Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Remedial Dosing Recommendations for Sirolimus Delayed or Missed Dosages Caused by Poor Medication Compliance in Pediatric Tuberous Sclerosis Complex Patients

Author(s): Yang Yang, Lei Jiang, Hai-Rong Zhu, Wen-Xin Sun, Jing-Yu Mao, Jing-Wen Miao, Yi-Chen Wang, Su-Mei He*, Dong-Dong Wang* and Xiao Chen*

Volume 30, Issue 11, 2024

Published on: 06 March, 2024

Page: [877 - 886] Pages: 10

DOI: 10.2174/0113816128299479240213151714

Price: $65

Abstract

Background: Delayed or missed dosages caused by poor medication compliance significantly affected the treatment of diseases in children.

Aims: The present study aimed to investigate the influence of delayed or missed dosages on sirolimus pharmacokinetics (PK) in pediatric tuberous sclerosis complex (TSC) patients and to recommend remedial dosages for nonadherent patients.

Methods: A published sirolimus population PK model in pediatric TSC patients was used to assess the influence of different nonadherence scenarios and recommend optimally remedial dosages based on Monte Carlo simulation. Thirteen nonadherent scenarios were simulated in this study, including delayed 2h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h, 16 h, 18 h, 20 h, 22 h, 23.5 h, and missed one dosage. Remedial dosing strategies contained 10-200% of scheduled dosages. The optimal remedial dosage was that with the maximum probability of returning the individual therapeutic range.

Results: For delayed or missed sirolimus dosages in pediatric TSC patients, when the delayed time was 0-8 h, 8-10 h, 10-18 h, 18-22.7 h, 22.7-24 h, 70%, 60%, 40%, 30%, 20% scheduled dosages were recommended to take immediately. When one dosage was missed, 120% of scheduled dosages were recommended at the next dose.

Conclusion: It was the first time to recommend remedial dosages for delayed or missed sirolimus therapy caused by poor medication compliance in pediatric TSC patients based on Monte Carlo simulation. Meanwhile, the present study provided a potential solution for delayed or missed dosages in clinical practice.

« Previous
[1]
Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355(13): 1345-56.
[http://dx.doi.org/10.1056/NEJMra055323] [PMID: 17005952]
[2]
Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 2008; 372(9639): 657-68.
[http://dx.doi.org/10.1016/S0140-6736(08)61279-9] [PMID: 18722871]
[3]
Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci 1991; 615(1): 125-7.
[http://dx.doi.org/10.1111/j.1749-6632.1991.tb37754.x] [PMID: 2039137]
[4]
Wang DD, Chen X, Xu H, Li ZP. Initial dosage recommendation for sirolimus in children with tuberous sclerosis complex. Front Pharmacol 2020; 11: 890.
[http://dx.doi.org/10.3389/fphar.2020.00890] [PMID: 32595509]
[5]
van der Poest Clement E, Jansen FE, Braun KPJ, Peters JM. Update on drug management of refractory epilepsy in tuberous sclerosis complex. Paediatr Drugs 2020; 22(1): 73-84.
[http://dx.doi.org/10.1007/s40272-019-00376-0] [PMID: 31912454]
[6]
Ebrahimi-Fakhari D, Mann LL, Poryo M, et al. Incidence of tuberous sclerosis and age at first diagnosis: New data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis 2018; 13(1): 117.
[http://dx.doi.org/10.1186/s13023-018-0870-y] [PMID: 30016967]
[7]
Franz DN, Capal JK. mTOR inhibitors in the pharmacologic management of tuberous sclerosis complex and their potential role in other rare neurodevelopmental disorders. Orphanet J Rare Dis 2017; 12(1): 51.
[http://dx.doi.org/10.1186/s13023-017-0596-2] [PMID: 28288694]
[8]
Shen YW, Wang YY, Zhang MN, et al. Sirolimus treatment for tuberous sclerosis complex prior to epilepsy: Evidence from a registry-based real-world study. Seizure 2022; 97: 23-31.
[http://dx.doi.org/10.1016/j.seizure.2022.03.003] [PMID: 35286974]
[9]
Li S, Zhan M, Wu S, et al. Population pharmacokinetic analysis and dosing optimization of sirolimus in children with tuberous sclerosis complex. J Clin Pharmacol 2022; 62(8): 948-59.
[http://dx.doi.org/10.1002/jcph.2033] [PMID: 35094415]
[10]
Yu EQ, Jiao Z, Wang CY, Ding JJ, Zhang XH. Remedial dosing recommendations for delayed or missed doses of lamotrigine in pediatric patients with epilepsy using Monte Carlo simulations. Epilepsy Behav 2019; 96: 132-40.
[http://dx.doi.org/10.1016/j.yebeh.2019.04.007] [PMID: 31132614]
[11]
Wang C, Jiao Z, Ding J, Yu E, Zhu G. Remedial dosing recommendations for delayed or missed doses of valproic acid in patients with epilepsy based on Monte Carlo simulations. Epilepsy Behav 2020; 111: 107265.
[http://dx.doi.org/10.1016/j.yebeh.2020.107265] [PMID: 32640410]
[12]
Candela-Boix MR, Ramón-López A, Nalda-Molina R, Díaz- González M, Márquez-Megías S, Más-Serrano P. Population pharmacokinetics models of sirolimus in renal transplant patients: A systematic review. Farm Hosp 2021; 45(7): 77-83.
[PMID: 35379113]
[13]
Chen X, Wang D, Zhu L, et al. Population pharmacokinetics and initial dose optimization of sirolimus improving drug blood level for seizure control in pediatric patients with tuberous sclerosis complex. Front Pharmacol 2021; 12: 647232.
[http://dx.doi.org/10.3389/fphar.2021.647232] [PMID: 33995061]
[14]
Chen X, Wang DD, Xu H, Li ZP. Initial dose recommendation for sirolimus in paediatric kaposiform haemangioendothelioma patients based on population pharmacokinetics and pharmacogenomics. J Int Med Res 2020; 48(8): 0300060520947627.
[http://dx.doi.org/10.1177/0300060520947627] [PMID: 32815764]
[15]
Cheng X, Zhao Y, Gu H, et al. The first study in pediatric: Population pharmacokinetics of sirolimus and its application in Chinese children with immune cytopenia. Int J Immunopathol Pharmacol 2020; 34: 2058738420934936.
[http://dx.doi.org/10.1177/2058738420934936] [PMID: 32720540]
[16]
Mizuno T, Fukuda T, Christians U, Perentesis JP, Fouladi M, Vinks AA. Population pharmacokinetics of temsirolimus and sirolimus in children with recurrent solid tumours: A report from the children’s oncology group. Br J Clin Pharmacol 2017; 83(5): 1097-107.
[http://dx.doi.org/10.1111/bcp.13181] [PMID: 28000286]
[17]
Scott JR, Courter JD, Saldaña SN, et al. Population pharmacokinetics of sirolimus in pediatric patients with neurofibromatosis type 1. Ther Drug Monit 2013; 35(3): 332-7.
[http://dx.doi.org/10.1097/FTD.0b013e318286dd3f] [PMID: 23666574]
[18]
Wang D, Chen X, Li Z. Population pharmacokinetics of sirolimus in pediatric patients with kaposiform hemangioendothelioma: A retrospective study. Oncol Lett 2019; 18(3): 2412-9.
[http://dx.doi.org/10.3892/ol.2019.10562] [PMID: 31452734]
[19]
Wu K, Cohen EEW, House LK, et al. Nonlinear population pharmacokinetics of sirolimus in patients with advanced cancer. CPT Pharmacometrics Syst Pharmacol 2012; 1(12): 1-6.
[http://dx.doi.org/10.1038/psp.2012.18] [PMID: 23887441]
[20]
Zhang Y, Zhang X, Zou Y, Sun Y, Li X. Population pharmacokinetics of sirolimus in Chinese adult liver transplant recipients: A retrospective study. Xenobiotica 2021; 51(12): 1408-15.
[http://dx.doi.org/10.1080/00498254.2022.2025628] [PMID: 34983304]
[21]
Ferron GM, Mishina EV, Jusko WJ, Zimmerman JJ. Population pharmacokinetics of sirolimus. Clin Pharmacol Ther 1998; 63(4): 494.
[http://dx.doi.org/10.1016/S0009-9236(98)90045-5] [PMID: 9585804]
[22]
Ferron GM, Mishina EV, Zimmerman JJ, Jusko WJ. Population pharmacokinetics of sirolimus in kidney transplant patients. Clin Pharmacol Ther 1997; 61(4): 416-28.
[http://dx.doi.org/10.1016/S0009-9236(97)90192-2] [PMID: 9129559]
[23]
Jiao Z, Shi X, Li Z, Zhong M. Population pharmacokinetics of sirolimus in de novo Chinese adult renal transplant patients. Br J Clin Pharmacol 2009; 68(1): 47-60.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03392.x] [PMID: 19660003]
[24]
Das BB, Shoemaker L, Subramanian S, Johnsrude C, Recto M, Austin EH. Acute sirolimus pulmonary toxicity in an infant heart transplant recipient: Case report and literature review. J Heart Lung Transplant 2007; 26(3): 296-8.
[http://dx.doi.org/10.1016/j.healun.2006.12.004] [PMID: 17346635]
[25]
Davaus Gasparetto T, Marchiori E, Menezes P, Zanetti G. Pulmonary toxicity associated with sirolimus following kidney transplantation: Computed tomography findings. Nefrologia 2010; 30(2): 259-60.
[PMID: 20393625]
[26]
Feagans J, Victor D, Moehlen M, et al. Interstitial pneumonitis in the transplant patient: Consider sirolimus-associated pulmonary toxicity. J La State Med Soc 2009; 161(3): 166-, 168-172.
[PMID: 19772040]
[27]
Gupte GL, Mahadevan S, Clarke JR, Alton H, Beath SV. Sirolimus-related pulmonary toxicity mimicking ‘asthma like’ symptoms. World J Gastroenterol 2007; 13(38): 5151-3.
[http://dx.doi.org/10.3748/wjg.v13.i38.5151] [PMID: 17876884]
[28]
Pedroso SL, Martins LS, Sousa S, et al. Pulmonary alveolar proteinosis? A rare pulmonary toxicity of sirolimus. Transpl Int 2007; 20(3): 291-6.
[http://dx.doi.org/10.1111/j.1432-2277.2006.00408.x] [PMID: 17291222]
[29]
Pham PTT, Pham PCT, Danovitch GM, et al. Sirolimus-associated pulmonary toxicity. Transplantation 2004; 77(8): 1215-20.
[http://dx.doi.org/10.1097/01.TP.0000118413.92211.B6] [PMID: 15114088]
[30]
Sola E, Lopez V, Burgos D, et al. Pulmonary toxicity associated with sirolimus treatment in kidney transplantation. Transplant Proc 2006; 38(8): 2438-40.
[http://dx.doi.org/10.1016/j.transproceed.2006.08.037] [PMID: 17097960]
[31]
Neff GW, Ruiz P, Madariaga JR, et al. Sirolimus-associated hepatotoxicity in liver transplantation. Ann Pharmacother 2004; 38(10): 1593-6.
[http://dx.doi.org/10.1345/aph.1E165] [PMID: 15328399]
[32]
Niemczyk M, Wyzgał J, Perkowska A, Porowski D, Paczek L. Sirolimus-associated hepatotoxicity in the kidney graft recipient. Transpl Int 2005; 18(11): 1302-3.
[http://dx.doi.org/10.1111/j.1432-2277.2005.00210.x] [PMID: 16221163]
[33]
Cho ME, Hurley JK, Kopp JB. Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity. Am J Kidney Dis 2007; 49(2): 310-7.
[http://dx.doi.org/10.1053/j.ajkd.2006.10.020] [PMID: 17261434]
[34]
Fernandes I, Zhang Y, Qi Y, et al. Impact of reduced nephron mass on cyclosporine- and/or sirolimus-induced nephrotoxicity. Transplantation 2009; 88(12): 1323-31.
[http://dx.doi.org/10.1097/TP.0b013e3181bd5951] [PMID: 20029328]
[35]
Ninova D, Covarrubias M, Rea DJ, Park WD, Grande JP, Stegall MD. Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: Differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. Transplantation 2004; 78(3): 338-44.
[http://dx.doi.org/10.1097/01.TP.0000128837.07640.AE] [PMID: 15316360]
[36]
Pallet N, Thervet E, Legendre C, Anglicheau D. Sirolimus early graft nephrotoxicity: Clinical and experimental data. Curr Drug Saf 2006; 1(2): 179-87.
[http://dx.doi.org/10.2174/157488606776930580] [PMID: 18690929]
[37]
Pallet N, Thervet E, Legendre C, Anglicheau D. Nephrotoxicity of sirolimus: Experimental and clinical data. Nephrol Ther 2006; 2(4): 183-90.
[http://dx.doi.org/10.1016/j.nephro.2006.04.006] [PMID: 16966063]
[38]
Schmitz V, Klawitter J, Bendrick-Peart J, et al. Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation. Nephron, Exp Nephrol 2009; 111(4): e80-91.
[http://dx.doi.org/10.1159/000209208] [PMID: 19293597]
[39]
Shihab FS, Bennett WM, Yi H, Choi SO, Andoh TF. Sirolimus increases transforming growth factor-β1 expression and potentiates chronic cyclosporine nephrotoxicity. Kidney Int 2004; 65(4): 1262-71.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00498.x] [PMID: 15086465]
[40]
Tomlanovich SJ, Vincenti F. Sirolimus. Clin J Am Soc Nephrol 2007; 2(2): 198-9.
[http://dx.doi.org/10.2215/CJN.00340107] [PMID: 17699406]
[41]
Bussiere CT, Lakey JRT, Shapiro AMJ, Korbutt GS. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia 2006; 49(10): 2341-9.
[http://dx.doi.org/10.1007/s00125-006-0374-5] [PMID: 16896936]
[42]
Constantinescu AA, Abbas M, Kassem M, et al. Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Mol Cell Biochem 2016; 418(1-2): 91-102.
[http://dx.doi.org/10.1007/s11010-016-2736-8] [PMID: 27344165]
[43]
Lombardi A, Gambardella J, Du XL, et al. Sirolimus induces depletion of intracellular calcium stores and mitochondrial dysfunction in pancreatic beta cells. Sci Rep 2017; 7(1): 15823.
[http://dx.doi.org/10.1038/s41598-017-15283-y] [PMID: 29158477]
[44]
Serra F, Lauer H, Armann B, et al. Sirolimus improves early microcirculation, but impairs regeneration after pancreatic ischemia-reperfusion injury. Am J Transplant 2007; 7(1): 48-56.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01589.x] [PMID: 17227557]
[45]
de Onis M, Onyango AW, Borghi E, Garza C, Yang H. Comparison of the World Health Organization (WHO) child growth standards and the national center for health statistics/who international growth reference: Implications for child health programmes. Public Health Nutr 2006; 9(7): 942-7.
[http://dx.doi.org/10.1017/PHN20062005] [PMID: 17010261]
[46]
Zhou J, Jiang L, Zhang ZL, et al. Population pharmacokinetics and dosing optimization of mezlocillin in neonates and young infants. J Antimicrob Chemother 2022; 77(8): 2238-44.
[http://dx.doi.org/10.1093/jac/dkac176] [PMID: 35662337]
[47]
Rinaldi M, Cojutti PG, Zamparini E, et al. Population pharmacokinetics and Monte Carlo simulation for dosage optimization of fosfomycin in the treatment of osteoarticular infections in patients without renal dysfunction. Antimicrob Agents Chemother 2021; 65(5): e02038-20.
[http://dx.doi.org/10.1128/AAC.02038-20] [PMID: 33619055]
[48]
Ren Q, Li X, Mu J, et al. Population pharmacokinetics of voriconazole and optimization of dosage regimens based on monte carlo simulation in patients with liver cirrhosis. J Pharm Sci 2019; 108(12): 3923-31.
[http://dx.doi.org/10.1016/j.xphs.2019.09.019] [PMID: 31562869]
[49]
Jaruratanasirikul S, Boonpeng A, Nawakitrangsan M, Samaeng M. NONMEM population pharmacokinetics and monte carlo dosing simulations of imipenem in critically ill patients with life-threatening severe infections during support with or without extracorporeal membrane oxygenation in an intensive care unit. Pharmacotherapy 2021; 41(7): 572-97.
[http://dx.doi.org/10.1002/phar.2597] [PMID: 34080708]
[50]
He CY, Ye PP, Liu B, Song L, van den Anker J, Zhao W. Population pharmacokinetics and dosing optimization of vancomycin in infants, children, and adolescents with augmented renal clearance. Antimicrob Agents Chemother 2021; 65(10): e00897-21.
[http://dx.doi.org/10.1128/AAC.00897-21] [PMID: 34339268]
[51]
Chen X, Wang D, Wang G, et al. Optimization of initial dose regimen for sirolimus in pediatric patients with lymphangioma. Front Pharmacol 2021; 12: 668952.
[http://dx.doi.org/10.3389/fphar.2021.668952] [PMID: 34819851]
[52]
Ding J, Zhang Y, Jiao Z, Wang Y. The effect of poor compliance on the pharmacokinetics of carbamazepine and its epoxide metabolite using Monte Carlo simulation. Acta Pharmacol Sin 2012; 33(11): 1431-40.
[http://dx.doi.org/10.1038/aps.2012.135] [PMID: 23103621]
[53]
Dong J, Xiong W, Chen Y, et al. Optimal dosing regimen of biapenem in Chinese patients with lower respiratory tract infections based on population pharmacokinetic/pharmacodynamic modelling and Monte Carlo simulation. Int J Antimicrob Agents 2016; 47(3): 202-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.12.018] [PMID: 26895604]
[54]
Liao M, Wang M, Zhu X, Zhao L, Zhao M. Tacrolimus population pharmacokinetic model in adult Chinese patients with nephrotic syndrome and dosing regimen identification using Monte Carlo simulations. Ther Drug Monit 2022; 44(5): 615-24.
[http://dx.doi.org/10.1097/FTD.0000000000001008] [PMID: 36101928]
[55]
Llanos-Paez CC, Hennig S, Staatz CE. Population pharmacokinetic modelling, Monte Carlo simulation and semi-mechanistic pharmacodynamic modelling as tools to personalize gentamicin therapy. J Antimicrob Chemother 2017; 72(3): dkw461.
[http://dx.doi.org/10.1093/jac/dkw461] [PMID: 28062683]
[56]
Rao Q, Yang Y, Wang S, et al. Optimal dosing regimen of biapenem based on population pharmacokinetic/pharmacodynamic modelling and Monte Carlo simulation in patients with febrile neutropenia and haematological malignancies. Int J Antimicrob Agents 2023; 62(1): 106841.
[http://dx.doi.org/10.1016/j.ijantimicag.2023.106841] [PMID: 37160241]
[57]
Sime FB, Hahn U, Warner MS, et al. Using population pharmacokinetic modeling and Monte Carlo simulations to determine whether standard doses of piperacillin in piperacillin-tazobactam regimens are adequate for the management of febrile neutropenia. Antimicrob Agents Chemother 2017; 61(11): e00311-17.
[http://dx.doi.org/10.1128/AAC.00311-17] [PMID: 28807922]
[58]
Tang Girdwood S, Dong M, Tang P, et al. Population pharmacokinetic modeling of total and free ceftriaxone in critically ill children and young adults and Monte Carlo simulations support twice daily dosing for target attainment. Antimicrob Agents Chemother 2022; 66(1): e01427-21.
[http://dx.doi.org/10.1128/AAC.01427-21] [PMID: 34633847]
[59]
Xu H, Zhou W, Zhou D, Li J, Al-Huniti N. Evaluation of aztreonam dosing regimens in patients with normal and impaired renal function: A population pharmacokinetic modeling and monte carlo simulation analysis. J Clin Pharmacol 2017; 57(3): 336-44.
[http://dx.doi.org/10.1002/jcph.810] [PMID: 27530649]
[60]
Yang Q, Zhang T, Zhang Y, et al. The recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure: Five years of data based on a population pharmacokinetic model and Monte-Carlo simulations. Front Pharmacol 2022; 13: 993330.
[http://dx.doi.org/10.3389/fphar.2022.993330] [PMID: 36408257]
[61]
Yuan LG, Tang YZ, Zhang YX, et al. Dosage assessment of valnemulin in pigs based on population pharmacokinetic and Monte Carlo simulation. J Vet Pharmacol Ther 2015; 38(4): 400-9.
[http://dx.doi.org/10.1111/jvp.12199] [PMID: 25604162]
[62]
Zheng Y, Xu B, Chen S, et al. Population pharmacokinetic modeling using polymyxin b free plasma concentrations from published reports and evaluation of dosage regimens based on monte carlo simulation in critically ill patients. J Clin Pharmacol 2023; 63(9): 1036-44.
[http://dx.doi.org/10.1002/jcph.2261] [PMID: 37125471]
[63]
Conil JM, Georges B, Ravat F, et al. Ceftazidime dosage recommendations in burn patients: From a population pharmacokinetic approach to clinical practice via Monte Carlo simulations. Clin Ther 2013; 35(10): 1603-12.
[http://dx.doi.org/10.1016/j.clinthera.2013.08.014] [PMID: 24094465]
[64]
Georges B, Conil JM, Ruiz S, et al. Ceftazidime dosage regimen in intensive care unit patients: From a population pharmacokinetic approach to clinical practice via Monte Carlo simulations. Br J Clin Pharmacol 2012; 73(4): 588-96.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04117.x] [PMID: 21988468]
[65]
Ikawa K, Morikawa N, Ikeda K, Ohge H, Sueda T. Pharmacodynamic assessment of doripenem in peritoneal fluid against Gram-negative organisms: Use of population pharmacokinetic modeling and Monte Carlo simulation. Diagn Microbiol Infect Dis 2008; 62(3): 292-7.
[http://dx.doi.org/10.1016/j.diagmicrobio.2008.06.016] [PMID: 18703305]
[66]
McGree JM, Drovandi CC, Pettitt AN. A sequential Monte Carlo approach to derive sampling times and windows for population pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2012; 39(5): 519-26.
[http://dx.doi.org/10.1007/s10928-012-9265-1] [PMID: 22847735]
[67]
Ng CM. Novel hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization estimation method for population pharmacokinetic data analysis. AAPS J 2013; 15(4): 1212-21.
[http://dx.doi.org/10.1208/s12248-013-9524-0] [PMID: 24002801]
[68]
Ramon-Lopez A, Allen JM, Thomson AH, et al. Dosing regimen of meropenem for adults with severe burns: A population pharmacokinetic study with Monte Carlo simulations. J Antimicrob Chemother 2015; 70(3): 882-90.
[http://dx.doi.org/10.1093/jac/dku429] [PMID: 25362574]
[69]
Thuo N, Ungphakorn W, Karisa J, et al. Dosing regimens of oral ciprofloxacin for children with severe malnutrition: A population pharmacokinetic study with Monte Carlo simulation. J Antimicrob Chemother 2011; 66(10): 2336-45.
[http://dx.doi.org/10.1093/jac/dkr314] [PMID: 21831986]
[70]
Wang DD, Mei YQ, Yang L, et al. Optimization of initial dose regimen of tacrolimus in paediatric lung transplant recipients based on Monte Carlo simulation. J Clin Pharm Ther 2022; 47(10): 1659-66.
[http://dx.doi.org/10.1111/jcpt.13717] [PMID: 35716040]
[71]
Wu H, Baynes RE, Leavens T, Tell LA, Riviere JE. Use of population pharmacokinetic modeling and Monte Carlo simulation to capture individual animal variability in the prediction of flunixin withdrawal times in cattle. J Vet Pharmacol Ther 2013; 36(3): 248-57.
[http://dx.doi.org/10.1111/j.1365-2885.2012.01420.x] [PMID: 22712521]
[72]
Yang Y, Li YF, Hu K, et al. The dosage recommendation of cyclosporin in children with hemophagocytic lymphohistiocytosis based on population pharmacokinetic model. Curr Pharm Des 2023; 29(37): 2996-3004.
[http://dx.doi.org/10.2174/0113816128286290231124055116] [PMID: 38062660]
[73]
Yin YW, Liu XQ, Gu JQ, et al. How to handle a delayed or missed dose of edoxaban in patients with non-valvular atrial fibrillation? A model-informed remedial strategy. Br J Clin Pharmacol 2023; 89(7): 2066-75.
[PMID: 35332559]
[74]
Liu XQ, Yin YW, Wang CY, Li ZR, Zhu X, Jiao Z. How to handle the delayed or missed dose of rivaroxaban in patients with non-valvular atrial fibrillation: Model-informed remedial dosing. Expert Rev Clin Pharmacol 2021; 14(9): 1153-63.
[http://dx.doi.org/10.1080/17512433.2021.1937126] [PMID: 34058934]
[75]
MacKeigan JP, Krueger DA. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro-oncol 2015; 17(12): 1550-9.
[http://dx.doi.org/10.1093/neuonc/nov152] [PMID: 26289591]
[76]
Chen J, He W, Wang YY, et al. Long-term administration of sirolimus does not affect the physical development of children with tuberous sclerosis complex. Childs Nerv Syst 2022; 38(5): 947-52.
[http://dx.doi.org/10.1007/s00381-022-05446-2] [PMID: 35083513]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy