Abstract
Aim: An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD).
Methods: The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 μmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression.
Results: A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression.
Conclusion: The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.
Graphical Abstract
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[http://dx.doi.org/10.1038/s41591-023-02505-2] [PMID: 37667136]
[http://dx.doi.org/10.1038/s41392-023-01484-7] [PMID: 37386015]
[http://dx.doi.org/10.1016/j.drudis.2022.01.016] [PMID: 35121174]
[http://dx.doi.org/10.1016/S1474-4422(22)00168-5] [PMID: 35643092]
[http://dx.doi.org/10.1007/s13311-023-01405-0] [PMID: 37490245]
[http://dx.doi.org/10.1016/j.brainresbull.2018.05.003] [PMID: 29730417]
[http://dx.doi.org/10.5114/aoms.2018.76863] [PMID: 32190145]
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[http://dx.doi.org/10.1186/s40035-022-00321-1] [PMID: 36284351]
[http://dx.doi.org/10.1038/s41582-023-00843-w] [PMID: 37336944]
[http://dx.doi.org/10.1016/j.neuron.2021.05.012] [PMID: 34102111]
[http://dx.doi.org/10.1097/00001756-200308060-00005] [PMID: 12960758]
[http://dx.doi.org/10.2174/1567205011310010005] [PMID: 23157338]
[http://dx.doi.org/10.1038/s41586-023-06120-6] [PMID: 37258678]
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[http://dx.doi.org/10.1016/j.tins.2019.01.002] [PMID: 30770136]
[http://dx.doi.org/10.1007/s13311-021-01083-w]
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013101] [PMID: 25288117]
[http://dx.doi.org/10.1038/s41583-020-00379-8] [PMID: 33046886]
[http://dx.doi.org/10.1002/jnr.21129] [PMID: 17131428]
[http://dx.doi.org/10.1002/jnr.22570] [PMID: 21312222]
[http://dx.doi.org/10.1016/j.clim.2023.109286] [PMID: 36907539]
[http://dx.doi.org/10.1073/pnas.1910292116] [PMID: 31611410]
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[http://dx.doi.org/10.7150/thno.71086] [PMID: 35673561]
[http://dx.doi.org/10.1016/j.jmb.2021.167301] [PMID: 34653436]
[http://dx.doi.org/10.1016/j.cell.2023.04.025] [PMID: 37236155]
[http://dx.doi.org/10.1038/ni.1636]
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[http://dx.doi.org/10.1186/s12974-019-1423-6] [PMID: 30736791]
[http://dx.doi.org/10.1186/s12974-021-02329-2] [PMID: 34856990]
[http://dx.doi.org/10.1002/brb3.2063] [PMID: 33587329]
[http://dx.doi.org/10.3389/fnmol.2022.872471] [PMID: 35782390]
[http://dx.doi.org/10.1007/s10565-023-09820-x] [PMID: 37491594]
[http://dx.doi.org/10.1016/j.biopha.2019.109618] [PMID: 31731189]
[http://dx.doi.org/10.31083/j.jin2205129] [PMID: 37735117]
[http://dx.doi.org/10.1038/cddis.2014.348] [PMID: 25144717]
[http://dx.doi.org/10.1155/2021/8817698] [PMID: 34188608]
[http://dx.doi.org/10.1111/jcmm.15439] [PMID: 32521573]
[http://dx.doi.org/10.1007/s00401-022-02528-y] [PMID: 36481964]
[http://dx.doi.org/10.1016/j.bioorg.2021.105255] [PMID: 34435574]
[http://dx.doi.org/10.1155/2022/1926661] [PMID: 35434133]
[http://dx.doi.org/10.1080/21655979.2021.1938498] [PMID: 34130601]
[http://dx.doi.org/10.3390/brainsci13091318] [PMID: 37759919]
[http://dx.doi.org/10.1007/s12551-018-0490-8] [PMID: 30594974]
[http://dx.doi.org/10.1016/j.jpha.2023.06.011] [PMID: 37719197]
[http://dx.doi.org/10.15252/msb.20145304] [PMID: 25080494]
[http://dx.doi.org/10.1152/physiolgenomics.00208.2006] [PMID: 17077275]
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.024] [PMID: 23273601]
[http://dx.doi.org/10.1210/en.2016-1763] [PMID: 28323976]
[http://dx.doi.org/10.1038/nature15541] [PMID: 26375259]
[http://dx.doi.org/10.1038/cr.2015.139] [PMID: 26611636]
[http://dx.doi.org/10.1172/jci.insight.146852] [PMID: 34877938]
[http://dx.doi.org/10.3389/fimmu.2022.893912] [PMID: 35774778]
[http://dx.doi.org/10.1007/s00011-022-01624-9] [PMID: 35969260]
[http://dx.doi.org/10.18632/aging.205174] [PMID: 37921870]
[http://dx.doi.org/10.1016/j.cell.2022.06.038] [PMID: 35907404]
[http://dx.doi.org/10.1093/brain/awad159] [PMID: 37183523]
[http://dx.doi.org/10.3390/ijms241914499] [PMID: 37833948]
[http://dx.doi.org/10.1021/acschemneuro.2c00358] [PMID: 36302506]
[http://dx.doi.org/10.1016/bs.apcsb.2019.06.001] [PMID: 31928731]
[http://dx.doi.org/10.1038/359325a0] [PMID: 1406936]
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[http://dx.doi.org/10.1002/alz.13095] [PMID: 37158312]
[http://dx.doi.org/10.1016/j.jep.2021.114264] [PMID: 34082015]
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
[http://dx.doi.org/10.1128/spectrum.01637-21] [PMID: 34937171]
[http://dx.doi.org/10.1007/978-1-4939-9092-4_18] [PMID: 30838623]
[http://dx.doi.org/10.1038/cr.2016.100]
[http://dx.doi.org/10.1038/s41418-021-00785-0] [PMID: 33953348]
[http://dx.doi.org/10.7150/thno.54072] [PMID: 33754026]
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[http://dx.doi.org/10.1016/j.cell.2020.02.002] [PMID: 32109412]
[http://dx.doi.org/10.1038/nature18590] [PMID: 27281216]
[http://dx.doi.org/10.4103/1673-5374.390979] [PMID: 38227498]
[http://dx.doi.org/10.1126/science.aar7607] [PMID: 30467171]