Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Effects of Salvianolate Injection on the Pharmacodynamics and Pharmacokinetics of Warfarin in Rats In vivo

Author(s): Yue Zhao, Jiahui Sun, Shiwei Xu, Yan Liu, Mengnan Qin, Chunjuan Yang and Gaofeng Liu*

Volume 20, Issue 5, 2024

Published on: 29 February, 2024

Page: [345 - 354] Pages: 10

DOI: 10.2174/0115734110289980240201073715

Price: $65

conference banner
Abstract

Background: Both Salvianolate Injection and warfarin are widely prescribed in patients with cardiovascular diseases, but the interaction between them is unknown and needs to be investigated.

Objective: This research aims to study the effects and mechanism of Salvianolate Injection on the pharmacodynamics and pharmacokinetics of warfarin in rats.

Methods: Male Wistar rats were intraperitoneally injected Salvianolate Injection (18 mg/kg) with or without oral administration of warfarin (0.2 mg/kg). A coagulation analyzer evaluated prothrombin time (PT) and activated partial thromboplastin time (APTT). International normalized ratio (INR) was calculated based on PT. UPLC-MS/MS combined with a chiral column was used to separate and measure the plasma concentration of R-warfarin and S-warfarin. Agilent SB-C18 column (1.8 μm, 2.1 mm × 50 mm) was used for separation, column temperature at 20°C. The isocratic mobile phase was acetonitrile-aqueous ammonium acetate (5 mM, pH 4) at a flow rate of 0.2 mL/min and 11.5 min for each injection. Pharmacokinetic parameters were calculated using DAS 2.0 software.

Results: Salvianolate Injection increased PT and INR (p < 0.05), while APTT was unaffected (p > 0.05). Compared with the warfarin group, the co-administration of Salvianolate Injection and singledose warfarin enlarged PT and INR (p < 0.05). Similar increases in pharmacokinetic parameters of R-warfarin and S-warfarin, including Cmax, AUC0-t, AUC0-∞, t1/2, and CL/F (p < 0.05), were observed in the co-administration group. A steady-state study of warfarin indicated that PT and INR in the coadministration group are longer than those in the warfarin group (p < 0.05). On days 7th and 8th of warfarin treatment (two and three days after Salvianolate Injection treatment), the plasma concentration of R-warfarin increased by 47.22% and 50.16% (p < 0.05), and plasma concentration of Swarfarin increased by 32.39% and 45.99% (p < 0.05), respectively.

Conclusion: Salvianolate Injection exhibits an anticoagulation effect in rats. Salvianolate Injection can enhance the anticoagulant effect of warfarin by slowing metabolism and increasing the concentration of both enantiomers. These results suggest that the combination of Salvianolate Injection and warfarin should be avoided or closely monitored in case of increasing bleeding risk.

Graphical Abstract

[1]
Shaikh, A.S.; Thomas, A.B.; Chitlange, S.S. Herb-drug interaction studies of herbs used in treatment of cardiovascular disorders-A narrative review of preclinical and clinical studies. Phytother. Res., 2020, 34(5), 1008-1026.
[http://dx.doi.org/10.1002/ptr.6585] [PMID: 31908085]
[2]
Lippert, A.; Renner, B. Herb-drug interaction in inflammatory diseases: Review of phytomedicine and herbal supplements. J. Clin. Med., 2022, 11(6), 1567.
[http://dx.doi.org/10.3390/jcm11061567] [PMID: 35329893]
[3]
Parvez, M.K.; Rishi, V. Herb-drug interactions and hepatotoxicity. Curr. Drug Metab., 2019, 20(4), 275-282.
[http://dx.doi.org/10.2174/1389200220666190325141422] [PMID: 30914020]
[4]
Lin, L.; Wang, Y.; Shao, S.; Lin, W.; Huang, D.; Dai, Y.; Xia, Y. Herb-drug interaction between Shaoyao-Gancao-Fuzi decoction and tofacitinib via CYP450 enzymes. J. Ethnopharmacol., 2022, 295, 115437.
[http://dx.doi.org/10.1016/j.jep.2022.115437] [PMID: 35667582]
[5]
Ventura, S.; Rodrigues, M.; Falcão, A.; Alves, G. Effects of Paullinia cupana extract on lamotrigine pharmacokinetics in rats: A herb-drug interaction on the gastrointestinal tract with potential clinical impact. Food Chem. Toxicol., 2018, 115, 170-177.
[http://dx.doi.org/10.1016/j.fct.2018.03.011] [PMID: 29534980]
[6]
Levy, I.; Attias, S.; Ben-Arye, E.; Goldstein, L.; Schiff, E. Adverse events associated with interactions with dietary and herbal supplements among inpatients. Br. J. Clin. Pharmacol., 2017, 83(4), 836-845.
[http://dx.doi.org/10.1111/bcp.13158] [PMID: 27759172]
[7]
Tan, C.S.S.; Lee, S.W.H. Warfarin and food, herbal or dietary supplement interactions: A systematic review. Br. J. Clin. Pharmacol., 2021, 87(2), 352-374.
[http://dx.doi.org/10.1111/bcp.14404] [PMID: 32478963]
[8]
Gladding, P.A.; Legget, M.; Fatkin, D.; Larsen, P.; Doughty, R. Polygenic risk scores in coronary artery disease and atrial fibrillation. Heart Lung Circ., 2020, 29(4), 634-640.
[http://dx.doi.org/10.1016/j.hlc.2019.12.004] [PMID: 31974023]
[9]
Mekhael, M.; Marrouche, N.; Hajjar, A.H.E.; Donnellan, E. The relationship between atrial fibrillation and coronary artery disease: Understanding common denominators. Trends Cardiovasc. Med., 2022, 29, 006.
[http://dx.doi.org/10.1016/j.tcm.2022.09.006]
[10]
Bocchino, P.P.; Angelini, F.; Toso, E. Atrial fibrillation and coronary artery disease: A review on the optimal use of oral anticoagulants. Rev. Cardiovasc. Med., 2021, 22(3), 635-648.
[http://dx.doi.org/10.31083/j.rcm2203074] [PMID: 34565066]
[11]
Essa, H.; Lip, G.Y.H. Atrial fibrillation and vascular disease: Coronary artery disease and/or peripheral artery disease? Arch. Cardiovasc. Dis., 2021, 114(3), 173-175.
[http://dx.doi.org/10.1016/j.acvd.2021.02.002] [PMID: 33712401]
[12]
Duggan, J.P.; Peters, A.S.; Trachiotis, G.D.; Antevil, J.L. Epidemiology of coronary artery disease. Surg. Clin. North Am., 2022, 102(3), 499-516.
[http://dx.doi.org/10.1016/j.suc.2022.01.007] [PMID: 35671770]
[13]
Wu, Y.; Geng, K.K.; Deng, X.M.; Ma, Y.N.; Chen, C.; Liu, S. Content determination of salvianolic acid B in salvianolate injection by improved HPLC. China Pharmacy, 2016, 27(36), 5135-5137.
[14]
Xue, J.; Ye, Z.L.; Li, D.K.; Zhou, D.Z.; Li, B. Simultaneous determination of salvianolic acid D, rosmarinic acid, lithospermic acid and salvianolic acid B in the salvianolic acid extract by HPLC. Chin. J. Exp. Trad. Med. Form., 2013, 19(3), 70-73.
[15]
Chai, Y.; Luo, M.; Liang, W.; Qiu, J.; Li, D.; Wang, L.; Tu, X.; Liu, C.; Qin, C.Z.; Li, D. The safety and effectiveness of salvianolate in preventing perioperative venous thromboembolism in China. Medicine, 2021, 100(18), e25639.
[http://dx.doi.org/10.1097/MD.0000000000025639] [PMID: 33950941]
[16]
Chen, Z.W.; Xie, Y.M.; Liao, X.; Wang, G.Q. Systematic review on safety of Salvianolate injection. Zhongguo Zhongyao Zazhi, 2016, 41(19), 3686-3695.
[http://dx.doi.org/10.4268/cjcmm20161931] [PMID: 28925169]
[17]
Luan, P.; Ding, X.; Xu, J.; Jiang, L.; Xu, Y.; Zhu, Y.; Li, R.; Zhang, J. Salvianolate reduces neuronal apoptosis by suppressing OGD-induced microglial activation. Life Sci., 2020, 260, 118393.
[http://dx.doi.org/10.1016/j.lfs.2020.118393] [PMID: 32898527]
[18]
Ou, Y.; Sun, S.; Shi, H.; Luo, J.; Luo, X.; Shen, Y.; Chen, Y.; Fan, W.; Liu, H.; Shen, W. Protective effects of salvianolate on myocardial injury or myocardial infarction after elective percutaneous coronary intervention in NSTE-ACS patients: A randomized placebo-controlled trial. Chin. J. Integr. Med., 2020, 26(9), 656-662.
[http://dx.doi.org/10.1007/s11655-020-2728-0] [PMID: 32572777]
[19]
Luan, P.; Xu, J.; Ding, X.; Cui, Q.; Jiang, L.; Xu, Y.; Zhu, Y.; Li, R.; Lin, G.; Tian, P.; Zhang, J. Neuroprotective effect of salvianolate on cerebral ischaemia-reperfusion injury in rats by inhibiting the Caspase-3 signal pathway. Eur. J. Pharmacol., 2020, 872(5), 172944.
[http://dx.doi.org/10.1016/j.ejphar.2020.172944] [PMID: 31978424]
[20]
Zhang, M.; Yuan, Y.; Gao, Y.; Lu, R.; Deng, Y. The effectiveness of Salvianolate injection for in-stent restenosis after percutaneous coronary intervention. Medicine, 2022, 101(16), e29153.
[http://dx.doi.org/10.1097/MD.0000000000029153] [PMID: 35482985]
[21]
Cui, H.; Li, X.; Gao, X.; Lu, X.; Wu, X.; Wang, X.; Zheng, X.; Huang, K.; Liu, F.; Luo, Z.; Yuan, H.; Sun, G.; Kong, J.; Du, X.; Zheng, J.; Liu, H.; Zhang, W. A prospective randomized multicenter controlled trial on salvianolate for treatment of unstable angina pectoris in a chinese elderly population. Chin. J. Integr. Med., 2019, 25(10), 728-735.
[http://dx.doi.org/10.1007/s11655-019-2710-x] [PMID: 31782009]
[22]
Zhang, D.; Wu, J.; Liu, S.; Zhang, X.; Zhang, B. Salvianolate injection in the treatment of unstable angina pectoris. Medicine, 2016, 95(51), e5692.
[http://dx.doi.org/10.1097/MD.0000000000005692] [PMID: 28002341]
[23]
Qi, Y.; Yu, C.; Tang, L.; Li, S.; Sun, X. Patient characteristics associated with treatment response in patients receiving salvianolate injection for stable angina. J. Evid. Based Med., 2018, 11(2), 83-88.
[http://dx.doi.org/10.1111/jebm.12282] [PMID: 29322692]
[24]
Ritchie, L.A.; Penson, P.E.; Lane, D.A. Warfarin therapy and improved anticoagulation control by patient self-management. Thromb. Haemost., 2019, 119(10), 1550-1552.
[http://dx.doi.org/10.1055/s-0039-1696982] [PMID: 31564055]
[25]
Honan, K.A.; Jogimahanti, A.; Khair, T. An updated review of the efficacy and safety of direct oral anticoagulants in treatment of left ventricular thrombus. Am. J. Med., 2022, 135(1), 17-23.
[http://dx.doi.org/10.1016/j.amjmed.2021.07.023] [PMID: 34469758]
[26]
Di Minno, A.; Frigerio, B.; Spadarella, G.; Ravani, A.; Sansaro, D.; Amato, M.; Kitzmiller, J.P.; Pepi, M.; Tremoli, E.; Baldassarre, D. Old and new oral anticoagulants: Food, herbal medicines and drug interactions. Blood Rev., 2017, 31(4), 193-203.
[http://dx.doi.org/10.1016/j.blre.2017.02.001] [PMID: 28196633]
[27]
Woller, S.C.; Stevens, S.M.; Kaplan, D.; Wang, T.F.; Branch, D.W.; Groat, D.; Wilson, E.L.; Armbruster, B.; Aston, V.T.; Lloyd, J.F.; Rondina, M.T.; Elliott, C.G. Apixaban compared with warfarin to prevent thrombosis in thrombotic antiphospholipid syndrome: A randomized trial. Blood Adv., 2022, 6(6), 1661-1670.
[http://dx.doi.org/10.1182/bloodadvances.2021005808] [PMID: 34662890]
[28]
Stevens, S.M.; Doty, J.R. New evidence on old drugs; warfarin versus aspirin after bioprosthetic aortic valve placement. Thromb. Res., 2017, 150, 102-103.
[http://dx.doi.org/10.1016/j.thromres.2016.12.015] [PMID: 28012566]
[29]
Ferrari, M.; Pengo, V.; Barolo, M.; Bezzo, F.; Padrini, R. Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes. Eur. J. Clin. Pharmacol., 2017, 73(6), 699-707.
[http://dx.doi.org/10.1007/s00228-017-2248-9] [PMID: 28382498]
[30]
Xue, L.; Holford, N.; Ding, X.; Shen, Z.; Huang, C.; Zhang, H.; Zhang, J.; Guo, Z.; Xie, C.; Zhou, L.; Chen, Z.; Liu, L.; Miao, L. Theory‐based pharmacokinetics and pharmacodynamics of S‐ and R‐warfarin and effects on international normalized ratio: Influence of body size, composition and genotype in cardiac surgery patients. Br. J. Clin. Pharmacol., 2017, 83(4), 823-835.
[http://dx.doi.org/10.1111/bcp.13157] [PMID: 27763679]
[31]
Cheng, S.; Flora, D.R.; Rettie, A.E.; Brundage, R.C.; Tracy, T.S. Pharmacokinetic modeling of warfarin capital I, ukrainian - model-based analysis of warfarin enantiomers with a target mediated drug disposition model reveals cyp2c9 genotype-dependent drug-drug interactions of S-warfarin. Drug Metab. Dispos., 2022, 50(9), 1287-1301.
[http://dx.doi.org/10.1124/dmd.122.000876] [PMID: 35798369]
[32]
Chang, M.; Söderberg, M.M.; Scordo, M.G.; Tybring, G.; Dahl, M.L. CYP2C19*17 affects R-warfarin plasma clearance and warfarin INR/dose ratio in patients on stable warfarin maintenance therapy. Eur. J. Clin. Pharmacol., 2015, 71(4), 433-439.
[http://dx.doi.org/10.1007/s00228-015-1812-4] [PMID: 25652102]
[33]
Johnson, J.A.; Cavallari, L.H. Warfarin pharmacogenetics. Trends Cardiovasc. Med., 2015, 25(1), 33-41.
[http://dx.doi.org/10.1016/j.tcm.2014.09.001] [PMID: 25282448]
[34]
Barnette, D.A.; Johnson, B.P.; Pouncey, D.L.; Nshimiyimana, R.; Desrochers, L.P.; Goodwin, T.E.; Miller, G.P. Stereospecific metabolism of R - and S -warfarin by human hepatic cytosolic reductases. Drug Metab. Dispos., 2017, 45(9), 1000-1007.
[http://dx.doi.org/10.1124/dmd.117.075929] [PMID: 28646078]
[35]
Jones, D.R.; Kim, S.Y.; Boysen, G.; Yun, C.H.; Miller, G.P. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin. Drug Metab. Lett., 2010, 4(4), 213-219.
[http://dx.doi.org/10.2174/187231210792928242] [PMID: 20615193]
[36]
Altiok, E.; Marx, N. Oral anticoagulation. Dtsch. Arztebl. Int., 2018, 115(46), 776-783.
[http://dx.doi.org/10.3238/arztebl.2018.0776] [PMID: 30602410]
[37]
Li, W. Targeting multiple enzymes in vitamin K metabolism for anticoagulation. J. Thromb. Haemost., 2021, 19(3), 633-636.
[http://dx.doi.org/10.1111/jth.15212] [PMID: 33650246]
[38]
Donaldson, C.J.; Harrington, D.J. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br. J. Biomed. Sci., 2017, 74(4), 163-169.
[http://dx.doi.org/10.1080/09674845.2017.1336854] [PMID: 28657840]
[39]
Ge, B.; Zhang, Z.; Lam, T.T.; Zuo, Z. Puerarin offsets the anticoagulation effect of warfarin in rats by inducing rCyps, upregulating vitamin K epoxide reductase and inhibiting thrombomodulin. Biopharm. Drug Dispos., 2017, 38(1), 33-49.
[http://dx.doi.org/10.1002/bdd.2054] [PMID: 27925234]
[40]
Catterall, F.; Ames, P.R.J.; Isles, C. Warfarin in patients with mechanical heart valves. BMJ, 2020, 371, m3956.
[http://dx.doi.org/10.1136/bmj.m3956] [PMID: 33060144]
[41]
Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; Fauchier, L.; Filippatos, G.; Kalman, J.M.; La Meir, M.; Lane, D.A.; Lebeau, J.P.; Lettino, M.; Lip, G.Y.H.; Pinto, F.J.; Thomas, G.N.; Valgimigli, M.; Van Gelder, I.C.; Van Putte, B.P.; Watkins, C.L.; Kirchhof, P.; Kühne, M.; Aboyans, V.; Ahlsson, A.; Balsam, P.; Bauersachs, J.; Benussi, S.; Brandes, A.; Braunschweig, F.; Camm, A.J.; Capodanno, D.; Casadei, B.; Conen, D.; Crijns, H.J.G.M.; Delgado, V.; Dobrev, D.; Drexel, H.; Eckardt, L.; Fitzsimons, D.; Folliguet, T.; Gale, C.P.; Gorenek, B.; Haeusler, K.G.; Heidbuchel, H.; Iung, B.; Katus, H.A.; Kotecha, D.; Landmesser, U.; Leclercq, C.; Lewis, B.S.; Mascherbauer, J.; Merino, J.L.; Merkely, B.; Mont, L.; Mueller, C.; Nagy, K.V.; Oldgren, J.; Pavlović, N.; Pedretti, R.F.E.; Petersen, S.E.; Piccini, J.P.; Popescu, B.A.; Pürerfellner, H.; Richter, D.J.; Roffi, M.; Rubboli, A.; Scherr, D.; Schnabel, R.B.; Simpson, I.A.; Shlyakhto, E.; Sinner, M.F.; Steffel, J.; Sousa-Uva, M.; Suwalski, P.; Svetlosak, M.; Touyz, R.M.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G-A.; Dilaveris, P.E.; Fauchier, L.; Filippatos, G.; Kalman, J.M.; La Meir, M.; Lane, D.A.; Lebeau, J-P.; Lettino, M.; Lip, G.Y.H.; Pinto, F.J.; Neil Thomas, G.; Valgimigli, M.; Van Gelder, I.C.; Watkins, C.L.; Delassi, T.; Sisakian, H.S.; Scherr, D.; Chasnoits, A.; Pauw, M.D.; Smajić, E.; Shalganov, T.; Avraamides, P.; Kautzner, J.; Gerdes, C.; Alaziz, A.A.; Kampus, P.; Raatikainen, P.; Boveda, S.; Papiashvili, G.; Eckardt, L.; Vassilikos, V.; Csanádi, Z.; Arnar, D.O.; Galvin, J.; Barsheshet, A.; Caldarola, P.; Rakisheva, A.; Bytyçi, I.; Kerimkulova, A.; Kalejs, O.; Njeim, M.; Puodziukynas, A.; Groben, L.; Sammut, M.A.; Grosu, A.; Boskovic, A.; Moustaghfir, A.; Groot, N.; Poposka, L.; Anfinsen, O-G.; Mitkowski, P.P.; Cavaco, D.M.; Siliste, C.; Mikhaylov, E.N.; Bertelli, L.; Kojic, D.; Hatala, R.; Fras, Z.; Arribas, F.; Juhlin, T.; Sticherling, C.; Abid, L.; Atar, I.; Sychov, O.; Bates, M.G.D.; Zakirov, N.U. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the european association for cardio-thoracic surgery (EACTS). Eur. Heart J., 2021, 42(5), 373-498.
[http://dx.doi.org/10.1093/eurheartj/ehaa612] [PMID: 32860505]
[42]
Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; Sinnaeve, P.; Vanassche, T.; Potpara, T.; Camm, A.J.; Heidbüchel, H.; Lip, G.Y.H.; Deneke, T.; Dagres, N.; Boriani, G.; Chao, T-F.; Choi, E-K.; Hills, M.T.; Santos, I.S.; Lane, D.A.; Atar, D.; Joung, B.; Cole, O.M.; Field, M. 2021 european heart rhythm association practical guide on the use of non-vitamin k antagonist oral anticoagulants in patients with atrial fibrillation. Europace, 2021, 23(10), 1612-1676.
[http://dx.doi.org/10.1093/europace/euab065] [PMID: 33895845]
[43]
Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; Delgado, V.; Freemantle, N.; Gilard, M.; Haugaa, K.H.; Jeppsson, A.; Jüni, P.; Pierard, L.; Prendergast, B.D.; Sádaba, J.R.; Tribouilloy, C.; Wojakowski, W.; Neumann, F-J.; Myers, P.; Abdelhamid, M.; Achenbach, S.; Asteggiano, R.; Barili, F.; Borger, M.A.; Carrel, T.; Collet, J-P.; Foldager, D.; Habib, G.; Hassager, C.; Irs, A.; Iung, B.; Jahangiri, M.; Katus, H.A.; Koskinas, K.C.; Massberg, S.; Mueller, C.E.; Nielsen, J.C.; Pibarot, P.; Rakisheva, A.; Roffi, M.; Rubboli, A.; Shlyakhto, E.; Siepe, M.; Sitges, M.; Sondergaard, L.; Sousa-Uva, M.; Tarantini, G.; Zamorano, J.L.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; Delgado, V.; Freemantle, N.; Gilard, M.; Haugaa, K.H.; Jeppsson, A.; Jüni, P.; Pierard, L.; Prendergast, B.D.; Sádaba, J.R.; Tribouilloy, C.; Wojakowski, W.; Benchabi, Y.; Chilingaryan, A.; Metzler, B.; Rustamova, Y.; Shumavets, V.; Lancellotti, P.; Smajic, E.; Trendafilova-Lazarova, D.; Samardzic, J.; Karakyriou, M.; Palecek, T.; Sanchez Dahl, J.; Meshaal, M.S.; Palm, K.; Virtanen, M.; Bouleti, C.; Bakhutashvili, Z.; Achenbach, S.; Boutsikou, M.; Kertész, A.B.; Danielsen, R.; Topilsky, Y.; Golino, P.; Tuleutayev, R.; Elezi, S.; Kerimkulov, A.; Rudzitis, A.; Glaveckaite, S.; Sow, R.; Demarco, D.C.; Bulatovic, N.; Aouad, A.; van den Brink, R.; Antova, E.; Beitnes, J.O.; Ochala, A.; Ribeiras, R.; Vinereanu, D.; Irtyuga, O.; Ivanovic, B.; Simkova, I.; González Gómez, A.; Sarno, G.; Pedrazzini, G.B.; Bsata, W.; Zakhama, L.; Korkmaz, L.; Cherniuk, S.; Khanji, M.Y.; Sharipov, I. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J., 2022, 43(7), 561-632.
[http://dx.doi.org/10.1093/eurheartj/ehab395] [PMID: 34453165]
[44]
Bernaitis, N.; Ching, C.K.; Teo, S.C.; Chen, L.; Badrick, T.; Davey, A.K.; Crilly, J.; Anoopkumar-Dukie, S. Factors influencing warfarin control in Australia and Singapore. Thromb. Res., 2017, 157, 120-125.
[http://dx.doi.org/10.1016/j.thromres.2017.07.007] [PMID: 28738273]
[45]
Gao, W.; Li, Z.; Chen, W.; Zhang, S. Performance evaluation of warfarin dose prediction algorithms and effects of clinical factors on warfarin dose in Chinese patients. Ther. Drug Monit., 2021, 43(4), 527-535.
[http://dx.doi.org/10.1097/FTD.0000000000000880] [PMID: 34250965]
[46]
Sombat, B.; Tongkaew, S.; Nilwaranon, A.; Mungthin, M.; Jongcherdchootrakul, K.; Lertwanichwattana, T. Incidence and risk factors of warfarin therapy complications in community hospitals, central and eastern regions, Thailand: A retrospective, multicenter, cohort study. BMC Res. Notes, 2023, 16(1), 104.
[http://dx.doi.org/10.1186/s13104-023-06383-2] [PMID: 37312137]
[47]
Mar, P.L.; Gopinathannair, R.; Gengler, B.E.; Chung, M.K.; Perez, A.; Dukes, J.; Ezekowitz, M.D.; Lakkireddy, D.; Lip, G.Y.H.; Miletello, M.; Noseworthy, P.A.; Reiffel, J.; Tisdale, J.E.; Olshansky, B. Drug interactions affecting oral anticoagulant use. Circ. Arrhythm. Electrophysiol., 2022, 15(6), e007956.
[http://dx.doi.org/10.1161/CIRCEP.121.007956] [PMID: 35622425]
[48]
Agrawal, S.; Heiss, M.S.; Fenter, R.B.; Abramova, T.V.; Perera, M.A.; Pacheco, J.A.; Smith, M.E.; Rasmussen-Torvik, L.J.; George, A.L., Jr. Impact of CYP2C9‐interacting drugs on warfarin pharmacogenomics. Clin. Transl. Sci., 2020, 13(5), 941-949.
[http://dx.doi.org/10.1111/cts.12781] [PMID: 32270628]
[49]
Angiolillo, D.J.; Goodman, S.G.; Bhatt, D.L.; Eikelboom, J.W.; Price, M.J.; Moliterno, D.J.; Cannon, C.P.; Tanguay, J.F.; Granger, C.B.; Mauri, L.; Holmes, D.R.; Gibson, C.M.; Faxon, D.P. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention. Circulation, 2018, 138(5), 527-536.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034722] [PMID: 30571525]
[50]
Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol., 2019, 234(10), 16812-16823.
[http://dx.doi.org/10.1002/jcp.28350] [PMID: 30790284]
[51]
Li, X.Y.; Hou, H.T.; Chen, H.X.; Liu, X.C.; Wang, J.; Yang, Q.; He, G.W. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg., 2021, 162(3), 851-863.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2020.01.079] [PMID: 32197906]
[52]
Sucato, V.; Coppola, G.; Manno, G.; Vadalà, G.; Novo, G.; Corrado, E.; Galassi, A.R. Coronary artery disease in south asian patients: Cardiovascular risk factors, pathogenesis and treatments. Curr. Probl. Cardiol., 2023, 48(8), 101228.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101228] [PMID: 35500733]
[53]
Agrawal, A.; Lamichhane, P.; Eghbali, M.; Xavier, R.; Cook, D.E.; Elsherbiny, R.M.; Jhajj, L.K.; Khanal, R. Risk factors, lab parameters, angiographic characteristics and outcomes of coronary artery disease in young South Asian patients: A systematic review. J. Int. Med. Res., 2023, 51(8), 03000605231187806.
[http://dx.doi.org/10.1177/03000605231187806] [PMID: 37555333]
[54]
Lavie, C.J.; Pandey, A.; Lau, D.H.; Alpert, M.A.; Sanders, P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis. J. Am. Coll. Cardiol., 2017, 70(16), 2022-2035.
[http://dx.doi.org/10.1016/j.jacc.2017.09.002] [PMID: 29025560]
[55]
Michniewicz, E.; Mlodawska, E.; Lopatowska, P.; Tomaszuk-Kazberuk, A.; Malyszko, J. Patients with atrial fibrillation and coronary artery disease - Double trouble. Adv. Med. Sci., 2018, 63(1), 30-35.
[http://dx.doi.org/10.1016/j.advms.2017.06.005] [PMID: 28818746]
[56]
Theodorakis, G.N. Coronary artery disease and atrial fibrillation. Hellenic J. Cardiol., 2017, 58(3), 213-214.
[http://dx.doi.org/10.1016/j.hjc.2017.09.002] [PMID: 28918282]
[57]
Naito, R.; Miyauchi, K. Coronary artery disease and type 2 diabetes mellitus. Int. Heart J., 2017, 58(4), 475-480.
[http://dx.doi.org/10.1536/ihj.17-191] [PMID: 28717115]
[58]
Vio, R.; Giordani, A.S.; Alturki, A.; Čulić, V.; Vitale, R.; China, P.; Themistoclakis, S.; Vanoli, E.; Proietti, R. Prevalence of asymptomatic atrial fibrillation among multimorbid elderly patients: diagnostic implications. Minerva. Cardiol. Angiol., 2022, 70(5), 583-593.
[http://dx.doi.org/10.23736/S2724-5683.22.05894-X] [PMID: 35212509]
[59]
Al-Makhamreh, H.K.; Al-Sabbagh, M.Q.; Shaban, A.E.; Obiedat, A.F.; Hammoudeh, A.J. Prevalence, epidemiological characteristics, and pharmacotherapy of coronary artery disease among patients with atrial fibrillation: Data from Jo-Fib study. Medicina, 2021, 57(6), 605.
[http://dx.doi.org/10.3390/medicina57060605] [PMID: 34208175]
[60]
Bogaards, J.J.P.; Bertrand, M.; Jackson, P.; Oudshoorn, M.J.; Weaver, R.J.; Van Bladeren, P.J.; Walther, B. Determining the best animal model for human cytochrome P450 activities: A comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica, 2000, 30(12), 1131-1152.
[http://dx.doi.org/10.1080/00498250010021684] [PMID: 11307970]
[61]
Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol., 2006, 2(6), 875-894.
[http://dx.doi.org/10.1517/17425255.2.6.875] [PMID: 17125407]
[62]
Winter, W.E.; Flax, S.D.; Harris, N.S. Coagulation testing in the core laboratory. Lab. Med., 2017, 48(4), 295-313.
[http://dx.doi.org/10.1093/labmed/lmx050] [PMID: 29126301]
[63]
Wheeler, A.P.; Gailani, D. The intrinsic pathway of coagulation as a target for antithrombotic therapy. Hematol. Oncol. Clin. North Am., 2016, 30(5), 1099-1114.
[http://dx.doi.org/10.1016/j.hoc.2016.05.007] [PMID: 27637310]
[64]
Mornet, C.; Luque Paz, D.; Lippert, E.; Galinat, H.; Mingant, F. Detection of intrinsic pathway factor deficiency associated with bleeding risk by kaolin‐based aPTT. Int. J. Lab. Hematol., 2020, 42(3), e107-e109.
[http://dx.doi.org/10.1111/ijlh.13149] [PMID: 31904896]
[65]
Wang, Z.; Xiang, X.; Liu, S.; Tang, Z.; Sun, H.; Parvez, M.; Ghim, J.L.; Shin, J.G.; Cai, W. A physiologically based pharmacokinetic/pharmacodynamic modeling approach for drug-drug interaction evaluation of warfarin enantiomers with sorafenib. Drug Metab. Pharmacokinet., 2021, 39, 100362.
[http://dx.doi.org/10.1016/j.dmpk.2020.10.001] [PMID: 34242938]
[66]
Qayyum, A.; Najmi, M.H.; Khan, A.M.; Abbas, M.; Naveed, A.K.; Jameel, A. Determination of S- and R-warfarin enantiomers by using modified HPLC method. Pak. J. Pharm. Sci., 2015, 28(4), 1315-1321.
[PMID: 26142522]
[67]
Wanounou, M.; Shaul, C.; Abu Ghosh, Z.; Alamia, S.; Caraco, Y. The impact of CYP2C9*11 allelic variant on the pharmacokinetics of phenytoin and (S)‐warfarin. Clin. Pharmacol. Ther., 2022, 112(1), 156-163.
[http://dx.doi.org/10.1002/cpt.2613] [PMID: 35426132]
[68]
Fang, B.; Jin, S.; Du, W.; Cai, W. Anlotinib and fruquintinib co-administrated with warfarin increases the risk of bleeding: Studied from pharmacokinetic and pharmacodynamic perspectives. Eur. J. Pharm. Sci., 2023, 188, 106507.
[http://dx.doi.org/10.1016/j.ejps.2023.106507] [PMID: 37364727]
[69]
Flora, D.R.; Rettie, A.E.; Brundage, R.C.; Tracy, T.S. CYP2C9 genotype‐dependent warfarin pharmacokinetics: Impact of CYP2C9 genotype on R‐ and S‐warfarin and their oxidative metabolites. J. Clin. Pharmacol., 2017, 57(3), 382-393.
[http://dx.doi.org/10.1002/jcph.813] [PMID: 27539372]
[70]
Rodriguez-Aller, M.; Gurny, R.; Veuthey, J.L.; Guillarme, D. Coupling ultra high-pressure liquid chromatography with mass spectrometry: Constraints and possible applications. J. Chromatogr. A, 2013, 1292, 2-18.
[http://dx.doi.org/10.1016/j.chroma.2012.09.061] [PMID: 23062879]
[71]
Shi, Y.; Zhang, W.; Jiang, M.; Huang, L.; Zhou, Y.; Chen, J.; Liu, D.; Liu, G.; Dong, M. Effects of sulfotanshinone sodium injection on the pharmacokinetics and pharmacodynamics of warfarin in rats in vivo. Xenobiotica, 2020, 50(6), 705-712.
[http://dx.doi.org/10.1080/00498254.2019.1681034] [PMID: 31609652]
[72]
Yüksel, B.; Şen, N. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples. J. Res. Pharma., 2018, 22(1), 181-188.
[http://dx.doi.org/10.12991/jrp.2018.92]
[73]
Yüksel, B.; Öncü, T.; Şen, N. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology. Toxicol. Analytiq. Cliniq., 2023, 35(1), 33-43.
[http://dx.doi.org/10.1016/j.toxac.2022.08.004]
[74]
Bayram, Y. Quantitative GC-FID analysis of heroin for seized drugs. Annals. Clin. Analyt. Med., 2020, 11(1), 38-42.
[http://dx.doi.org/10.4328/JCAM.6139]
[75]
Wang, Z.; Borjigin, G.; Zhang, M.; Yang, C.; Wang, Z.; Kuang, H. Simultaneous determination and pharmacokinetics study of three triterpenoid saponins in rat plasma by ultra‐high‐performance liquid chromatography tandem mass‐spectrometry after oral administration of Astragalus membranaceus leaf extract. J. Sep. Sci., 2023, 46(22), 2300282.
[http://dx.doi.org/10.1002/jssc.202300282] [PMID: 37863814]
[76]
Zhang, W.L.; Jiang, M.T.; Liu, Y.; Chen, J.Y.; Zhou, Y.X.; Liu, G.F. Effect and mechanism of Guanxinning injection on anticoagulation of Warfarin in rats in vivo. Prac. Pharm. Clin. Rem., 2020, 23(7), 577-583.
[http://dx.doi.org/10.14053/j.cnki.ppcr.202007001]
[77]
Jiang, M.; Zhou, Y.; Chen, J.; Zhang, W.; Sun, Z.; Qin, M.; Liu, Y.; Liu, G. Effects of herba erigerontis injection on pharmacodynamics and pharmacokinetics of warfarin in rats in vivo. Basic Clin. Pharmacol. Toxicol., 2021, 128(3), 386-393.
[http://dx.doi.org/10.1111/bcpt.13531] [PMID: 33155415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy