Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies

Author(s): Seyed Morteza Naghib* and Kave Mohammad-Jafari

Volume 24, Issue 14, 2024

Published on: 28 February, 2024

Page: [1185 - 1211] Pages: 27

DOI: 10.2174/0115680266286460240220073334

Price: $65

Abstract

Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.

Next »
Graphical Abstract

[1]
Wang, Q.; Xu, W.; Li, Q.; He, C.; Liu, Y.; Liu, J.; Wang, R.; Wu, J.; Xiang, D.; Chen, C. Coaxial electrostatic spray-based preparation of localization missile liposomes on a microfluidic chip for targeted treatment of triple-negative breast cancer. Int. J. Pharm., 2023, 643, 123220.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123220] [PMID: 37437856]
[2]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[3]
van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater., 2022, 11(5), 2100639.
[http://dx.doi.org/10.1002/adhm.202100639] [PMID: 34165909]
[4]
Vishvakrama, P.; Sharma, S. Liposomes: An overview. J. Drug Deliv. Ther., 2014, 47-55.
[5]
Sivasankar, M.; Katyayani, T. Liposomes: The future of formulations. Int. J. Res. Pharm. Chem., 2011, 1(2), 259-267.
[6]
Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol., 2012, 23(1), 13-27.
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[7]
Eskandari, V.; Sadeghi, M.; Hadi, A. Physical and chemical properties of nano-liposome, application in nano medicine. J. Comput. Appl. Mech., 2021, 52(4), 751-767.
[8]
Reza Mozafari, M.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res., 2008, 18(4), 309-327.
[http://dx.doi.org/10.1080/08982100802465941] [PMID: 18951288]
[9]
Mishra, G.P. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv., 2011, 2011, 863734.
[http://dx.doi.org/10.1155/2011/863734]
[10]
Crucho, C.I.C. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 2015, 10(1), 24-38.
[http://dx.doi.org/10.1002/cmdc.201402290] [PMID: 25319803]
[11]
Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release, 2015, 219, 205-214.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.050] [PMID: 26341694]
[12]
Fumoto, S.; Kawakami, S. Combination of nanoparticles with physical stimuli toward cancer therapy. Biol. Pharm. Bull., 2014, 37(2), 212-216.
[http://dx.doi.org/10.1248/bpb.b13-00703] [PMID: 24492718]
[13]
Li, Y.; Gao, G.H.; Lee, D.S. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv. Healthc. Mater., 2013, 2(3), 388-417.
[http://dx.doi.org/10.1002/adhm.201200313] [PMID: 23184586]
[14]
Yu, J.; Chu, X.; Hou, Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem. Commun., 2014, 50(79), 11614-11630.
[http://dx.doi.org/10.1039/C4CC03984J] [PMID: 25058003]
[15]
Heidarli, E.; Dadashzadeh, S.; Haeri, A. State of the art of stimuli-responsive liposomes for cancer therapy. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2017, 16(4), 1273-1304.
[PMID: 29552041]
[16]
Bangale, G.; Rajesh, K.; Shinde, G. Stealth liposomes: A novel approach of targeted drug delivery in cancer therapy. Int. J. Pharm. Sci. Res., 2014, 5, 750-759.
[17]
Kataria, S. Stealth liposomes: A review. Int. J. Res. Ayurveda Pharm., 2011, 2(5)
[18]
Shetti, P. Apigenin-loaded stealth liposomes: Development and pharmacokinetic studies for enhanced plasma retention of drug in cancer therapy. Top. Catal., 2023, 1-13.
[19]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1), 20180032.
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[20]
Lehner, R.; Wang, X.; Marsch, S.; Hunziker, P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine, 2013, 9(6), 742-757.
[http://dx.doi.org/10.1016/j.nano.2013.01.012] [PMID: 23434677]
[21]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[22]
Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Control. Release, 2012, 164(2), 138-144.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.038] [PMID: 22595146]
[23]
Sawant, R.R.; Torchilin, V.P. Challenges in development of targeted liposomal therapeutics. AAPS J., 2012, 14(2), 303-315.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[24]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility; Elsevier, 2011, pp. 198-205.
[25]
Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 2003, 42(5), 439-462.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[26]
Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater., 2012, 24(28), 3747-3756.
[http://dx.doi.org/10.1002/adma.201200454] [PMID: 22550056]
[27]
Jiang, Z.; Shi, H.; Tang, X.; Qin, J. Recent advances in droplet microfluidics for single-cell analysis. Trends Analyt. Chem., 2023, 159, 116932.
[http://dx.doi.org/10.1016/j.trac.2023.116932]
[28]
Chan, H.N.; Chen, Y.; Shu, Y.; Chen, Y.; Tian, Q.; Wu, H. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluidics, 2015, 19(1), 9-18.
[http://dx.doi.org/10.1007/s10404-014-1542-4]
[29]
Pang, L.; Ding, J.; Ge, Y.; Fan, J.; Fan, S.K. Single-cell-derived tumor-sphere formation and drug-resistance assay using an integrated microfluidics. Anal. Chem., 2019, 91(13), 8318-8325.
[http://dx.doi.org/10.1021/acs.analchem.9b01084] [PMID: 31148455]
[30]
Zhao, C.; Wang, Z.; Tang, X.; Qin, J.; Jiang, Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf. B Biointerfaces, 2023, 229, 113431.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113431] [PMID: 37473652]
[31]
van Swaay, D.; deMello, A. Microfluidic methods for forming liposomes. Lab Chip, 2013, 13(5), 752-767.
[http://dx.doi.org/10.1039/c2lc41121k] [PMID: 23291662]
[32]
Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep., 2016, 6(1), 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[33]
Shah, V.M.; Nguyen, D.X.; Patel, P.; Cote, B.; Al-Fatease, A.; Pham, Y.; Huynh, M.G.; Woo, Y.; Alani, A.W.G. Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. Nanomedicine, 2019, 18, 146-156.
[http://dx.doi.org/10.1016/j.nano.2019.02.019] [PMID: 30876818]
[34]
Lim, S.W.Z.; Wong, Y.S.; Czarny, B.; Venkatraman, S. Microfluidic-directed self-assembly of liposomes: Role of interdigitation. J. Colloid Interface Sci., 2020, 578, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2020.05.114] [PMID: 32505913]
[35]
Al-Amin, M.D.; Bellato, F.; Mastrotto, F.; Garofalo, M.; Malfanti, A.; Salmaso, S.; Caliceti, P. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges. Int. J. Mol. Sci., 2020, 21(5), 1611.
[http://dx.doi.org/10.3390/ijms21051611] [PMID: 32111100]
[36]
Lou, G.; Anderluzzi, G.; Woods, S.; Roberts, C.W.; Perrie, Y. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations. Eur. J. Pharm. Biopharm., 2019, 143, 51-60.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.013] [PMID: 31445156]
[37]
Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems: The current state. Adv. Colloid Interface Sci., 2022, 309, 102757.
[http://dx.doi.org/10.1016/j.cis.2022.102757] [PMID: 36152374]
[38]
Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D printed microfluidic chips for the fabrication of nanomedicines. Pharmaceutics, 2021, 13(12), 2134.
[http://dx.doi.org/10.3390/pharmaceutics13122134] [PMID: 34959415]
[39]
Kastner, E.; Kaur, R.; Lowry, D.; Moghaddam, B.; Wilkinson, A.; Perrie, Y. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int. J. Pharm., 2014, 477(1-2), 361-368.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.030] [PMID: 25455778]
[40]
Kotouček, J.; Hubatka, F.; Mašek, J.; Kulich, P.; Velínská, K.; Bezděková, J.; Fojtíková, M.; Bartheldyová, E.; Tomečková, A.; Stráská, J.; Hrebík, D.; Macaulay, S.; Kratochvílová, I.; Raška, M.; Turánek, J. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Sci. Rep., 2020, 10(1), 5595.
[http://dx.doi.org/10.1038/s41598-020-62500-2] [PMID: 32221374]
[41]
Rebollo, R.; Oyoun, F.; Corvis, Y.; El-Hammadi, M.M.; Saubamea, B.; Andrieux, K.; Mignet, N.; Alhareth, K. Microfluidic manufacturing of liposomes: Development and optimization by design of experiment and machine learning. ACS Appl. Mater. Interfaces, 2022, 14(35), 39736-39745.
[http://dx.doi.org/10.1021/acsami.2c06627] [PMID: 36001743]
[42]
Sapra, P.; Tyagi, P.; Allen, T. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv., 2005, 2(4), 369-381.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[43]
Torchilin, V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv., 2008, 5(9), 1003-1025.
[http://dx.doi.org/10.1517/17425247.5.9.1003] [PMID: 18754750]
[44]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[45]
Weinstein, J.N.; Blumenthal, R.; Sharrow, S.O.; Henkart, P.A. Antibody-mediated targeting of liposomes. Binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim. Biophys. Acta Biomembr., 1978, 509(2), 272-288.
[http://dx.doi.org/10.1016/0005-2736(78)90047-0] [PMID: 656414]
[46]
Heath, T.D.; Fraley, R.T.; Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab’)2 to vesicle surface. Science, 1980, 210(4469), 539-541.
[http://dx.doi.org/10.1126/science.7423203] [PMID: 7423203]
[47]
De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf. B Biointerfaces, 2022, 218, 112737.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112737] [PMID: 35933888]
[48]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next- generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[49]
Sonju, J.J.; Dahal, A.; Singh, S.S.; Jois, S.D. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J. Control. Release, 2021, 329, 624-644.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.055] [PMID: 33010333]
[50]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[51]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[52]
Shahin, M.; Soudy, R.; El-Sikhry, H.; Seubert, J.M.; Kaur, K.; Lavasanifar, A. Engineered peptides for the development of actively tumor targeted liposomal carriers of doxorubicin. Cancer Lett., 2013, 334(2), 284-292.
[http://dx.doi.org/10.1016/j.canlet.2012.10.007] [PMID: 23073474]
[53]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[http://dx.doi.org/10.1021/bm5003009] [PMID: 24798476]
[54]
Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic methods for production of liposomes. Methods Enzymol., 2009, 465, 129-141.
[http://dx.doi.org/10.1016/S0076-6879(09)65007-2] [PMID: 19913165]
[55]
Osouli-Bostanabad, K.; Puliga, S.; Serrano, D.R.; Bucchi, A.; Halbert, G.; Lalatsa, A. Microfluidic manufacture of lipid-based nanomedicines. Pharmaceutics, 2022, 14(9), 1940.
[http://dx.doi.org/10.3390/pharmaceutics14091940] [PMID: 36145688]
[56]
Reeves, J.P.; Dowben, R.M. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol., 1969, 73(1), 49-60.
[http://dx.doi.org/10.1002/jcp.1040730108] [PMID: 5765779]
[57]
Rodriguez, N.; Pincet, F.; Cribier, S. Giant vesicles formed by gentle hydration and electroformation: A comparison by fluorescence microscopy. Colloids Surf. B Biointerfaces, 2005, 42(2), 125-130.
[http://dx.doi.org/10.1016/j.colsurfb.2005.01.010] [PMID: 15833663]
[58]
Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes. Methods Protoc., 2017, 17-22.
[59]
Zhang, G.; Sun, J. Lipid in chips: A brief review of liposomes formation by microfluidics. Int. J. Nanomedicine, 2021, 16, 7391-7416.
[http://dx.doi.org/10.2147/IJN.S331639] [PMID: 34764647]
[60]
Osaki, T. Uniformly-sized giant liposome formation with gentle hydration. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 2011, pp. 103-106
[http://dx.doi.org/10.1109/MEMSYS.2011.5734372]
[61]
O’Neil, C.P.; Suzuki, T.; Demurtas, D.; Finka, A.; Hubbell, J.A. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration. Langmuir, 2009, 25(16), 9025-9029.
[http://dx.doi.org/10.1021/la900779t] [PMID: 19621886]
[62]
Funakoshi, K.; Suzuki, H.; Takeuchi, S. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc., 2007, 129(42), 12608-12609.
[http://dx.doi.org/10.1021/ja074029f] [PMID: 17915869]
[63]
Funakoshi, K.; Suzuki, H.; Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem., 2006, 78(24), 8169-8174.
[http://dx.doi.org/10.1021/ac0613479] [PMID: 17165804]
[64]
Stachowiak, J.C.; Richmond, D.L.; Li, T.H.; Liu, A.P.; Parekh, S.H.; Fletcher, D.A. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci., 2008, 105(12), 4697-4702.
[http://dx.doi.org/10.1073/pnas.0710875105] [PMID: 18353990]
[65]
Stachowiak, J.C.; Richmond, D.L.; Li, T.H.; Brochard-Wyart, F.; Fletcher, D.A. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip, 2009, 9(14), 2003-2009.
[http://dx.doi.org/10.1039/b904984c] [PMID: 19568667]
[66]
Richmond, D.L.; Schmid, E.M.; Martens, S.; Stachowiak, J.C.; Liska, N.; Fletcher, D.A. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl. Acad. Sci., 2011, 108(23), 9431-9436.
[http://dx.doi.org/10.1073/pnas.1016410108] [PMID: 21593410]
[67]
Kirchner, S.R.; Ohlinger, A.; Pfeiffer, T.; Urban, A.S.; Stefani, F.D.; Deak, A.; Lutich, A.A.; Feldmann, J. Membrane composition of jetted lipid vesicles: A Raman spectroscopy study. J. Biophotonics, 2012, 5(1), 40-46.
[http://dx.doi.org/10.1002/jbio.201100058] [PMID: 22147675]
[68]
Olson, F.; Hunt, C.A.; Szoka, F.C.; Vail, W.J.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta Biomembr., 1979, 557(1), 9-23.
[http://dx.doi.org/10.1016/0005-2736(79)90085-3] [PMID: 95096]
[69]
Hope, M.J.; Bally, M.B.; Webb, G.; Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta Biomembr., 1985, 812(1), 55-65.
[http://dx.doi.org/10.1016/0005-2736(85)90521-8] [PMID: 23008845]
[70]
Mayer, L.D.; Hope, M.J.; Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta Biomembr., 1986, 858(1), 161-168.
[http://dx.doi.org/10.1016/0005-2736(86)90302-0] [PMID: 3707960]
[71]
Jousma, H.; Talsma, H.; Spies, F.; Joosten, J.G.H.; Junginger, H.E.; Crommelin, D.J.A. Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers. Int. J. Pharm., 1987, 35(3), 263-274.
[http://dx.doi.org/10.1016/0378-5173(87)90139-6]
[72]
Dittrich, P.S.; Heule, M.; Renaud, P.; Manz, A. On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip, 2006, 6(4), 488-493.
[http://dx.doi.org/10.1039/b517670k] [PMID: 16572210]
[73]
Stroock, A. Chaotic mixer for microchannels. Science, 2002, 295, 647-651.
[http://dx.doi.org/10.1126/science.1066238] [PMID: 11809963]
[74]
Zhigaltsev, I.V.; Belliveau, N.; Hafez, I.; Leung, A.K.K.; Huft, J.; Hansen, C.; Cullis, P.R. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir, 2012, 28(7), 3633-3640.
[http://dx.doi.org/10.1021/la204833h] [PMID: 22268499]
[75]
Maeki, M.; Saito, T.; Sato, Y.; Yasui, T.; Kaji, N.; Ishida, A.; Tani, H.; Baba, Y.; Harashima, H.; Tokeshi, M. A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Advances, 2015, 5(57), 46181-46185.
[http://dx.doi.org/10.1039/C5RA04690D]
[76]
Maeki, M.; Fujishima, Y.; Sato, Y.; Yasui, T.; Kaji, N.; Ishida, A.; Tani, H.; Baba, Y.; Harashima, H.; Tokeshi, M. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One, 2017, 12(11), e0187962.
[http://dx.doi.org/10.1371/journal.pone.0187962] [PMID: 29182626]
[77]
Joshi, S.; Hussain, M.T.; Roces, C.B.; Anderluzzi, G.; Kastner, E.; Salmaso, S.; Kirby, D.J.; Perrie, Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int. J. Pharm., 2016, 514(1), 160-168.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.027] [PMID: 27863660]
[78]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles: From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[79]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[80]
Kimura, N.; Maeki, M.; Sato, Y.; Note, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Development of the iLiNP device: Fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega, 2018, 3(5), 5044-5051.
[http://dx.doi.org/10.1021/acsomega.8b00341] [PMID: 31458718]
[81]
Rasouli, M.R.; Tabrizian, M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab Chip, 2019, 19(19), 3316-3325.
[http://dx.doi.org/10.1039/C9LC00637K] [PMID: 31495858]
[82]
Modarres, P.; Tabrizian, M. Electrohydrodynamic-driven micromixing for the synthesis of highly monodisperse nanoscale liposomes. ACS Appl. Nano Mater., 2020, 3(5), 4000-4013.
[http://dx.doi.org/10.1021/acsanm.9b02407]
[83]
Breton, M.; Amirkavei, M.; Mir, L.M. Optimization of the electroformation of giant unilamellar vesicles (GUVs) with unsaturated phospholipids. J. Membr. Biol., 2015, 248(5), 827-835.
[http://dx.doi.org/10.1007/s00232-015-9828-3] [PMID: 26238509]
[84]
Runas, K.A.; Malmstadt, N. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter, 2015, 11(3), 499-505.
[http://dx.doi.org/10.1039/C4SM01478B] [PMID: 25415555]
[85]
Kastner, E.; Verma, V.; Lowry, D.; Perrie, Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int. J. Pharm., 2015, 485(1-2), 122-130.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.063] [PMID: 25725309]
[86]
Chen, D.; Love, K.T.; Chen, Y.; Eltoukhy, A.A.; Kastrup, C.; Sahay, G.; Jeon, A.; Dong, Y.; Whitehead, K.A.; Anderson, D.G. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc., 2012, 134(16), 6948-6951.
[http://dx.doi.org/10.1021/ja301621z] [PMID: 22475086]
[87]
Belliveau, N.M.; Huft, J.; Lin, P.J.C.; Chen, S.; Leung, A.K.K.; Leaver, T.J.; Wild, A.W.; Lee, J.B.; Taylor, R.J.; Tam, Y.K.; Hansen, C.L.; Cullis, P.R. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids, 2012, 1(8), e37.
[http://dx.doi.org/10.1038/mtna.2012.28] [PMID: 23344179]
[88]
Leung, A.K.K.; Hafez, I.M.; Baoukina, S.; Belliveau, N.M.; Zhigaltsev, I.V.; Afshinmanesh, E.; Tieleman, D.P.; Hansen, C.L.; Hope, M.J.; Cullis, P.R. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C, 2012, 116(34), 18440-18450.
[http://dx.doi.org/10.1021/jp303267y] [PMID: 22962627]
[89]
Shepherd, S.J.; Warzecha, C.C.; Yadavali, S.; El-Mayta, R.; Alameh, M.G.; Wang, L.; Weissman, D.; Wilson, J.M.; Issadore, D.; Mitchell, M.J. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett., 2021, 21(13), 5671-5680.
[http://dx.doi.org/10.1021/acs.nanolett.1c01353] [PMID: 34189917]
[90]
Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A.M.; Schubert, M.S.; Friedmann-Morvinski, D.; Cohen, Z.R.; Behlke, M.A.; Lieberman, J.; Peer, D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv., 2020, 6(47), eabc9450.
[http://dx.doi.org/10.1126/sciadv.abc9450] [PMID: 33208369]
[91]
Riley, R.S.; Kashyap, M.V.; Billingsley, M.M.; White, B.; Alameh, M.G.; Bose, S.K.; Zoltick, P.W.; Li, H.; Zhang, R.; Cheng, A.Y.; Weissman, D.; Peranteau, W.H.; Mitchell, M.J. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv., 2021, 7(3), eaba1028.
[http://dx.doi.org/10.1126/sciadv.aba1028] [PMID: 33523869]
[92]
Jahn, A. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc., 2015, 126(9), 2674-2675.
[93]
Jahn, A.; Lucas, F.; Wepf, R.A.; Dittrich, P.S. Freezing continuous-flow self-assembly in a microfluidic device: Toward imaging of liposome formation. Langmuir, 2013, 29(5), 1717-1723.
[http://dx.doi.org/10.1021/la303675g] [PMID: 23289615]
[94]
Jahn, A.; Vreeland, W.N.; DeVoe, D.L.; Locascio, L.E.; Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir, 2007, 23(11), 6289-6293.
[http://dx.doi.org/10.1021/la070051a] [PMID: 17451256]
[95]
Jahn, A.; Stavis, S.M.; Hong, J.S.; Vreeland, W.N.; DeVoe, D.L.; Gaitan, M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano, 2010, 4(4), 2077-2087.
[http://dx.doi.org/10.1021/nn901676x] [PMID: 20356060]
[96]
Tien Sing Young, R.V.; Tabrizian, M. Rapid, one-step fabrication and loading of nanoscale 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes in a simple, double flow-focusing microfluidic device. Biomicrofluidics, 2015, 9(4), 046501.
[http://dx.doi.org/10.1063/1.4926398] [PMID: 26180573]
[97]
Mijajlovic, M.; Wright, D.; Zivkovic, V.; Bi, J.X.; Biggs, M.J. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf. B Biointerfaces, 2013, 104, 276-281.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.020] [PMID: 23334181]
[98]
Zizzari, A.; Bianco, M.; Carbone, L.; Perrone, E.; Amato, F.; Maruccio, G.; Rendina, F.; Arima, V. Continuous-flow production of injectable liposomes via a microfluidic approach. Materials, 2017, 10(12), 1411.
[http://dx.doi.org/10.3390/ma10121411] [PMID: 29232873]
[99]
Balbino, T.A.; Aoki, N.T.; Gasperini, A.A.M.; Oliveira, C.L.P.; Azzoni, A.R.; Cavalcanti, L.P.; de la Torre, L.G. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem. Eng. J., 2013, 226, 423-433.
[http://dx.doi.org/10.1016/j.cej.2013.04.053]
[100]
Aghaei, H.; Solaimany Nazar, A.R. Continuous production of the nanoscale liposome in a double flow-focusing microfluidic device. Ind. Eng. Chem. Res., 2019, 58(51), 23032-23045.
[http://dx.doi.org/10.1021/acs.iecr.9b04079]
[101]
Hood, R.R.; DeVoe, D.L.; Atencia, J.; Vreeland, W.N.; Omiatek, D.M. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab Chip, 2014, 14(14), 2403-2409.
[http://dx.doi.org/10.1039/C4LC00334A] [PMID: 24825622]
[102]
Kemp, K.; Griffiths, J.; Campbell, S.; Lovell, K. An exploration of the follow-up up needs of patients with inflammatory bowel disease. J. Crohn’s Colitis, 2013, 7(9), e386-e395.
[http://dx.doi.org/10.1016/j.crohns.2013.03.001] [PMID: 23541150]
[103]
Chen, Z.; Han, J.Y.; Shumate, L.; Fedak, R.; DeVoe, D.L. High throughput nanoliposome formation using 3D printed microfluidic flow focusing chips. Adv. Mater. Technol., 2019, 4(6), 1800511.
[http://dx.doi.org/10.1002/admt.201800511]
[104]
Shum, H.C.; Lee, D.; Yoon, I.; Kodger, T.; Weitz, D.A. Double emulsion templated monodisperse phospholipid vesicles. Langmuir, 2008, 24(15), 7651-7653.
[http://dx.doi.org/10.1021/la801833a] [PMID: 18613709]
[105]
Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721), 537-541.
[http://dx.doi.org/10.1126/science.1109164] [PMID: 15845850]
[106]
Chu, L.Y.; Utada, A.S.; Shah, R.K.; Kim, J.W.; Weitz, D.A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed., 2007, 46(47), 8970-8974.
[http://dx.doi.org/10.1002/anie.200701358] [PMID: 17847154]
[107]
Davies, R.T.; Kim, D.; Park, J. Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. J. Micromech. Microeng., 2012, 22(5), 055003.
[http://dx.doi.org/10.1088/0960-1317/22/5/055003]
[108]
Foster, T.; Dorfman, K.D.; Ted Davis, H. Giant biocompatible and biodegradable PEG–PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets. J. Colloid Interface Sci., 2010, 351(1), 140-150.
[http://dx.doi.org/10.1016/j.jcis.2010.05.020] [PMID: 20627256]
[109]
Lorenceau, E.; Utada, A.S.; Link, D.R.; Cristobal, G.; Joanicot, M.; Weitz, D.A. Generation of polymerosomes from double-emulsions. Langmuir, 2005, 21(20), 9183-9186.
[http://dx.doi.org/10.1021/la050797d] [PMID: 16171349]
[110]
Tan, Y.C.; Hettiarachchi, K.; Siu, M.; Pan, Y.R.; Lee, A.P. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc., 2006, 128(17), 5656-5658.
[http://dx.doi.org/10.1021/ja056641h] [PMID: 16637631]
[111]
Teh, S.Y.; Khnouf, R.; Fan, H.; Lee, A.P. Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics, 2011, 5(4), 044113.
[http://dx.doi.org/10.1063/1.3665221] [PMID: 22685501]
[112]
Tiboni, M.; Benedetti, S.; Skouras, A.; Curzi, G.; Perinelli, D.R.; Palmieri, G.F.; Casettari, L. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. Int. J. Pharm., 2020, 584, 119436.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119436] [PMID: 32445905]
[113]
Shan, H.; Lin, Q.; Wang, D.; Sun, X.; Quan, B.; Chen, X.; Chen, Z. 3D printed integrated multi-layer microfluidic chips for ultra-high volumetric throughput nanoliposome preparation. Front. Bioeng. Biotechnol., 2021, 9, 773705.
[http://dx.doi.org/10.3389/fbioe.2021.773705] [PMID: 34708031]
[114]
Ballacchino, G.; Weaver, E.; Mathew, E.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci., 2021, 22(15), 8064.
[http://dx.doi.org/10.3390/ijms22158064] [PMID: 34360832]
[115]
Sommonte, F.; Denora, N.; Lamprou, D.A. Combining 3D printing and microfluidic techniques: A powerful synergy for nanomedicine. Pharmaceuticals, 2023, 16(1), 69.
[http://dx.doi.org/10.3390/ph16010069] [PMID: 36678566]
[116]
Sugiura, S.; Kuroiwa, T.; Kagota, T.; Nakajima, M.; Sato, S.; Mukataka, S.; Walde, P.; Ichikawa, S. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir, 2008, 24(9), 4581-4588.
[http://dx.doi.org/10.1021/la703509r] [PMID: 18376890]
[117]
Kuroiwa, T.; Kiuchi, H.; Noda, K.; Kobayashi, I.; Nakajima, M.; Uemura, K.; Sato, S.; Mukataka, S.; Ichikawa, S. Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluid. Nanofluidics, 2009, 6(6), 811-821.
[http://dx.doi.org/10.1007/s10404-008-0354-9]
[118]
Ota, S.; Yoshizawa, S.; Takeuchi, S. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew. Chem. Int. Ed., 2009, 48(35), 6533-6537.
[http://dx.doi.org/10.1002/anie.200902182] [PMID: 19644988]
[119]
Kurakazu, T.; Takeuchi, S. Generation of lipid vesicles using microfluidic T-junctions with pneumatic valves. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China 2010, pp. 1115-1118
[http://dx.doi.org/10.1109/MEMSYS.2010.5442406]
[120]
Alavi, M. Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects, 2022, 1(1), 18-29.
[121]
Stein, H.; Spindler, S.; Bonakdar, N.; Wang, C.; Sandoghdar, V. Production of isolated giant unilamellar vesicles under high salt concentrations. Front. Physiol., 2017, 8, 63.
[http://dx.doi.org/10.3389/fphys.2017.00063] [PMID: 28243205]
[122]
Witkowska, A.; Jablonski, L.; Jahn, R. A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Sci. Rep., 2018, 8(1), 9422.
[http://dx.doi.org/10.1038/s41598-018-27456-4] [PMID: 29930377]
[123]
Steinkühler, J.; De Tillieux, P.; Knorr, R.L.; Lipowsky, R.; Dimova, R. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci. Rep., 2018, 8(1), 11838.
[http://dx.doi.org/10.1038/s41598-018-30286-z] [PMID: 30087440]
[124]
Di Francesco, V. Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes. Biomed Microdevices., 2023, 25(3), 29.
[http://dx.doi.org/10.1007/s10544-023-00671-1]
[125]
Agha, A.; Waheed, W.; Stiharu, I.; Nerguizian, V.; Destgeer, G.; Abu-Nada, E.; Alazzam, A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discover Nano, 2023, 18(1), 18.
[http://dx.doi.org/10.1186/s11671-023-03792-x] [PMID: 36800044]
[126]
Hood, R.R.; Kendall, E.L.; Junqueira, M.; Vreeland, W.N.; Quezado, Z.; Finkel, J.C.; DeVoe, D.L. Microfluidic-enabled liposomes elucidate size-dependent transdermal transport. PLoS One, 2014, 9(3), e92978.
[http://dx.doi.org/10.1371/journal.pone.0092978] [PMID: 24658111]
[127]
Li, W.-P. Membrane integrated liposome synthesized by a liposome fusion-induced membrane exchange. Bio. Med. Chem., 2022.
[http://dx.doi.org/10.26434/chemrxiv-2022-9tt9m]
[128]
Bartheldyová, E.; Effenberg, R.; Mašek, J.; Procházka, L.; Knötigová, P.T.; Kulich, P.; Hubatka, F.; Velínská, K.; Zelníčková, J.; Zouharová, D.; Fojtíková, M.; Hrebík, D.; Plevka, P.; Mikulík, R.; Miller, A.D.; Macaulay, S.; Zyka, D.; Drož, L.; Raška, M.; Ledvina, M.; Turánek, J. Hyaluronic acid surface modified liposomes prepared via orthogonal aminoxy coupling: synthesis of nontoxic aminoxylipids based on symmetrically α-branched fatty acids, preparation of liposomes by microfluidic mixing, and targeting to cancer cells expressing CD44. Bioconjug. Chem., 2018, 29(7), 2343-2356.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00311] [PMID: 29898364]
[129]
Shah, V.M.; Dorrell, C.; Al-Fatease, A.; Allen-Petersen, B.L.; Woo, Y.; Bortnyak, Y.; Gheewala, R.; Sheppard, B.C.; Sears, R.C.; Alani, A.W.G. Microfluidics formulated liposomes of hypoxia activated prodrug for treatment of pancreatic cancer. Pharmaceutics, 2022, 14(4), 713.
[http://dx.doi.org/10.3390/pharmaceutics14040713] [PMID: 35456547]
[130]
Gao, C.; Zhang, L.; Xu, M.; Luo, Y.; Wang, B.; Kuang, M.; Liu, X.; Sun, M.; Guo, Y.; Teng, L.; Wang, C.; Zhang, Y.; Xie, J. Pulmonary delivery of liposomes co-loaded with SN38 prodrug and curcumin for the treatment of lung cancer. Eur. J. Pharm. Biopharm., 2022, 179, 156-165.
[http://dx.doi.org/10.1016/j.ejpb.2022.08.021] [PMID: 36064084]
[131]
Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. in vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst., 1973, 51(5), 1417-1423.
[http://dx.doi.org/10.1093/jnci/51.5.1417] [PMID: 4357758]
[132]
Martin, A.; Sarkar, A. Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line. Nanotoxicology, 2017, 11(6), 1-12.
[http://dx.doi.org/10.1080/17435390.2017.1366574] [PMID: 28830283]
[133]
Xu, R.; Tomeh, M.A.; Ye, S.; Zhang, P.; Lv, S.; You, R.; Wang, N.; Zhao, X. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Int. J. Pharm., 2022, 622, 121857.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121857] [PMID: 35623489]
[134]
Zhou, J.; Zhao, W.Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[135]
Ju, R.; Cheng, L.; Xiao, Y.; Wang, X.; Li, C.; Peng, X.; Li, X. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer. J. Liposome Res., 2018, 28(3), 236-248.
[http://dx.doi.org/10.1080/08982104.2017.1327542] [PMID: 28480778]
[136]
Jaradat, E.; Weaver, E.; Meziane, A.; Lamprou, D.A. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int. J. Pharm., 2022, 628, 122320.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122320] [PMID: 36272514]
[137]
Yu, B. Oligonucleotide based liposomal nanoparticles for leukemia and liver cancer therapy; The Ohio State University, 2010.
[138]
Jin, Y.; Tomeh, M.A.; Zhang, P.; Su, M.; Zhao, X.; Cai, Z. Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15(8), 3780-3795.
[http://dx.doi.org/10.1039/D2NR06215A] [PMID: 36723377]
[139]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem., 2018, 6, 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[140]
Tomeh, M.A.; Zhao, X. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol. Pharm., 2020, 17(12), 4421-4434.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00913] [PMID: 33213144]
[141]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[142]
Gao, A.; Hu, X.; Saeed, M.; Chen, B.; Li, Y.; Yu, H. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol. Sin., 2019, 40(9), 1129-1137.
[http://dx.doi.org/10.1038/s41401-019-0281-1] [PMID: 31371782]
[143]
Wang, Z.; Li, Y.; Ahmad, A.; Banerjee, S.; Azmi, A.S.; Kong, D.; Sarkar, F.H. Pancreatic cancer: Understanding and overcoming chemoresistance. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(1), 27-33.
[http://dx.doi.org/10.1038/nrgastro.2010.188] [PMID: 21102532]
[144]
Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm., 2021, 605, 120807.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120807] [PMID: 34144133]
[145]
Tomeh, M.A.; Mansor, M.H.; Hadianamrei, R.; Sun, W.; Zhao, X. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers. Int. J. Pharm., 2022, 620, 121762.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121762] [PMID: 35472511]
[146]
Khorshid, S.; Montanari, M.; Benedetti, S.; Moroni, S.; Aluigi, A.; Canonico, B.; Papa, S.; Tiboni, M.; Casettari, L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur. J. Pharm. Biopharm., 2022, 178, 53-64.
[http://dx.doi.org/10.1016/j.ejpb.2022.07.015] [PMID: 35917863]
[147]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[148]
Minotti, G.; Recalcati, S.; Menna, P.; Salvatorelli, E.; Corna, G.; Cairo, G. Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol., 2004, 378, 340-361.
[http://dx.doi.org/10.1016/S0076-6879(04)78025-8] [PMID: 15038979]
[149]
Haggag, Y.; Abu Ras, B.; El-Tanani, Y.; Tambuwala, M.M.; McCarron, P.; Isreb, M.; El-Tanani, M. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin. Drug Deliv., 2020, 17(11), 1655-1669.
[http://dx.doi.org/10.1080/17425247.2020.1813714] [PMID: 32841584]
[150]
Torchilin, V.P.; Weissig, V. Liposomes: A practical approach; Oxford University Press, 2003.
[http://dx.doi.org/10.1093/oso/9780199636556.001.0001]
[151]
Gkionis, L.; Aojula, H.; Harris, L.K.; Tirella, A. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Int. J. Pharm., 2021, 604, 120711.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120711] [PMID: 34015381]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy