: 31626732]
[99]
Zhang, H.; Yi, E.C.; Li, X.; Mallick, P.; Kelly-Spratt, K.S.; Masselon, C.D.; Camp, D.G., II; Smith, R.D.; Kemp, C.J.; Aebersold, R. High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteomics, 2005, 4(2), 144-155.
[http://dx.doi.org/10.1074/mcp.M400090-MCP200] [PMID: 15608340]
[100]
Yang, W.; Ao, M.; Hu, Y.; Li, Q.K.; Zhang, H. Mapping the O‐glycoproteome using site‐specific extraction of O‐linked glycopeptides (EXoO). Mol. Syst. Biol., 2018, 14(11), e8486.
[http://dx.doi.org/10.15252/msb.20188486] [PMID: 30459171]
[101]
Yang, S.; Onigman, P.; Wu, W.W.; Sjogren, J.; Nyhlen, H.; Shen, R.F.; Cipollo, J. Deciphering protein O -glycosylation: Solid-phase chemoenzymatic cleavage and enrichment. Anal. Chem., 2018, 90(13), 8261-8269.
[http://dx.doi.org/10.1021/acs.analchem.8b01834] [PMID: 29936827]
[102]
Chang, T.T.; Cheng, J.H.; Tsai, H.W.; Young, K.C.; Hsieh, S.Y.; Ho, C.H. Plasma proteome plus site‐specific N ‐glycoprofiling for hepatobiliary carcinomas. J. Pathol. Clin. Res., 2019, 5(3), 199-212.
[http://dx.doi.org/10.1002/cjp2.136] [PMID: 31136099]
[103]
Zhu, J.; Huang, J.; Zhang, J.; Chen, Z.; Lin, Y.; Grigorean, G.; Li, L.; Liu, S.; Singal, A.G.; Parikh, N.D.; Lubman, D.M. Glycopeptide biomarkers in serum haptoglobin for hepatocellular carcinoma detection in patients with nonalcoholic steatohepatitis. J. Proteome Res., 2020, 19(8), 3452-3466.
[http://dx.doi.org/10.1021/acs.jproteome.0c00270] [PMID: 32412768]
[104]
Dalal, K.; Dalal, B.; Bhatia, S.; Shukla, A.; Shankarkumar, A. Analysis of serum Haptoglobin using glycoproteomics and lectin immunoassay in liver diseases in Hepatitis B virus infection. Clin. Chim. Acta, 2019, 495, 309-317.
[http://dx.doi.org/10.1016/j.cca.2019.04.072] [PMID: 31014754]
[105]
Li, Q.; Kailemia, M.J.; Merleev, A.A.; Xu, G.; Serie, D.; Danan, L.M.; Haj, F.G.; Maverakis, E.; Lebrilla, C.B. Site-specific glycosylation quantitation of 50 serum glycoproteins enhanced by predictive glycopeptidomics for improved disease biomarker discovery. Anal. Chem., 2019, 91(8), 5433-5445.
[http://dx.doi.org/10.1021/acs.analchem.9b00776] [PMID: 30882205]
[106]
Darebna, P.; Novak, P.; Kucera, R.; Topolcan, O.; Sanda, M.; Goldman, R.; Pompach, P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J. Proteomics, 2017, 153, 44-52.
[http://dx.doi.org/10.1016/j.jprot.2016.09.004] [PMID: 27646713]
[107]
Ramachandran, P.; Xu, G.; Huang, H.H.; Rice, R.; Zhou, B.; Lindpaintner, K.; Serie, D. Serum Glycoprotein markers in nonalcoholic steatohepatitis and hepatocellular carcinoma. J. Proteome Res., 2022, 21(4), 1083-1094.
[http://dx.doi.org/10.1021/acs.jproteome.1c00965] [PMID: 35286803]
[108]
Jeon, J.; Yang, J.; Park, J.M.; Han, N.Y.; Lee, Y.B.; Lee, H. Development of an automated high-throughput sample preparation protocol for LC-MS/MS analysis of glycated peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1092, 88-94.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.036] [PMID: 29885514]
[109]
Muralidharan, M.; Bhat, V.; Bindu, Y.S.; Mandal, A.K. Glycation profile of minor abundant erythrocyte proteome across varying glycemic index in diabetes mellitus. Anal. Biochem., 2019, 573, 37-43.
[http://dx.doi.org/10.1016/j.ab.2019.02.026] [PMID: 30831097]
[110]
Korwar, A.M.; Zhang, Q. Comprehensive quantification of carboxymethyllysine-modified peptides in human plasma. J. Am. Soc. Mass Spectrom., 2021, 32(3), 744-752.
[http://dx.doi.org/10.1021/jasms.0c00443] [PMID: 33512994]
[111]
Di Sanzo, S.; Spengler, K.; Leheis, A.; Kirkpatrick, J.M.; Rändler, T.L.; Baldensperger, T.; Dau, T.; Henning, C.; Parca, L.; Marx, C.; Wang, Z.Q.; Glomb, M.A.; Ori, A.; Heller, R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat. Commun., 2021, 12(1), 6743.
[http://dx.doi.org/10.1038/s41467-021-26982-6] [PMID: 34795246]
[112]
Riley, N.M.; Bertozzi, C.R.; Pitteri, S.J. A pragmatic guide to enrichment strategies for mass spectrometry–based glycoproteomics. Mol. Cell. Proteomics, 2021, 20, 100029.
[http://dx.doi.org/10.1074/mcp.R120.002277] [PMID: 33583771]
[113]
Yin, H.; Zhu, J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrom. Rev., 2023, 42(2), 887-917.
[http://dx.doi.org/10.1002/mas.21771] [PMID: 35099083]
[114]
Wu, C.C.; Lu, Y.T.; Yeh, T.S.; Chan, Y.H.; Dash, S.; Yu, J.S. Identification of fucosylated SERPINA1 as a novel plasma marker for pancreatic cancer using lectin affinity capture coupled with iTRAQ-based quantitative glycoproteomics. Int. J. Mol. Sci., 2021, 22(11), 6079.
[http://dx.doi.org/10.3390/ijms22116079] [PMID: 34199928]
[115]
Wang, J.; Wen, H.; Li, M.; Guo, T.; Chen, C. N-glycoproteome reveals that N-glycosylation plays crucial roles in photosynthesis and carbon metabolism in young rice leaves. J. Plant Biol., 2020, 63(3), 165-175.
[http://dx.doi.org/10.1007/s12374-020-09243-9]
[116]
Kobayashi, Y.; Tateno, H.; Ogawa, H.; Yamamoto, K.; Hirabayashi, J. Comprehensive list of lectins: Origins, natures, and carbohydrate specificities. Methods Mol. Biol., 2014, 1200, 555-577.
[http://dx.doi.org/10.1007/978-1-4939-1292-6_45] [PMID: 25117264]
[117]
Burt, R.A.; Dejanovic, B.; Peckham, H.J.; Lee, K.A.; Li, X.; Ounadjela, J.R.; Rao, A.; Malaker, S.A.; Carr, S.A.; Myers, S.A. Novel antibodies for the simple and efficient enrichment of native O-GlcNAc modified peptides. Mol. Cell. Proteomics, 2021, 20, 100167.
[http://dx.doi.org/10.1016/j.mcpro.2021.100167] [PMID: 34678516]
[118]
Cho, K.C.; Chen, L.; Hu, Y.; Schnaubelt, M.; Zhang, H. Developing workflow for simultaneous analyses of phosphopeptides and glycopeptides. ACS Chem. Biol., 2019, 14(1), 58-66.
[http://dx.doi.org/10.1021/acschembio.8b00902] [PMID: 30525447]
[119]
Hu, Y.; Shah, P.; Clark, D.J.; Ao, M.; Zhang, H. Reanalysis of global proteomic and phosphoproteomic data identified a large number of glycopeptides. Anal. Chem., 2018, 90(13), 8065-8071.
[http://dx.doi.org/10.1021/acs.analchem.8b01137] [PMID: 29741879]
[120]
Zhu, J.; Wang, F.; Cheng, K.; Dong, J.; Sun, D.; Chen, R.; Wang, L.; Ye, M.; Zou, H. A simple integrated system for rapid analysis of sialic‐acid‐containingN ‐glycopeptides from human serum. Proteomics, 2013, 13(8), 1306-1313.
[http://dx.doi.org/10.1002/pmic.201200367] [PMID: 23335361]
[121]
Yi, L.; Shao, Y.; Fu, M.; Yan, Y.; Ding, C.F.; Tang, K. One-step preparation of magnetic zwitterionic–hydrophilic dual functional nanospheres for in-depth glycopeptides analysis in Alzheimer’s disease patients’ serum. J. Chromatogr. A, 2022, 1669, 462929.
[http://dx.doi.org/10.1016/j.chroma.2022.462929] [PMID: 35279555]
[122]
Pradita, T.; Chen, Y.J.; Mernie, E.; Bendulo, S.; Chen, Y.J. ZIC-cHILIC functionalized magnetic nanoparticle for rapid and sensitive glycopeptide enrichment from <1 µL serum. Nanomaterials, 2021, 11(9), 2159.
[http://dx.doi.org/10.3390/nano11092159] [PMID: 34578474]
[123]
Fu, D.; Liu, Y.; Shen, A.; Xiao, Y.; Yu, L.; Liang, X. Preparation of glutathione-functionalized zwitterionic silica material for efficient enrichment of sialylated N-glycopeptides. Anal. Bioanal. Chem., 2019, 411(18), 4131-4140.
[http://dx.doi.org/10.1007/s00216-019-01661-0] [PMID: 30828761]
[124]
Wang, H.; Wong, C.H.; Chin, A.; Taguchi, A.; Taylor, A.; Hanash, S.; Sekiya, S.; Takahashi, H.; Murase, M.; Kajihara, S.; Iwamoto, S.; Tanaka, K. Integrated mass spectrometry–based analysis of plasma glycoproteins and their glycan modifications. Nat. Protoc., 2011, 6(3), 253-269.
[http://dx.doi.org/10.1038/nprot.2010.176] [PMID: 21372808]
[125]
Darula, Z.; Sarnyai, F.; Medzihradszky, K.F. O-glycosylation sites identified from mucin core-1 type glycopeptides from human serum. Glycoconj. J., 2016, 33(3), 435-445.
[http://dx.doi.org/10.1007/s10719-015-9630-6] [PMID: 26729242]
[126]
Adav, S.S.; Hwa, H.H.; de Kleijn, D.; Sze, S.K. Improving blood plasma glycoproteome coverage by coupling ultracentrifugation fractionation to electrostatic repulsion–hydrophilic interaction chromatography enrichment. J. Proteome Res., 2015, 14(7), 2828-2838.
[http://dx.doi.org/10.1021/acs.jproteome.5b00102] [PMID: 26044363]
[127]
Yang, W.; Song, A.; Ao, M.; Xu, Y.; Zhang, H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat. Protoc., 2020, 15(8), 2589-2610.
[http://dx.doi.org/10.1038/s41596-020-0345-1] [PMID: 32681153]
[128]
Chen, W.; Smeekens, J.M.; Wu, R. A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol. Cell. Proteomics, 2014, 13(6), 1563-1572.
[http://dx.doi.org/10.1074/mcp.M113.036251] [PMID: 24692641]
[129]
Morgenstern, D.; Wolf-Levy, H.; Tickotsky-Moskovitz, N.; Cooper, I.; Buchman, A.S.; Bennett, D.A.; Beeri, M.S.; Levin, Y. Optimized glycopeptide enrichment method–it is all about the sauce. Anal. Chem., 2022, 94(29), 10308-10313.
[http://dx.doi.org/10.1021/acs.analchem.2c00524] [PMID: 35764435]
[130]
Chen, S.Y.; Dong, M.; Yang, G.; Zhou, Y.; Clark, D.J.; Lih, T.M.; Schnaubelt, M.; Liu, Z.; Zhang, H. Glycans, glycosite, and intact glycopeptide analysis of n-linked glycoproteins using liquid handling systems. Anal. Chem., 2020, 92(2), 1680-1686.
[http://dx.doi.org/10.1021/acs.analchem.9b03761] [PMID: 31859482]
[131]
Keser, T. Tijardović M.; Gornik, I.; Lukić E.; Lauc, G.; Gornik, O.; Novokmet, M. High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery. Mol. Cell. Proteomics, 2021, 20, 100044.
[http://dx.doi.org/10.1074/mcp.RA120.002433] [PMID: 33493676]
[132]
Mnatsakanyan, R.; Shema, G.; Basik, M.; Batist, G.; Borchers, C.H.; Sickmann, A.; Zahedi, R.P. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev. Proteomics, 2018, 15(6), 515-535.
[http://dx.doi.org/10.1080/14789450.2018.1483340] [PMID: 29893147]
[133]
Pascovici, D.; Wu, J.X.; McKay, M.J.; Joseph, C.; Noor, Z.; Kamath, K.; Wu, Y.; Ranganathan, S.; Gupta, V.; Mirzaei, M. Clinically relevant post-translational modification analyses—maturing workflows and bioinformatics tools. Int. J. Mol. Sci., 2018, 20(1), 16.
[http://dx.doi.org/10.3390/ijms20010016] [PMID: 30577541]
[134]
Rush, J.; Moritz, A.; Lee, K.A.; Guo, A.; Goss, V.L.; Spek, E.J.; Zhang, H.; Zha, X.M.; Polakiewicz, R.D.; Comb, M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol., 2005, 23(1), 94-101.
[http://dx.doi.org/10.1038/nbt1046] [PMID: 15592455]
[135]
Stokes, M.P.; Farnsworth, C.L.; Moritz, A.; Silva, J.C.; Jia, X.; Lee, K.A.; Guo, A.; Polakiewicz, R.D.; Comb, M.J. PTMScan direct: Identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol. Cell. Proteomics, 2012, 11(5), 187-201.
[http://dx.doi.org/10.1074/mcp.M111.015883] [PMID: 22322096]
[136]
Svinkina, T.; Gu, H.; Silva, J.C.; Mertins, P.; Qiao, J.; Fereshetian, S.; Jaffe, J.D.; Kuhn, E.; Udeshi, N.D.; Carr, S.A. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteomics, 2015, 14(9), 2429-2440.
[http://dx.doi.org/10.1074/mcp.O114.047555] [PMID: 25953088]
[137]
Guo, A.; Gu, H.; Zhou, J.; Mulhern, D.; Wang, Y.; Lee, K.A.; Yang, V.; Aguiar, M.; Kornhauser, J.; Jia, X.; Ren, J.; Beausoleil, S.A.; Silva, J.C.; Vemulapalli, V.; Bedford, M.T.; Comb, M.J. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol. Cell. Proteomics, 2014, 13(1), 372-387.
[http://dx.doi.org/10.1074/mcp.O113.027870] [PMID: 24129315]
[138]
Lumpkin, R.J.; Gu, H.; Zhu, Y.; Leonard, M.; Ahmad, A.S.; Clauser, K.R.; Meyer, J.G.; Bennett, E.J.; Komives, E.A. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat. Commun., 2017, 8(1), 1171.
[http://dx.doi.org/10.1038/s41467-017-01271-3] [PMID: 29079793]
[139]
Gu, H.; Ren, J.M.; Jia, X.; Levy, T.; Rikova, K.; Yang, V.; Lee, K.A.; Stokes, M.P.; Silva, J.C. Quantitative profiling of post-translational modifications by immunoaffinity enrichment and lc-ms/ms in cancer serum without immunodepletion. Mol. Cell. Proteomics, 2016, 15(2), 692-702.
[http://dx.doi.org/10.1074/mcp.O115.052266] [PMID: 26635363]
[140]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[141]
Kirmess, K.M.; Meyer, M.R.; Holubasch, M.S.; Knapik, S.S.; Hu, Y.; Jackson, E.N.; Harpstrite, S.E.; Verghese, P.B.; West, T.; Fogelman, I.; Braunstein, J.B.; Yarasheski, K.E.; Contois, J.H. The PrecivityAD™ test: Accurate and reliable LC-MS/MS assays for quantifying plasma amyloid beta 40 and 42 and apolipoprotein E proteotype for the assessment of brain amyloidosis. Clin. Chim. Acta, 2021, 519, 267-275.
[http://dx.doi.org/10.1016/j.cca.2021.05.011] [PMID: 34015303]
[142]
Bauzá-Martinez, J.; Aletti, F.; Pinto, B.B.; Ribas, V.; Odena, M.A.; Díaz, R.; Romay, E.; Ferrer, R.; Kistler, E.B.; Tedeschi, G.; Schmid-Schönbein, G.W.; Herpain, A.; Bendjelid, K.; de Oliveira, E. Proteolysis in septic shock patients: Plasma peptidomic patterns are associated with mortality. Br. J. Anaesth., 2018, 121(5), 1065-1074.
[http://dx.doi.org/10.1016/j.bja.2018.05.072] [PMID: 30336851]
[143]
Zhu, P.; Bowden, P.; Zhang, D.; Marshall, J.G. Mass spectrometry of peptides and proteins from human blood. Mass Spectrom. Rev., 2011, 30(5), 685-732.
[http://dx.doi.org/10.1002/mas.20291] [PMID: 24737629]
[144]
Foreman, R.E.; George, A.L.; Reimann, F.; Gribble, F.M.; Kay, R.G. Peptidomics: A review of clinical applications and methodologies. J. Proteome Res., 2021, 20(8), 3782-3797.
[http://dx.doi.org/10.1021/acs.jproteome.1c00295] [PMID: 34270237]
[145]
Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.K.; Enderle, D.; Noerholm, M.; Breakefield, X.O.; Skog, J.K. Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann. Oncol., 2021, 32(4), 466-477.
[http://dx.doi.org/10.1016/j.annonc.2021.01.074] [PMID: 33548389]
[146]
Barbo, M. Ravnik-Glavač M. Extracellular vesicles as potential biomarkers in amyotrophic lateral sclerosis. Genes, 2023, 14(2), 325.
[http://dx.doi.org/10.3390/genes14020325] [PMID: 36833252]
[147]
Ollen-Bittle, N.; Roseborough, A.D.; Wang, W.; Wu, J.D.; Whitehead, S.N. Mechanisms and biomarker potential of extracellular vesicles in stroke. Biology, 2022, 11(8), 1231.
[http://dx.doi.org/10.3390/biology11081231] [PMID: 36009857]
[148]
Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding microvesicles: Artefacts no more. Trends Cell Biol., 2009, 19(2), 43-51.
[http://dx.doi.org/10.1016/j.tcb.2008.11.003] [PMID: 19144520]
[149]
Chen, I.H.; Xue, L.; Hsu, C.C.; Paez, J.S.P.; Pan, L.; Andaluz, H.; Wendt, M.K.; Iliuk, A.B.; Zhu, J.K.; Tao, W.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci., 2017, 114(12), 3175-3180.
[http://dx.doi.org/10.1073/pnas.1618088114] [PMID: 28270605]
[150]
Andaluz Aguilar, H.; Iliuk, A.B.; Chen, I.H.; Tao, W.A. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles. Nat. Protoc., 2020, 15(1), 161-180.
[http://dx.doi.org/10.1038/s41596-019-0260-5] [PMID: 31863077]
[151]
Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res. Int., 2018, 2018, 1-27.
[http://dx.doi.org/10.1155/2018/8545347] [PMID: 29662902]
[152]
Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells, 2020, 9(9), 1955.
[http://dx.doi.org/10.3390/cells9091955] [PMID: 32854228]
[153]
Ayala-Mar, S.; Donoso-Quezada, J.; Gallo-Villanueva, R.C.; Perez-Gonzalez, V.H.; González-Valdez, J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis, 2019, 40(23-24), 3036-3049.
[http://dx.doi.org/10.1002/elps.201800526] [PMID: 31373715]
[154]
Gandham, S.; Su, X.; Wood, J.; Nocera, A.L.; Alli, S.C.; Milane, L.; Zimmerman, A.; Amiji, M.; Ivanov, A.R. Technologies and standardization in research on extracellular vesicles. Trends Biotechnol., 2020, 38(10), 1066-1098.
[http://dx.doi.org/10.1016/j.tibtech.2020.05.012] [PMID: 32564882]
[155]
Helwa, I.; Cai, J.; Drewry, M.D.; Zimmerman, A.; Dinkins, M.B.; Khaled, M.L.; Seremwe, M.; Dismuke, W.M.; Bieberich, E.; Stamer, W.D.; Hamrick, M.W.; Liu, Y. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 2017, 12(1), e0170628.
[http://dx.doi.org/10.1371/journal.pone.0170628] [PMID: 28114422]
[156]
Ueda, K.; Ishikawa, N.; Tatsuguchi, A.; Saichi, N.; Fujii, R.; Nakagawa, H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci. Rep., 2014, 4(1), 6232.
[http://dx.doi.org/10.1038/srep06232] [PMID: 25167841]
[157]
Chen, C.; Lin, B.R.; Hsu, M.Y.; Cheng, C.M. Paper-based devices for isolation and characterization of extracellular vesicles. J. Vis. Exp., 2015, (98), e52722.
[PMID: 25867034]
[158]
Fang, S.; Tian, H.; Li, X.; Jin, D.; Li, X.; Kong, J.; Yang, C.; Yang, X.; Lu, Y.; Luo, Y.; Lin, B.; Niu, W.; Liu, T. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One, 2017, 12(4), e0175050.
[http://dx.doi.org/10.1371/journal.pone.0175050] [PMID: 28369094]
[159]
Balaj, L.; Atai, N.A.; Chen, W.; Mu, D.; Tannous, B.A.; Breakefield, X.O.; Skog, J.; Maguire, C.A. Heparin affinity purification of extracellular vesicles. Sci. Rep., 2015, 5(1), 10266.
[http://dx.doi.org/10.1038/srep10266] [PMID: 25988257]
[160]
Mondal, S.K.; Whiteside, T.L. Immunoaffinity-based isolation of melanoma cell-derived and T cell-derived exosomes from plasma of melanoma patients. Methods Mol. Biol., 2021, 2265, 305-321.
[http://dx.doi.org/10.1007/978-1-0716-1205-7_23] [PMID: 33704724]
[161]
Sharma, P.; Ludwig, S.; Muller, L.; Hong, C.S.; Kirkwood, J.M.; Ferrone, S.; Whiteside, T.L. Immunoaffinity‐based isolation of melanoma cell‐derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles, 2018, 7(1), 1435138.
[http://dx.doi.org/10.1080/20013078.2018.1435138] [PMID: 29511460]
[162]
Mathivanan, S.; Lim, J.W.E.; Tauro, B.J.; Ji, H.; Moritz, R.L.; Simpson, R.J. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics, 2010, 9(2), 197-208.
[http://dx.doi.org/10.1074/mcp.M900152-MCP200] [PMID: 19837982]
[163]
King, C.D.; Kapp, K.L.; Arul, A.B.; Choi, M.J.; Robinson, R.A.S. Advancements in automation for plasma proteomics sample preparation. Mol. Omics, 2022, 18(9), 828-839.
[http://dx.doi.org/10.1039/D2MO00122E] [PMID: 36048090]
[164]
Fu, Q.; Murray, C.I.; Karpov, O.A.; Van Eyk, J.E. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. Mass Spectrom. Rev., 2023, 42(2), 873-886.
[http://dx.doi.org/10.1002/mas.21750] [PMID: 34786750]
[165]
Razavi, M.; Leigh Anderson, N.; Pope, M.E.; Yip, R.; Pearson, T.W. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow. N. Biotechnol., 2016, 33(5), 494-502.
[http://dx.doi.org/10.1016/j.nbt.2015.12.008] [PMID: 26772726]
[166]
Razavi, M.; Farrokhi, V.; Yip, R.; Anderson, N.L.; Pearson, T.W.; Neubert, H. Measuring the turnover rate of clinically important plasma proteins using an automated siscapa workflow. Clin. Chem., 2019, 65(3), 492-494.
[http://dx.doi.org/10.1373/clinchem.2018.294892] [PMID: 30626630]
[167]
Whiteaker, J.R.; Zhao, L.; Anderson, L.; Paulovich, A.G. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol. Cell. Proteomics, 2010, 9(1), 184-196.
[http://dx.doi.org/10.1074/mcp.M900254-MCP200] [PMID: 19843560]
[168]
Niu, L.; Thiele, M.; Geyer, P.E.; Rasmussen, D.N.; Webel, H.E.; Santos, A.; Gupta, R.; Meier, F.; Strauss, M.; Kjaergaard, M.; Lindvig, K.; Jacobsen, S.; Rasmussen, S.; Hansen, T.; Krag, A.; Mann, M. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat. Med., 2022, 28(6), 1277-1287.
[http://dx.doi.org/10.1038/s41591-022-01850-y] [PMID: 35654907]
[169]
Bennike, T.B.; Steen, H. High-throughput parallel proteomic sample preparation using 96-well polyvinylidene fluoride (PVDF) membranes and C18 purification plates. Methods Mol. Biol., 2017, 1619, 395-402.
[http://dx.doi.org/10.1007/978-1-4939-7057-5_27] [PMID: 28674899]
[170]
Thomas, S.N.; French, D.; Jannetto, P.J.; Rappold, B.A.; Clarke, W.A. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers, 2022, 2(1), 96.
[http://dx.doi.org/10.1038/s43586-022-00175-x] [PMID: 36532107]
[171]
Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF mass spectrometry in clinical analysis and research. ACS Measurem. Sci. Au, 2022, 2(5), 385-404.
[http://dx.doi.org/10.1021/acsmeasuresciau.2c00019] [PMID: 36785658]
[172]
Wang, J.; Pursell, M.E.; DeVor, A.; Awoyemi, O.; Valentine, S.J.; Li, P. Portable mass spectrometry system: Instrumentation, applications, and path to ‘omics analysis. Proteomics, 2022, 22(23-24), 2200112.
[http://dx.doi.org/10.1002/pmic.202200112] [PMID: 36349734]
[173]
Zhai, Y.; Liu, S.; Gao, L.; Hu, L.; Xu, W. Direct biological sample analyses by laserspray ionization miniature mass spectrometry. Anal. Chem., 2018, 90(9), 5696-5702.
[http://dx.doi.org/10.1021/acs.analchem.7b05366] [PMID: 29562126]
[174]
Chiang, S.; Zhang, W.; Farnsworth, C.; Zhu, Y.; Lee, K.; Ouyang, Z. Targeted quantification of peptides using miniature mass spectrometry. J. Proteome Res., 2020, 19(5), 2043-2052.
[http://dx.doi.org/10.1021/acs.jproteome.9b00875] [PMID: 32202427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy