Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Electrochemical Sensing of Vitamin C Using Graphene/Poly-Thionine Composite Film Modified Electrode

Author(s): Ridhu Varshini Murugan, Vasanth Magesh, K. Vijayalakshmi, Raji Atchudan, Sandeep Arya and Ashok K. Sundramoorthy*

Volume 16, Issue 1, 2024

Published on: 23 February, 2024

Page: [57 - 64] Pages: 8

DOI: 10.2174/0118764029290865240209072023

Price: $65

conference banner
Abstract

Background: Gastric irritation and kidney problems occur due to excess ascorbic acid content, whereas the lack of ascorbic acid in the human body leads to poor wound healing, muscle degeneration, and anemia.

Objectives: Herein, we report the development of an electrochemical sensor for the detection of ascorbic acid using poly-thionine/ graphene (P-Th/Gr) modified glassy carbon electrode (GCE) in 0.1 M phosphate buffer solution (PBS) (pH 7.4). Electrostatically fused graphene affixed with poly-thionine was successfully illustrated for effective voltammetric sensing of ascorbic acid.

Methodology: FE-SEM indicated the blended edge of a 2D graphene sheet with a deposited thin layer of polymer, which confirmed the formation of a poly-thionine/graphene composite. The cyclic voltammetry (CV) technique was utilized for the electrochemical assay of ascorbic acid (AsA, Vitamin C).

Results: With the increased concentrations of AsA, the oxidation peak current of ascorbic acid increased at 0.0 V, and the overpotential showed a decrease compared to bare GCE. The effect of scan rate on cyclic voltammograms was recorded with 500 μM of ascorbic acid from 10 mV/s to 250 mV/s, which indicated that AsA oxidation is a diffusion-controlled process on poly-thionine/ graphene-modified electrode.

Conclusion: It was concluded that a poly-thionine/graphene composite-based sensor could be useful for the determination of ascorbic acid in various biological samples.

« Previous
Graphical Abstract

[1]
Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett., 2008, 8(6), 1679-1682.
[http://dx.doi.org/10.1021/nl080604h] [PMID: 18498200]
[2]
Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano, 2010, 4(7), 4001-4010.
[http://dx.doi.org/10.1021/nn100939n] [PMID: 20583782]
[3]
Sundramoorthy, A.K.; Gunasekaran, S. Applications of graphene in quality assurance and safety of food. Trends Analyt. Chem., 2014, 60, 36-53.
[http://dx.doi.org/10.1016/j.trac.2014.04.015]
[4]
Sundramoorthy, A.K.; Gunasekaran, S. Partially oxidized graphene/metallic single-walled carbon nanotubes film-coated electrode for nanomolar detection of dopamine. Electroanalysis, 2015, 27(8), 1811-1816.
[http://dx.doi.org/10.1002/elan.201500047]
[5]
Li, Z.; Lin, J.; Li, B.; Yu, C.; Wang, H.; Li, Q. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: A review. J. Energy Storage, 2021, 44, 103437.
[http://dx.doi.org/10.1016/j.est.2021.103437]
[6]
Nagarajan, R.D.; Sundramoorthy, A.K. One-pot electrosynthesis of silver nanorods/graphene nanocomposite using 4-sulphocalix[4]arene for selective detection of oxalic acid. Sens. Actuators B Chem., 2019, 301, 127132.
[http://dx.doi.org/10.1016/j.snb.2019.127132]
[7]
Alwarappan, S.; Liu, C.; Kumar, A.; Li, C.Z. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C, 2010, 114(30), 12920-12924.
[http://dx.doi.org/10.1021/jp103273z]
[8]
Zhang, R.; Sun, C.L.; Lu, Y.J.; Chen, W. Graphene nanoribbonsupported PtPd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal. Chem., 2015, 87(24), 12262-12269.
[http://dx.doi.org/10.1021/acs.analchem.5b03390] [PMID: 26568380]
[9]
Zhu, D.; He, P.; Kong, H.; Yang, G.; Luan, X.; Wei, G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(44), 9216-9225.
[http://dx.doi.org/10.1039/D2TB02132C] [PMID: 36314985]
[10]
Sharma, V.; Sundaramurthy, A.; Tiwari, A.; Sundramoorthy, A.K. Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples. Appl. Surf. Sci., 2018, 449, 558-566.
[http://dx.doi.org/10.1016/j.apsusc.2017.10.177]
[11]
Nagarajan, R.D.; Kavitha, J.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Electrochemical analysis of narcotic drugs using nanomaterials modified electrodes – A review. Curr. Anal. Chem., 2023, 19(6), 440-447.
[http://dx.doi.org/10.2174/1573411019666230622153225]
[12]
Murugan, P.; Nagarajan, R.D.; Shetty, B.H.; Govindasamy, M.; Sundramoorthy, A.K. Recent trends in the applications of thermally expanded graphite for energy storage and sensors – A review. Nanoscale Adv., 2021, 3(22), 6294-6309.
[http://dx.doi.org/10.1039/D1NA00109D] [PMID: 36133482]
[13]
Nagarajan, R.D.; Kavitha, J.; Sundramoorthy, A.K. Electrochemical detection and isolation of cancer cells using nano-materials based biosensors–A review. Int. J. Electrochem. Sci., 2023, 18(7), 100203.
[14]
Sridharan, G.; Atchudan, R.; Magesh, V.; Arya, S.; Ganapathy, D.; Nallaswamy, D.; Sundramoorthy, A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review. Electroanalysis, 2023, 35(9), e202300093.
[http://dx.doi.org/10.1002/elan.202300093]
[15]
Murugan, N.; Kumar, T.H.V.; Devi, N.R.; Sundramoorthy, A.K. A flower-structured MoS 2 -decorated f-MWCNTs/ZnO hybrid nanocomposite-modified sensor for the selective electrochemical detection of vitamin C. New J. Chem., 2019, 43(38), 15105-15114.
[http://dx.doi.org/10.1039/C9NJ02993A]
[16]
Gazdik, Z.; Zitka, O.; Petrlova, J.; Adam, V.; Zehnalek, J.; Horna, A.; Reznicek, V.; Beklova, M.; Kizek, R. Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors, 2008, 8(11), 7097-7112.
[http://dx.doi.org/10.3390/s8117097] [PMID: 27873917]
[17]
Akyilmaz, E.; Guvenc, C.; Koylu, H. A novel mıcrobıal bıosensor system based on C. tropicalis yeast cells for selectıve determınatıon of L-Ascorbıc acid. Bioelectrochemistry, 2020, 132, 107420.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107420] [PMID: 31864108]
[18]
Kaçar, C.; Erden, P.E. An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal. Bioanal. Chem., 2020, 412(22), 5315-5327.
[http://dx.doi.org/10.1007/s00216-020-02747-w] [PMID: 32533225]
[19]
Kirk, R.S.; Sawyer, R.; Egan, H. Eds.; Pearson’s composition and analysis of foods, 9th ed; Longman: London, England, 1991.
[20]
Lopez-Anaya, A.; Mayersohn, M. Ascorbic and dehydroascorbic acids simultaneously quantified in biological fluids by liquid chromatography with fluorescence detection, and comparison with a colorimetric assay. Clin. Chem., 1987, 33(10), 1874-1878.
[http://dx.doi.org/10.1093/clinchem/33.10.1874] [PMID: 3665043]
[21]
Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical methods for ascorbic acid determination. Electrochim. Acta, 2014, 121, 443-460.
[http://dx.doi.org/10.1016/j.electacta.2013.12.127]
[22]
Fan, J.; Ye, C.; Feng, S.; Zhang, G.; Wang, J. Flow injection kinetic spectrophotometric determination of ascorbic acid based on an inhibiting effect. Talanta, 1999, 50(4), 893-898.
[http://dx.doi.org/10.1016/S0039-9140(99)00183-6] [PMID: 18967780]
[23]
Zeng, W.; Martinuzzi, F.; MacGregor, A. Development and application of a novel UV method for the analysis of ascorbic acid. J. Pharm. Biomed. Anal., 2005, 36(5), 1107-1111.
[http://dx.doi.org/10.1016/j.jpba.2004.09.002] [PMID: 15620539]
[24]
Pérez-Ruíz, T.; Martínez-Lozano, C.; Sanz, A. Flow-injection chemiluminometric determination of ascorbic acid based on its sensitized photooxidation. Anal. Chim. Acta, 1995, 308(1-3), 299-307.
[http://dx.doi.org/10.1016/0003-2670(94)00527-S]
[25]
Lee, W.; Roberts, S.M.; Labbe, R.F. Ascorbic acid determination with an automated enzymatic procedure. Clin. Chem., 1997, 43(1), 154-157.
[http://dx.doi.org/10.1093/clinchem/43.1.154] [PMID: 8990238]
[26]
Wu, T.; Guan, Y.; Ye, J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem., 2007, 100(4), 1573-1579.
[http://dx.doi.org/10.1016/j.foodchem.2005.12.042]
[27]
Wu, J.; Suls, J.; Sansen, W. Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem. Commun., 2000, 2(2), 90-93.
[http://dx.doi.org/10.1016/S1388-2481(99)00148-4]
[28]
Kanďár, R.; Drábková, P.; Hampl, R. The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(26), 2834-2839.
[http://dx.doi.org/10.1016/j.jchromb.2011.08.007] [PMID: 21871848]
[29]
Brainina, K.Z.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical sensor based on a carbon veil modified by phytosynthesized gold nanoparticles for determination of ascorbic acid. Sensors, 2020, 20(6), 1800.
[http://dx.doi.org/10.3390/s20061800] [PMID: 32214016]
[30]
Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors, 2021, 11(9), 336.
[http://dx.doi.org/10.3390/bios11090336] [PMID: 34562926]
[31]
Kumar, S.A.; Lo, P.H.; Chen, S.M. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens. Bioelectron., 2008, 24(4), 518-523.
[http://dx.doi.org/10.1016/j.bios.2008.05.007] [PMID: 18586483]
[32]
Prasad, B.B.; Srivastava, S.; Tiwari, K.; Sharma, P.S. Ascorbic acid sensor based on molecularly imprinted polymer-modified hanging mercury drop electrode. Mater. Sci. Eng. C, 2009, 29(4), 1082-1087.
[http://dx.doi.org/10.1016/j.msec.2008.09.025]
[33]
Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis, 2010, 22(17-18), 2001-2008.
[http://dx.doi.org/10.1002/elan.201000094]
[34]
Nithya, M. Electrochemical sensing of ascorbic acid on ZnOdecorated reduced graphene oxide electrode. J. Biosens. Bioelectron., 2015, 6(1), 1.
[http://dx.doi.org/10.4172/2155-6210.1000164]
[35]
Mukdasai, S.; Crowley, U.; Pravda, M.; He, X.; Nesterenko, E.P.; Nesterenko, P.N.; Paull, B.; Srijaranai, S.; Glennon, J.D.; Moore, E. Electrodeposition of palladium nanoparticles on porous graphitized carbon monolith modified carbon paste electrode for simultaneous enhanced determination of ascorbic acid and uric acid. Sens. Actuators B Chem., 2015, 218, 280-288.
[http://dx.doi.org/10.1016/j.snb.2015.04.071]
[36]
Reid, G.D.; Whittaker, D.J.; Day, M.A.; Creely, C.M.; Tuite, E.M.; Kelly, J.M.; Beddard, G.S. Ultrafast electron-transfer reactions between thionine and guanosine bases. J. Am. Chem. Soc., 2001, 123(28), 6953-6954.
[http://dx.doi.org/10.1021/ja015584z] [PMID: 11448213]
[37]
Dohno, C.; Stemp, E.D.A.; Barton, J.K. Fast back electron transfer prevents guanine damage by photoexcited thionine bound to DNA. J. Am. Chem. Soc., 2003, 125(32), 9586-9587.
[http://dx.doi.org/10.1021/ja036397z] [PMID: 12904014]
[38]
Sadak, O.; Wang, W.; Guan, J.; Sundramoorthy, A.K.; Gunasekaran, S. MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors. ACS Appl. Nano Mater., 2019, 2(7), 4386-4394.
[http://dx.doi.org/10.1021/acsanm.9b00797]
[39]
Sadak, O.; Sundramoorthy, A.K.; Gunasekaran, S. Facile and green synthesis of highly conducting graphene paper. Carbon, 2018, 138, 108-117.
[http://dx.doi.org/10.1016/j.carbon.2018.05.076]
[40]
Sundramoorthy, A.K.; Wang, Y.; Wang, J.; Che, J.; Thong, Y.X.; Lu, A.C.W.; Chan-Park, M.B. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix[4]arene. Sci. Rep., 2015, 5(1), 10716.
[http://dx.doi.org/10.1038/srep10716] [PMID: 26040436]
[41]
Gómez, H.; Ram, M.K.; Alvi, F.; Villalba, P.; Stefanakos, E.L.; Kumar, A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Power Sources, 2011, 196(8), 4102-4108.
[http://dx.doi.org/10.1016/j.jpowsour.2010.11.002]
[42]
Wang, W.; Komura, T.; Yamaguchi, T.; Takahashi, K. Electrocatalytic oxidation of NADH at polythionine-modified electrodes as studied by rotating disk voltammetry. Electrochemistry, 2001, 69(3), 165-170.
[http://dx.doi.org/10.5796/electrochemistry.69.165]
[43]
Lo, P.H.; Kumar, S.A.; Chen, S.M. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf. B Biointerfaces, 2008, 66(2), 266-273.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.003] [PMID: 18715769]
[44]
Magesh, V.; Kothari, V.S.; Ganapathy, D.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A.K. Using sparfloxacin-capped gold nanoparticles to modify a screen-printed carbon electrode sensor for ethanol determination. Sensors (Basel), 2023, 23(19), 8201.
[http://dx.doi.org/10.3390/s23198201] [PMID: 37837031]
[45]
Yang, Y.J. One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2015, 221, 750-759.
[http://dx.doi.org/10.1016/j.snb.2015.06.150]
[46]
Wang, X.; Wu, M.; Tang, W.; Zhu, Y.; Wang, L.; Wang, Q.; He, P.; Fang, Y. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J. Electroanal. Chem., 2013, 695, 10-16.
[http://dx.doi.org/10.1016/j.jelechem.2013.02.021]
[47]
Li, H.; Wang, Y.; Ye, D.; Luo, J.; Su, B.; Zhang, S.; Kong, J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta, 2014, 127, 255-261.
[http://dx.doi.org/10.1016/j.talanta.2014.03.034] [PMID: 24913885]
[48]
Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron., 2014, 53, 220-224.
[http://dx.doi.org/10.1016/j.bios.2013.09.064] [PMID: 24140872]
[49]
Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron., 2013, 49, 1-8.
[http://dx.doi.org/10.1016/j.bios.2013.04.034] [PMID: 23708810]
[50]
Nancy, T.E.M.; Kumary, V.A. Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta, 2014, 133, 233-240.
[http://dx.doi.org/10.1016/j.electacta.2014.04.027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy