Abstract
Background: The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C).
Methods: To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of singlewalled carbon nanotubes (SWCNT).
Results: Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined.
Conclusions: Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.
Current Nanoscience
Title:Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C
Volume: 20
Author(s): Sangeetha Dhanapalan, Vasanth Magesh, Raji Atchudan, Sandeep Arya, Dhanraj Ganapathy, Deepak Nallaswamy and Ashok Sundramoorthy*
Affiliation:
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
Abstract: Background: The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C).
Methods: To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of singlewalled carbon nanotubes (SWCNT).
Results: Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined.
Conclusions: Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.
Export Options
About this article
Cite this article as:
Dhanapalan Sangeetha, Magesh Vasanth, Atchudan Raji, Arya Sandeep, Ganapathy Dhanraj, Nallaswamy Deepak and Sundramoorthy Ashok*, Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C, Current Nanoscience 2024; 20 () . https://dx.doi.org/10.2174/0115734137289697240216070503
DOI https://dx.doi.org/10.2174/0115734137289697240216070503 |
Print ISSN 1573-4137 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6786 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers