Abstract
The cheaper and less-toxic metals of group 4 compared with common metals used in catalysis are increasingly applied in catalysis, resulting in the development of many novel greener transformations. Zirconium is abundant, non-toxic, and exhibits a remarkably diversified chemical reactivity among these metals. Since the first asymmetric zirconium-catalyzed reaction disclosed by Nugent in 1992, a wide variety of chiral zirconium catalysts have been proven to be capable of promoting many types of highly enantioselective transformations, spanning from standard reactions, such as Friedel-Crafts reactions, cycloadditions, aldol reactions, Mannich reactions, epoxidations, nucleophilic additions to carbonyl compounds and derivatives, cyanations, ring-opening reactions, hydroxylations, hydroformylations, carboaluminations among others, to more modern and complex domino and tandem processes. This review aims to collect the major progress achieved in the field of enantioselective transformations of all types promoted by chiral zirconium catalysts, covering the literature since the beginning of 2003 and illustrating the power of these non-toxic catalysts to provide high enantioselectivity in almost all kinds of asymmetric organic reactions. It is divided into ten parts, focussing consecutively on enantioselective Friedel-Crafts reactions, cycloadditions, aldol reactions, Mannich reactions, epoxidations, additions of alkylzinc reagents to imines, cyanations, ring-opening reactions, hydroxylations, and domino/ tandem reactions. The diversity of these transformations well reflects that of the products synthesized. For example, chiral indole and pyrrole derivatives were prepared from Friedel-Crafts reactions; pyranones, pyridones and pyrazolidines from cycloadditions; β-hydroxy α-diazo carbonyl compounds, β- hydroxy (thio)esters and β-hydroxy-α-amino acid derivatives from aldol reactions; β-amino (thio)esters from Mannich reactions; functionalized epoxides from epoxidations; amines from additions of alkylzinc reagents to imines; amino nitriles from cyanations; 1,2-diamines and β-vinyloxy alcohols from ring-opening processes; 2- hydroxy 1-indanones from hydroxylations; various amines, 1,3-anti-diol monoesters, β-amino esters, α,β- dihydroxy acid derivatives, α-amino ketones, indoles, cyclopentane and aryl α-aminophosphonates from domino/ tandem reactions. Furthermore, the utility of these novel methodologies was demonstrated in the total synthesis of numerous essential bioactive products, such as (+)-prelactone C, (+)-9-deoxygoniopypyrone, (+)- coniine, vancomycin, (+)-fusarisetin A, mycolipenic acid, onchidin, indoxacarb, tachykinin receptor antagonists, cerebroprotecting agent MS-153, and L-erythro-sphingosine.
The advances achieved in the last three decades demonstrate that the non-toxicity, abundance, and efficiency of zirconium make its application in catalysis suiting the growing demand for more environmentally benign processes, offering the real opportunity to replace other toxic and expensive metals in the near future.
Graphical Abstract
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998. I and II.
[http://dx.doi.org/10.1002/9783527619399];
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999. ;
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley-VCH: New-York, 2000.
[http://dx.doi.org/10.1002/0471721506];
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, 2002. ;
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New cascade and multiple cross-coupling reactions for the efficient construction of complex molecules. J. Organomet. Chem., 2002, 653(1-2), 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3];
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004. ;
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747]
(b) Pellissier, H. Recent developments in enantioselective titanium-catalyzed transformations. Coord. Chem. Rev., 2022, 463, 214537.
[http://dx.doi.org/10.1016/j.ccr.2022.214537]
[http://dx.doi.org/10.1021/ja00833a048]
[http://dx.doi.org/10.1021/ja00475a058]
[http://dx.doi.org/10.1002/cber.19901230626];
(b) Krohn, K.; Vinke, I.; Adam, H. Transition-metal catalyzed oxidations. 7. zirconium-catalyzed oxidation of primary and secondary alcohols with hydroperoxides. J. Org. Chem., 1996, 61(4), 1467-1472.
[http://dx.doi.org/10.1021/jo9518720]
[http://dx.doi.org/10.1021/ja9900407]
[http://dx.doi.org/10.1021/ja970861g]
[http://dx.doi.org/10.1021/ja00033a090]
[http://dx.doi.org/10.1021/ja00148a031]
[http://dx.doi.org/10.1002/3527600671.ch6]
[http://dx.doi.org/10.1002/1521-3765(20011001)7:19<4066::AIDCHEM4066>3.0.CO;2-K] [PMID: 11686584]
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.032];
(b) Xu, S.; Negishi, E. Zirconium-catalyzed asymmetric carboalumination of unactivated terminal alkenes. Acc. Chem. Res., 2016, 49(10), 2158-2168.
[http://dx.doi.org/10.1021/acs.accounts.6b00338] [PMID: 27685327];
(c) Notz, S.; Scharf, S.; Lang, H. Recent metal-catalysed asymmetric hydroaminations of alkenes. Molecules, 2003, 28, 2702-2737.
[http://dx.doi.org/10.3390/molecules28062702] [PMID: 36985673]
[http://dx.doi.org/10.1055/s-2003-39176];
(b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. New catalytic approaches in the stereoselective Friedel-Crafts alkylation reaction. Angew. Chem. Int. Ed., 2004, 43(5), 550-556.
[http://dx.doi.org/10.1002/anie.200301679] [PMID: 14743405];
(c) Bandini, M.; Umani-Ronchi, A.; Melloni, A.; Tommasi, S. A journey across recent advances in catalytic and stereoselective alkylation of indoles. Synlett, 2005, 2005(8), 1199-1222.
[http://dx.doi.org/10.1055/s-2005-865210]
[http://dx.doi.org/10.1021/ol0710820] [PMID: 17523654]
[http://dx.doi.org/10.1021/jo3013594] [PMID: 23126442]
[http://dx.doi.org/10.1016/j.tetlet.2007.07.090]
[http://dx.doi.org/10.1002/adsc.200900357]
[http://dx.doi.org/10.1002/chem.201000568] [PMID: 20583054];
(b) Pedro, J.; Blay, G.; Fernández, I.; Vila, C. Enantioselective synthesis of substituted indoles through zirconium(IV)-catalyzed Friedel-Crafts alkylation. Synthesis, 2012, 44(23), 3590-3594.
[http://dx.doi.org/10.1055/s-0032-1317161]
[http://dx.doi.org/10.1021/ol802509m] [PMID: 19128193]
[http://dx.doi.org/10.1021/jo2010704] [PMID: 21682323]
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00130-X];
(b) Tietze, L.F.; Kettschau, G. Hetero Diels-Alder reactions in organic chemistry. Top. Curr. Chem., 1997, 189, 1-120.
[http://dx.doi.org/10.1007/BFb0119240];
(c) Carmona, D.; Pilar Lamata, M.; Oro, L.A. Recent advances in homogeneous enantioselective Diels-Alder reactions catalyzed by chiral transitionmetal complexes. Coord. Chem. Rev., 2000, 200-202, 717-772.
[http://dx.doi.org/10.1016/S0010-8545(00)00355-6];
(d) Jørgensen, K.A. Catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Angew. Chem. Int. Ed., 2000, 39(20), 3558-3588.
[http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3558::AIDANIE3558>3.0.CO;2-I] [PMID: 11091406];
(e) Pellissier, H. Asymmetric hetero-Diels-Alder reactions of carbonyl compounds. Tetrahedron, 2009, 65(15), 2839-2877.
[http://dx.doi.org/10.1016/j.tet.2009.01.068];
(f) Foster, R.A.A.; Willis, M.C. Tandem inverse-electron-demand hetero/ retro-Diels-Alder reactions for aromatic nitrogen heterocycle synthesis. Chem. Soc. Rev., 2013, 42(1), 63-76.
[http://dx.doi.org/10.1039/C2CS35316D] [PMID: 23079670]
(b) Kagan, H.B.; Riant, O. Catalytic asymmetric diels alder reactions. Chem. Rev., 1992, 92(5), 1007-1019.
[http://dx.doi.org/10.1021/cr00013a013];
(c) Pindur, U.; Lutz, G.; Otto, C. Acceleration and selectivity enhancement of diels-alder reactions by special and catalytic methods. Chem. Rev., 1993, 93(2), 741-761.
[http://dx.doi.org/10.1021/cr00018a006];
(d) Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev., 1996, 96(1), 49-92.
[http://dx.doi.org/10.1021/cr950016l] [PMID: 11848744];
(e) Evans, D.A.; Johnson, J.S. In: Comprehensive Asymmetric Catalysis; Jacobsen, E.; Pfaltz, A., Eds.; Springer: New York, 1999, p. 3.;
(f) Maruoka, K. Catalytic Asymmetric Synthesis, 2nd ed; Ojima, I., Ed.; Wiley: New York, 2000, pp. 467-491.;
(g) Hayashi, Y. Cycloaddition Reactions in Organic Synthesis; Kobayashi, S.; Jørgensen, K.A., Eds.; Wiley-VCH: Weinheim, 2001, p. 5.
[http://dx.doi.org/10.1002/3527600256.ch1];
(h) Corey, E.J. Catalytic enantioselective Diels-Alder reactions: Methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed., 2002, 41(10), 1650-1667.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650::AIDANIE1650>3.0.CO;2-B] [PMID: 19750685];
(i) Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed., 2002, 41(10), 1668-1698.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1668::AIDANIE1668>3.0.CO;2-Z] [PMID: 19750686];
(j) Takao, K.; Munakata, R.; Tadano, K. Recent advances in natural product synthesis by using intramolecular Diels-Alder reactions. Chem. Rev., 2005, 105(12), 4779-4807.
[http://dx.doi.org/10.1021/cr040632u] [PMID: 16351062];
(k) Reymond, S.; Cossy, J. Copper-catalyzed diels-alder reactions. Chem. Rev., 2008, 108(12), 5359-5406.
[http://dx.doi.org/10.1021/cr078346g] [PMID: 18942879]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<979::AIDANIE979>3.0.CO;2-5] [PMID: 29711477]
[http://dx.doi.org/10.1021/ja028186k] [PMID: 12656612]
[http://dx.doi.org/10.1039/B701466J] [PMID: 17464402]
[http://dx.doi.org/10.1073/pnas.0307870101] [PMID: 15067139]
[http://dx.doi.org/10.1016/j.tetlet.2005.01.111]
[http://dx.doi.org/10.1016/j.tet.2007.01.009]
[http://dx.doi.org/10.1021/ja049498l] [PMID: 15355109]
[http://dx.doi.org/10.1002/9783527619566]
[http://dx.doi.org/10.1021/ol0343257] [PMID: 12713315]
[http://dx.doi.org/10.1039/b305273g] [PMID: 12934889]
[http://dx.doi.org/10.1021/ja047597t] [PMID: 15281803]
[http://dx.doi.org/10.1002/adsc.200606182]
[http://dx.doi.org/10.1016/j.ccr.2017.04.010]
[http://dx.doi.org/10.1039/D2RA03747E] [PMID: 35975053]
[http://dx.doi.org/10.1021/ja970498d]
[http://dx.doi.org/10.1021/ja053524d] [PMID: 16262417]
[http://dx.doi.org/10.1016/j.tetlet.2006.04.069]
[http://dx.doi.org/10.1021/ja062776r] [PMID: 16925442]
[http://dx.doi.org/10.1002/asia.200900524] [PMID: 20099294]
[http://dx.doi.org/10.1002/3527607862];
(b) Pineschi, M. Asymmetric ring‐opening of epoxides and aziridines with carbon nucleophiles. Eur. J. Org. Chem., 2006, 2006(22), 4979-4988.
[http://dx.doi.org/10.1002/ejoc.200600384];
(c) Johnson, J.B. In: Science of Synthesis, Stereoselective Synthesis; De Vries, J. G.; Molander, G. A.; Evans, P. A., Eds.; Georg Thieme: Stuttgart, 2011, pp. 759-827.;
(d) Pellissier, H.; Lattanzi, A.; Dalpozzo, R. Asymmetric Synthesis of Three-Membered Rings; Wiley: Weinheim, 2017.
[http://dx.doi.org/10.1002/9783527802029];
(e) Dalpozzo, R.; Lattanzi, A.; Pellissier, H. Applications of chiral three-membered rings for total synthesis: A review. Curr. Org. Chem., 2017, 21(13), 1143-1191.
[http://dx.doi.org/10.2174/1385272821666170221151356]
[http://dx.doi.org/10.1021/ja00538a077]
(b) Bäckvall, E.J. Modern oxidation methods; Wiley-VCH: Weinheim, 2004. ;
(c) Matsumoto, K.; Katsuki, T. In: Asymmetric Synthesis; Christmann, M.; Brase, S., Eds.; Wiley-VCH: Weinheim, 2009, pp. 123-127.;
(d) Burke, A.J.; Carreiro, E.P. Comprehensive Inorganic Chemistry II; Reedijk, J.; Poeppelmeier, K., Eds.; Elsevier: Amsterdam, 2013, pp. 309-382.
[http://dx.doi.org/10.1016/B978-0-08-097774-4.00614-8]
[http://dx.doi.org/10.1246/cl.1987.83]
[http://dx.doi.org/10.1021/ol027261t] [PMID: 12509897]
[http://dx.doi.org/10.1002/adsc.200700608]
[http://dx.doi.org/10.1021/ja100951u] [PMID: 20481541]
[http://dx.doi.org/10.1016/j.tetlet.2015.12.049]
[http://dx.doi.org/10.1021/ja1110688] [PMID: 21500849]
[http://dx.doi.org/10.1002/adsc.200900845]
[http://dx.doi.org/10.1021/ol035138b] [PMID: 12943405]
[http://dx.doi.org/10.1021/ja8001343] [PMID: 18376838]
[http://dx.doi.org/10.1021/cr020038p] [PMID: 12914481];
(b) Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182];
(c) Taylor, M.S.; Jacobsen, E.N. Asymmetric catalysis by chiral hydrogenbond donors. Angew. Chem. Int. Ed., 2006, 45(10), 1520-1543.
[http://dx.doi.org/10.1002/anie.200503132] [PMID: 16491487];
(d) Shibasaki, M.; Kanai, M.; Mita, T. The catalytic asymmetric strecker reaction. Org. React., 2008, 70, 1-119.
[http://dx.doi.org/10.1016/j.ccr.2007.09.010];
(b) North, M.; Usanov, D.L.; Young, C. Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev., 2008, 108(12), 5146-5226.
[http://dx.doi.org/10.1021/cr800255k] [PMID: 19067648];
(c) North, M. A bimetallic titanium catalyst for the enantioselective cyanation of aldehydes based on cooperative catalysis. Angew. Chem. Int. Ed., 2010, 49(44), 8079-8081.
[http://dx.doi.org/10.1002/anie.201003014] [PMID: 20809557];
(d) Pellissier, H. Enantioselective titanium‐catalyzed cyanation reactions of carbonyl compounds. Adv. Synth. Catal., 2015, 357(5), 857-882.
[http://dx.doi.org/10.1002/adsc.201400939]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3186::AIDANIE3186>3.0.CO;2-E] [PMID: 29711328]
[http://dx.doi.org/10.1016/j.tetasy.2008.09.011]
[http://dx.doi.org/10.1021/acs.inorgchem.9b00963] [PMID: 31247830]
[http://dx.doi.org/10.1055/s-2006-950348];
(b) Pastor, I.; Yus, M. Asymmetric ring opening of epoxides. Curr. Org. Chem., 2005, 9(1), 1-29.
[http://dx.doi.org/10.2174/1385272053369385];
(c) Jacobsen, E.N.; Wu, M.H. In: Comprehensive Asymmetric Catalyst; Jacobsen, E.N.; Pfaltz, A., Eds.; Springer: Berlin, 1999, p. 649.
[http://dx.doi.org/10.1002/anie.200805542] [PMID: 19173352];
(b) Yudin, A.K. Aziridines and Epoxides in Organic Synthesis; Wiley-VCH: Weiheim, 2006.
[http://dx.doi.org/10.1002/3527607862]
[http://dx.doi.org/10.1039/b914271c] [PMID: 19774248]
[http://dx.doi.org/10.1002/anie.202114044] [PMID: 35263503]
[http://dx.doi.org/10.1021/acs.orglett.6b03554] [PMID: 28078895]
[http://dx.doi.org/10.1002/adsc.202000290]
[http://dx.doi.org/10.1002/anie.199301313];
(b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
(c) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
(d) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118];
(e) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62(8), 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040];
(f) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
(g) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925];
(h) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236];
(i) Guillena, G.; Ramón, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18(6), 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002];
(j) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390];
(k) Grondal, C.; Jeanty, M.; Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem., 2010, 2(3), 167-178.
[http://dx.doi.org/10.1038/nchem.539] [PMID: 21124474];
(l) Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661];
(m) Ruiz, M.; López-Alvarado, P.; Giorgi, G.; Menéndez, J.C. Domino reactions for the synthesis of bridged bicyclic frameworks: fast access to bicyclo[n.3.1]alkanes. Chem. Soc. Rev., 2011, 40(7), 3445-3454.
[http://dx.doi.org/10.1039/c1cs15018a] [PMID: 21483949];
(n) Pellissier, H. Recent developments in asymmetric organocatalytic domino reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714];
(o) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840];
(p) Clavier, H.; Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2012, 354(18), 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254];
(q) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479];
(r) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
[http://dx.doi.org/10.1039/9781849737104];
(s) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304];
(t) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015.
[http://dx.doi.org/10.1002/9781118863992];
(u) Pellissier, H. Recent developments in enantioselective metal‐catalyzed domino reactions. Adv. Synth. Catal., 2016, 358(14), 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462];
(v) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016, Vol. 1-2., . ;
(w) Pellissier, H. Green copper catalysis in enantioselective domino reactions. Curr. Org. Chem., 2018, 22, 2670-2697.;
(x) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361(8), 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371];
(y) Pellissier, H. The use of domino reactions for the synthesis of chiral rings. Synthesis, 2020, 52(24), 3837-3854.
[http://dx.doi.org/10.1055/s-0040-1707905];
(z) Pellissier, H. Asymmetric organocatalytic tandem/domino reactions to access bioactive products. Curr. Org. Chem., 2021, 25(13), 1457-1471.
[http://dx.doi.org/10.2174/1385272825666210208142427];
(aa) Pellissier, H. Recent developments in enantioselective domino reactions. part a: Noble metal catalysts. Adv. Synth. Catal., 2023, 365(5), 620-681.
[http://dx.doi.org/10.1002/adsc.202201284];
(ab) Pellissier, H. Recent developments in enantioselective domino reactions. Part B: First row metal catalysts. Adv. Synth. Catal., 2023, 365(6), 768-819.
[http://dx.doi.org/10.1002/adsc.202300002]
[http://dx.doi.org/10.1002/anie.200352081] [PMID: 14502747]
[http://dx.doi.org/10.1002/adsc.200404319]
[http://dx.doi.org/10.1055/s-2003-38741]
[http://dx.doi.org/10.1016/j.tetasy.2006.10.019]
[http://dx.doi.org/10.1002/asia.200600232] [PMID: 17441146]
[http://dx.doi.org/10.1002/anie.200801510] [PMID: 18646030]
[http://dx.doi.org/10.1021/ja5065685] [PMID: 25247674]
[http://dx.doi.org/10.1002/anie.201510972] [PMID: 26844668]
[http://dx.doi.org/10.1002/chem.201604478] [PMID: 27739117]