Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

DPP2/7 is a Potential Predictor of Prognosis and Target in Immunotherapy in Colorectal Cancer: An Integrative Multi-omics Analysis

Author(s): Zhihao Shang, Yueyang Lai* and Haibo Cheng*

Volume 27, Issue 11, 2024

Published on: 06 March, 2024

Page: [1642 - 1660] Pages: 19

DOI: 10.2174/0113862073290831240229060932

Price: $65

Abstract

Background: Colorectal cancer (CRC) ranks among the leading causes of cancerrelated deaths.

Objective: This study aimed to illuminate the relationship between DPP7 (also known as DPP2) and CRC through a combination of bioinformatics and experimental methodologies.

Methods: A multi-dimensional bioinformatic analysis on DPP7 was executed, covering its expression, survival implications, clinical associations, functional roles, immune interactions, and drug sensitivities. Experimental validations involved siRNA-mediated DPP7 knockdown and various cellular assays.

Results: Data from the Cancer Genome Atlas (TCGA) identified high DPP7 expression in solid CRC tumors, with elevated levels adversely affecting patient prognosis. A shift from the N0 to the N2 stage in CRC was associated with increased DPP7 expression. Functional insights indicated the involvement of DPP7 in cancer progression, particularly in extracellular matrix disassembly. Immunological analyses showed its association with immunosuppressive entities, and in vitro experiments in CRC cell lines underscored its oncogenic attributes.

Conclusion: DPP7 could serve as a CRC prognosis marker, functioning as an oncogene and representing a potential immunotherapeutic target.

Graphical Abstract

[1]
Ye, W.; Ling, S.; Liu, R.Y.; Pan, Z.Z.; Wang, G.; Gao, S.; Wu, J.; Cao, L.; Dong, L.; Li, Y.; Zhou, Y.; Du, W.; Meng, X.; Chen, J.; Guan, X.; He, Y.; Pan, C.; Zheng, X.F.S.; Lu, X.; Chen, S.; Huang, W. Exome sequencing reveals the genetic landscape and frequent inactivation of PCDHB3 in Chinese rectal cancers. J. Pathol., 2018, 245(2), 222-234.
[http://dx.doi.org/10.1002/path.5073] [PMID: 29537081]
[2]
Wiig, J.N.; Poulsen, J.P.; Tveit, K.M.; Olsen, D.R.; Giercksky, K.E. Intra-operative irradiation (IORT) for primary advanced and recurrent rectal cancer. Eur. J. Cancer, 2000, 36(7), 868-874.
[http://dx.doi.org/10.1016/S0959-8049(00)00015-0] [PMID: 10785591]
[3]
He, C.; Duan, X.; Guo, N.; Chan, C.; Poon, C.; Weichselbaum, R.R.; Lin, W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun., 2016, 7(1), 12499.
[http://dx.doi.org/10.1038/ncomms12499] [PMID: 27530650]
[4]
Waumans, Y.; Baerts, L.; Kehoe, K.; Lambeir, A.M.; De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol., 2015, 6, 387.
[http://dx.doi.org/10.3389/fimmu.2015.00387] [PMID: 26300881]
[5]
Ng, L.; Foo, D.C.C.; Wong, C.K.H.; Man, A.T.K.; Lo, O.S.H.; Law, W.L. Repurposing DPP-4 inhibitors for colorectal cancer: A retrospective and single center study. Cancers, 2021, 13(14), 3588.
[http://dx.doi.org/10.3390/cancers13143588] [PMID: 34298800]
[6]
Shah, C.; Hong, Y.R.; Bishnoi, R.; Ali, A.; Skelton, W.P., IV; Dang, L.H.; Huo, J.; Dang, N.H. Impact of DPP4 inhibitors in survival of patients with prostate, pancreas, and breast cancer. Front. Oncol., 2020, 10, 405.
[http://dx.doi.org/10.3389/fonc.2020.00405] [PMID: 32296640]
[7]
da Silva, B.R.; Laird, M.E.; Yatim, N.; Fiette, L.; Ingersoll, M.A.; Albert, M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol., 2015, 16(8), 850-858.
[http://dx.doi.org/10.1038/ni.3201]
[8]
Huang, J.; Liu, X.; Wei, Y.; Li, X.; Gao, S.; Dong, L.; Rao, X.; Zhong, J. Emerging role of dipeptidyl peptidase-4 in autoimmune disease. Front. Immunol., 2022, 13, 830863.
[http://dx.doi.org/10.3389/fimmu.2022.830863] [PMID: 35309368]
[9]
Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol., 2016, 185(1), 1-21.
[http://dx.doi.org/10.1111/cei.12781] [PMID: 26919392]
[10]
Ohnuma, K.; Hatano, R.; Morimoto, C. DPP4 in anti-tumor immunity: Going beyond the enzyme. Nat. Immunol., 2015, 16(8), 791-792.
[http://dx.doi.org/10.1038/ni.3210] [PMID: 26194276]
[11]
Wagner, L.; Klemann, C.; Stephan, M.; von Hörsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol., 2016, 184(3), 265-283.
[http://dx.doi.org/10.1111/cei.12757] [PMID: 26671446]
[12]
Zhao, Y.; Yang, L.; Wang, X.; Zhou, Z. The New insights from DPP‐4 inhibitors: Their potential immune modulatory function in autoimmune diabetes. Diabetes Metab. Res. Rev., 2014, 30(8), 646-653.
[http://dx.doi.org/10.1002/dmrr.2530] [PMID: 24446278]
[13]
Maes, M.B.; Scharpé, S.; De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta, 2007, 380(1-2), 31-49.
[http://dx.doi.org/10.1016/j.cca.2007.01.024] [PMID: 17328877]
[14]
Danilov, A.V.; Danilova, O.V.; Brown, J.R.; Rabinowitz, A.; Klein, A.K.; Huber, B.T. Dipeptidyl peptidase 2 apoptosis assay determines the B-cell activation stage and predicts prognosis in chronic lymphocytic leukemia. Exp. Hematol., 2010, 38(12), 1167-1177.
[http://dx.doi.org/10.1016/j.exphem.2010.08.008] [PMID: 20817072]
[15]
Chiravuri, M.; Schmitz, T.; Yardley, K.; Underwood, R.; Dayal, Y.; Huber, B.T. A novel apoptotic pathway in quiescent lymphocytes identified by inhibition of a post-proline cleaving aminodipeptidase: A candidate target protease, quiescent cell proline dipeptidase. J. Immunol., 1999, 163(6), 3092-3099.
[http://dx.doi.org/10.4049/jimmunol.163.6.3092] [PMID: 10477574]
[16]
Mele, D.A.; Sampson, J.F.; Huber, B.T. Th17 differentiation is the default program for DPP2‐deficient T‐cell differentiation. Eur. J. Immunol., 2011, 41(6), 1583-1593.
[http://dx.doi.org/10.1002/eji.201041157] [PMID: 21469121]
[17]
Zeng, T.; Zhou, Y.; Yu, Y.; Wang, J.; Wu, Y.; Wang, X.; Zhu, L.; Zhou, L.; Wan, L. rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice. Int. Immunopharmacol., 2023, 114, 109608.
[http://dx.doi.org/10.1016/j.intimp.2022.109608] [PMID: 36700778]
[18]
Zhang, Z.; Gao, J.; Yu, J.; Zhang, N.; Fu, Y.; Jiang, X.; Wang, X.; Song, J.; Wen, Z. Transcriptome analysis of novel macrophage M1-related biomarkers and potential therapeutic agents in ischemia-reperfusion injury after lung transplantation based on the WGCNA and CIBERSORT algorithms. Transpl. Immunol., 2023, 79, 101860.
[http://dx.doi.org/10.1016/j.trim.2023.101860] [PMID: 37230395]
[19]
Yin, S.; Li, W.; Wang, J.; Wu, H.; Hu, J.; Feng, Y. Screening of key genes associated with m6A methylation in diabetic nephropathy patients by CIBERSORT and weighted gene coexpression network analysis. Am. J. Transl. Res., 2022, 14(4), 2280-2290.
[PMID: 35559414]
[20]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[21]
Zhao, P.; Zhen, H.; Zhao, H.; Huang, Y.; Cao, B. Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets. J. Transl. Med., 2023, 21(1), 176.
[http://dx.doi.org/10.1186/s12967-023-04029-2] [PMID: 36879254]
[22]
Cheng, B.; Tang, C.; Xie, J.; Zhou, Q.; Luo, T.; Wang, Q.; Huang, H. Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis. Life Sci., 2023, 325, 121659.
[http://dx.doi.org/10.1016/j.lfs.2023.121659] [PMID: 37011878]
[23]
Arora, M.; Kumari, S.; Singh, J.; Chopra, A.; Chauhan, S.S. PAXX, Not NHEJ1 is an independent prognosticator in colon cancer. Front. Mol. Biosci., 2020, 7, 584053.
[http://dx.doi.org/10.3389/fmolb.2020.584053] [PMID: 33195430]
[24]
Bishara, L.A.; Machour, F.E.; Awwad, S.W.; Ayoub, N. NELF complex fosters BRCA1 and RAD51 recruitment to DNA damage sites and modulates sensitivity to PARP inhibition. DNA Repair, 2021, 97, 103025.
[http://dx.doi.org/10.1016/j.dnarep.2020.103025] [PMID: 33248388]
[25]
Lv, S.; Zhao, X.; Zhang, E.; Yan, Y.; Ma, X.; Li, N.; Zou, Q.; Sun, L.; Song, T. Lysine demethylase KDM1A promotes cell growth via FKBP8–BCL2 axis in hepatocellular carcinoma. J. Biol. Chem., 2022, 298(9), 102374.
[http://dx.doi.org/10.1016/j.jbc.2022.102374] [PMID: 35970393]
[26]
Ma, W.; Yang, L.; Liu, H.; Chen, P.; Ren, H.; Ren, P. PAXX is a novel target to overcome resistance to doxorubicin and cisplatin in osteosarcoma. Biochem. Biophys. Res. Commun., 2020, 521(1), 204-211.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.108] [PMID: 31640855]
[27]
van Vlierberghe, P.; Meijerink, J.P.P.; Lee, C.; Ferrando, A.A.; Look, A.T.; van Wering, E.R.; Beverloo, H.B.; Aster, J.C.; Pieters, R. A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia, 2006, 20(7), 1245-1253.
[http://dx.doi.org/10.1038/sj.leu.2404247] [PMID: 16673019]
[28]
Yeo, M.S.; Subhash, V.V.; Suda, K.; Balcıoğlu, H.E.; Zhou, S.; Thuya, W.L.; Loh, X.Y.; Jammula, S.; Peethala, P.C.; Tan, S.H.; Xie, C.; Wong, F.Y.; Ladoux, B.; Ito, Y.; Yang, H.; Goh, B.C.; Wang, L.; Yong, W.P. FBXW5 promotes tumorigenesis and metastasis in gastric cancer via activation of the FAK-Src signaling pathway. Cancers, 2019, 11(6), 836.
[http://dx.doi.org/10.3390/cancers11060836] [PMID: 31213005]
[29]
Dhanasekaran, R.; Deutzmann, A.; Fernandez, M.W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol., 2022, 19(1), 23-36.
[http://dx.doi.org/10.1038/s41571-021-00549-2] [PMID: 34508258]
[30]
Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742.
[PMID: 32266087]
[31]
Stulc, T.; Sedo, A. Inhibition of multifunctional dipeptidyl peptidase-IV: Is there a risk of oncological and immunological adverse effects? Diabetes Res. Clin. Pract., 2010, 88(2), 125-131.
[http://dx.doi.org/10.1016/j.diabres.2010.02.017] [PMID: 20303610]
[32]
Yu, D.M.T.; Yao, T.W.; Chowdhury, S.; Nadvi, N.A.; Osborne, B.; Church, W.B.; McCaughan, G.W.; Gorrell, M.D. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J., 2010, 277(5), 1126-1144.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07526.x] [PMID: 20074209]
[33]
Mentlein, R.; Struckhoff, G. Purification of two dipeptidyl aminopeptidases II from rat brain and their action on proline-containing neuropeptides. J. Neurochem., 1989, 52(4), 1284-1293.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb01877.x] [PMID: 2564425]
[34]
Mallela, J.; Yang, J.; Shariat-Madar, Z. Prolylcarboxypeptidase: A cardioprotective enzyme. Int. J. Biochem. Cell Biol., 2009, 41(3), 477-481.
[http://dx.doi.org/10.1016/j.biocel.2008.02.022] [PMID: 18396440]
[35]
a) Talbot, P.; Dicarlantonio, G. Cytochemical localization of dipeptidyl peptidase II (DPP-II) in mature guinea pig sperm. J. Histochem. Cytochem., 1985, 33(11), 1169-1172.;
b) Maes, B.; Lambeir, A.M.; Van der Veken, P.; De Winter, B.; Augustyns, K.; Scharpe, S.; Meester, I. De;, In vivo effects of a potent, selective DPPII inhibitor: UAMC00039 is a possible tool for the elucidation of the physiological function of DPPII. Adv. Exp. Med. Biol., 2006, 575, 73-85.;
c) Maes, B.; Lambeir, A.M.; Van der Veken, P.; De Winter, B.; Augustyns, K.; Scharpe, S.; Meester, I. De Kinetic investigation of human dipeptidyl peptidase II (DPPII)-mediated hydrolysis of dipeptide derivatives and its identification as quiescent cell proline dipeptidase (QPP)/dipeptidyl peptidase 7 (DPP7). Biochem. J., 2005, 386(pt 2), 315-324.
[36]
Aguilera, M.O.; Robledo, E.; Melani, M.; Wappner, P.; Colombo, M.I. FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(5), 119212.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119212] [PMID: 35090967]
[37]
Hu, J.; Zacharek, S.; He, Y.J.; Lee, H.; Shumway, S.; Duronio, R.J.; Xiong, Y. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase. Genes Dev., 2008, 22(7), 866-871.
[http://dx.doi.org/10.1101/gad.1624008] [PMID: 18381890]
[38]
Yao, Y.; Liu, Z.; Huang, S.; Huang, C.; Cao, Y.; Li, L.; Guo, H.; Liu, F.; Huang, S.; Liao, Q.; He, X.; Chen, J.; Li, J.; Xiang, X.; Xiong, J.; Deng, J. The E3 ubiquitin ligase, FBXW5, promotes the migration and invasion of gastric cancer through the dysregulation of the Hippo pathway. Cell Death Discov., 2022, 8(1), 79.
[http://dx.doi.org/10.1038/s41420-022-00868-y] [PMID: 35210431]
[39]
Hui, X.; Hu, F.; Liu, J.; Li, C.; Yang, Y.; Shu, S.; Liu, P.; Wang, F.; Li, S. FBXW5 acts as a negative regulator of pathological cardiac hypertrophy by decreasing the TAK1 signaling to pro-hypertrophic members of the MAPK signaling pathway. J. Mol. Cell. Cardiol., 2021, 151, 31-43.
[http://dx.doi.org/10.1016/j.yjmcc.2020.09.008] [PMID: 32971071]
[40]
Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 2019, 110(7), 2080-2089.
[http://dx.doi.org/10.1111/cas.14069] [PMID: 31102428]
[41]
Masuda, K.; Kornberg, A.; Miller, J.; Lin, S.; Suek, N.; Botella, T.; Secener, K.A.; Bacarella, A.M.; Cheng, L.; Ingham, M.; Rosario, V.; Al-Mazrou, A.M.; Lee-Kong, S.A.; Kiran, R.P.; Stoeckius, M.; Smibert, P.; Del Portillo, A.; Oberstein, P.E.; Sims, P.A.; Yan, K.S.; Han, A. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer. JCI Insight, 2022, 7(7), e154646.
[http://dx.doi.org/10.1172/jci.insight.154646] [PMID: 35192548]
[42]
Cheung, K.J.J.; Johnson, N.A.; Affleck, J.G.; Severson, T.; Steidl, C.; Ben-Neriah, S.; Schein, J.; Morin, R.D.; Moore, R.; Shah, S.P.; Qian, H.; Paul, J.E.; Telenius, A.; Relander, T.; Lam, W.; Savage, K.; Connors, J.M.; Brown, C.; Marra, M.A.; Gascoyne, R.D.; Horsman, D.E. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res., 2010, 70(22), 9166-9174.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2460] [PMID: 20884631]
[43]
Li, Y.; Chen, Y.; Miao, L.; Wang, Y.; Yu, M.; Yan, X.; Zhao, Q.; Cai, H.; Xiao, Y.; Huang, G. Stress-induced upregulation of TNFSF4 in cancer-associated fibroblast facilitates chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells. Cancer Lett., 2021, 497, 212-220.
[http://dx.doi.org/10.1016/j.canlet.2020.10.032] [PMID: 33132120]
[44]
Liu, Y.; Li, Y.; Chang, H.; Zhao, J.; Hou, J.; Yu, K.; Sun, J.; Wang, H.; Li, A. Roscovitine protects from arterial injury by regulating the expressions of c-Jun and p27 and inhibiting vascular smooth muscle cell proliferation. J. Cardiovasc. Pharmacol., 2017, 69(3), 161-169.
[http://dx.doi.org/10.1097/FJC.0000000000000453] [PMID: 28009720]
[45]
Le Moigne, V.; Rodriguez Rincon, D.; Glatigny, S.; Dupont, C.M.; Langevin, C.; Ait Ali Said, A.; Renshaw, S.A.; Floto, R.A.; Herrmann, J.L.; Bernut, A. Roscovitine worsens Mycobacterium abscessus infection by reducing DUOX2-mediated neutrophil response. Am. J. Respir. Cell Mol. Biol., 2022, 66(4), 439-451.
[http://dx.doi.org/10.1165/rcmb.2021-0406OC] [PMID: 35081328]
[46]
Le Roy, L.; Letondor, A.; Le Roux, C.; Amara, A.; Timsit, S. Cellular and molecular mechanisms of R/S-roscovitine and CDKs related inhibition under both focal and global cerebral ischemia: A focus on neurovascular unit and immune cells. Cells, 2021, 10(1), 104.
[http://dx.doi.org/10.3390/cells10010104] [PMID: 33429982]
[47]
Abaza, M.S.I.; Bahman, A.M.A.; Al-Attiyah, R.J. Roscovitine synergizes with conventional chemo-therapeutic drugs to induce efficient apoptosis of human colorectal cancer cells. World J. Gastroenterol., 2008, 14(33), 5162-5175.
[http://dx.doi.org/10.3748/wjg.14.5162] [PMID: 18777593]
[48]
Vella, S.; Tavanti, E.; Hattinger, C.M.; Fanelli, M.; Versteeg, R.; Koster, J.; Picci, P.; Serra, M. Targeting CDKs with roscovitine increases sensitivity to DNA damaging drugs of human osteosarcoma cells. PLoS One, 2016, 11(11), e0166233.
[http://dx.doi.org/10.1371/journal.pone.0166233] [PMID: 27898692]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy